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Abstract

Predicting the effect of missense variations on protein stability and dynamics

is important for understanding their role in diseases, and the link between pro-

tein structure and function. Approaches to estimate these changes have been

proposed, but most only consider single-point missense variants and a static

state of the protein, with those that incorporate dynamics are computationally

expensive. Here we present DynaMut2, a web server that combines Normal

Mode Analysis (NMA) methods to capture protein motion and our graph-

based signatures to represent the wildtype environment to investigate the

effects of single and multiple point mutations on protein stability and dynam-

ics. DynaMut2 was able to accurately predict the effects of missense mutations

on protein stability, achieving Pearson's correlation of up to 0.72 (RMSE:

1.02 kcal/mol) on a single point and 0.64 (RMSE: 1.80 kcal/mol) on multiple-

point missense mutations across 10-fold cross-validation and independent

blind tests. For single-point mutations, DynaMut2 achieved comparable per-

formance with other methods when predicting variations in Gibbs Free Energy

(ΔΔG) and in melting temperature (ΔTm). We anticipate our tool to be a valu-

able suite for the study of protein flexibility analysis and the study of the role

of variants in disease. DynaMut2 is freely available as a web server and API at

http://biosig.unimelb.edu.au/dynamut2.
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1 | INTRODUCTION

Proteins are highly dynamic, metastable molecular
machines. Missense mutations are associated with more
than half of all known inherited diseases, however, they
are often associated with more subtle molecular effects
than mutations that lead to larger changes to the mature
peptide. These single amino acid changes can readily dis-
rupt the intricate network of intramolecular interactions,

affecting how a protein folds, its stability, dynamics, and
ultimately protein function. Beyond phenotypic
outcomes,1–22 it also has direct implications for their
experimental study, protein engineering,23,24 drug
design,25–30 and use in industrial processes.31

A number of approaches have been developed to pre-
dict how missense mutations affect protein stability using
either sequence32–34 or structural information.35–37 The
information from both approaches is often complementary;
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however, structural methods have generally assumed a pro-
tein is static and does not consider the implications of a
mutation within its conformational landscape. We previ-
ously showed that by considering both the mutation envi-
ronment and the protein dynamics, we could more
accurately predict the effects of single-point missense
mutations.38

Most predictive tools, however, have been limited to
single point missense variants, and the inclusion of pro-
tein dynamics computationally scales poorly with protein
size. Here we present DynaMut2, an enhanced server
that combines normal mode analysis with our graph-
based representation of protein structure, to accurately
and quickly predict the effects of single and multiple
point mutations on protein stability and dynamics.

2 | RESULTS AND DISCUSSION

The DynaMut2 development workflow is summarized in
Figure 1. Data on single and multiple point mutations
were derived from ProTherm.39 Given the wide range of
molecular mechanisms by which mutations can impact
protein function, we modeled the effects of each

mutation using a range of features, including protein
dynamics (NMA), wild-type residue environment, sub-
stitution propensities and contact potential scores, inter-
atomic interactions40 and also our well-validated graph-
based signatures approach.35,41–48 These were then used
to train and test machine learning algorithms. Our pre-
dictive models were further evaluated using indepen-
dent blind test sets.

2.1 | Predicting the effects of single
point mutations

We initially evaluated the performance of our approach
to predict changes in stability caused by single point
mutations. DynaMut2 was able to achieve a Pearson's
correlation of r = 0.72 (RMSE = 1.02 kcal/mol) for the
dataset S4022, under 10-fold cross-validation, and
r = 0.68 on S611, our non-redundant independent test set
(RMSE = 1.14 kcal/mol) (Figure 2), outperforming all
other methods (Table 1). The comparable performance
between cross-validation and non-redundant blind test
supports the generalizability of the final model. After
removing 10% of outliers, performance remained

FIGURE 1 DynaMut2 workflow. The methodology for this work can be summarized into four steps: (1) data collection and curation of

single and multiple mutations, (2) feature engineering to model the effects of mutations, (3) supervised machine learning, and (4) the

predicted effects on stability and dynamics
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consistent for the training set with r = 0.76
(RMSE = 1.06), and increased to r = 0.77 (RMSE = 1.07)
on the test set. No significant differences in the distribu-
tions of properties were observed for the outliers com-
pared to the overall dataset.

Due to the natural imbalance between stabilizing and
destabilizing mutations present in the training and evalu-
ation data (Figure S1), we further analyzed performance
on the respective classes separately. Across the non-
redundant validation se S611, DynaMut2 achieved a
Pearson's correlation of r = 0.62 (RMSE = 1.75) and
r = 0.51 (RMSE = 1.88) on destabilizing and stabilizing

mutations, respectively. The slightly lower performance
toward stabilizing mutations was expected due to the
imbalanced distribution of data but was significantly
improved compared to previous methods (Table 1). These
results remained consistent when we compared the per-
formances using rank coefficient scores Kendall and
Spearman (Table S1). This was further reflected in the
ability of DynaMut2 to correctly classify stabilizing and
destabilizing mutations (AUC 0.68), outperforming previ-
ous approaches.

To further investigate potential biases in the predic-
tive performance, we evaluated the performance of

FIGURE 2 Predictive performance of DynaMut2 on 10-fold cross-validation (a) and non-redundant test sets (b) for single point

mutations. 10% of outliers are shown as pink crosses

TABLE 1 Comparative performance across the non-redundant test set S611

Method

Overall Stabilizing mutations Destabilizing mutations

AUCPearson (r) RMSE (kcal/Mol) Pearson (r) RMSE (kcal/Mol) Pearson (r) RMSE (kcal/Mol)

DynaMut2 0.68 1.14 0.51 1.02 0.62 0.91 0.68

DynaMut1 0.49* 1.38+ 0.47 1.24 0.55 1.01 0.62

SDM 0.35* 1.93+ 0.15* 2.00+ 0.36* 1.86+ 0.60#

mCSM 0.46* 1.42+ 0.11* 1.81+ 0.56 0.98 0.56#

DUET 0.48* 1.40+ 0.09* 1.75+ 0.58 1.00 0.56#

ENCoM −0.14* 2.03+ −0.01* 1.94+ −0.18* 2.09+ 0.41#

Maestro −0.36* 1.55+ 0.27* 1.17 0.43* 1.81+ 0.46#

I-mutant 0.33* 1.47+ 0.03* 1.83+ 0.49* 1.09+ 0.51#

MUproa 0.15* 1.71+ −0.05* 2.15+ 0.23* 1.21+ 0.50#

*p Value < .05 compared with DynaMut2 using z test.
#p Value < .05 compared with DynaMut2 using t test.
+p Value < .05 compared with DynaMut2 using Diebold-Mariano test.
a48 mutations were left out due to input issues.
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DynaMut2 on subsets derived from the O2567 dataset.49

DynaMut2 showed significantly better performance than
all other approaches for mutations on buried residues
(RSA ≤30%; Table S2). A small deterioration in perfor-
mance is observed on mutations on exposed residues
(RSA > 30%; Table S3), likely to be related to the smaller
number features captured by the graph-based signatures
in DynaMut2; however, our method still achieved compa-
rable results to mCSM, MAESTRO and SDM, and out-
performed other approaches. Evaluating the performance
on different protein CATH classifications, DynaMut2 out-
performed other approaches across β-sheet structures
(Table S4), and α-helix and β-helix structures (Table S5).
The size of the protein being mutated did not affect per-
formance, with comparable performance between larger
proteins (>150 residues; Table S6) and small proteins
(<150 residues; Table S7), outperforming all other evalu-
ated approaches. Similarly, DynaMut2 performance was
similar to mutations from large to small residues
(Table S8), from small to large residues (Table S9), or for
mutations between residues of comparable sizes
(Table S10). Encouragingly, DynaMut2 outperformed all
other approaches on mutations leading to a change in
volume and demonstrated comparable performance to
the top approaches for mutations between residues of
similar volume. Overall, this highlighted that DynaMut2
predictive performance across all single-point mutations
was significantly more balanced and less biased than all
other methods evaluated.

We further evaluated the performance of our model
across an additional independent test set, S276.
DynaMut2 achieved a Pearson's correlation of 0.52, com-
parable with the best-performing methods (Table 2) and
significantly better than MUpro.50 Although not directly
comparable, as there is a correlation between changes
upon mutation in stability (ΔG) and thermal stability
(Tm),

51 the performance of DynaMut2 on predicting
changes in melting temperature was assessed using the

blind test set S173. Results were stratified by protein
structure and summarized in Table S11. Overall,
DynaMut2 ranks fourth among the methods evaluated;
however, performances of all methods varied greatly
between structures. These results indicate a possible chal-
lenge in accurately predicting the thermal stability effects
of mutations on a more diverse set of proteins.

2.2 | Predicting the effects of multiple
point mutations

The performance of our approach to predict the effects of
multiple point mutations on protein stability was then
assessed. DynaMut2 achieved a Pearson's correlation of
r = 0.71 (RMSE = 1.66 kcal/mol) under 10-fold cross-
validation and r = 0.67 (RMSE = 1.79 kcal/mol) on our
non-redundant test set. The comparable performance
between cross-validation and blind test set again gave
confidence in the generalizability of the approach. This
significantly outperformed the previously reported per-
formances of DDGun, DDGun3D, Maestro, and FoldX,
whose correlations ranged from 0.37 to 0.55 on the exper-
imental multiple point mutations in ProTherm.52 Perfor-
mances were consistent when considering only 90% of
the data, with DynaMut2 achieving r = 0.82
(RMSE = 1.91) and r = 0.80 (RMSE = 2.01) on 10-fold
cross-validation and blind-test, respectively (Figure 3).
This indicates that outlier predictions were not having a
significant effect on the correlations.

The unbalanced nature of the training dataset was
evident when we analyzed the performance of our final
model on stabilizing and destabilizing multiple mutations
separately (Table 3). Overall, DynaMut2 was able to cor-
rectly classify 80% of multiple missense mutations (AUC
0.84) in the blind test set, including 93% of the
destabilizing mutations, providing confidence in the
ranking ability of the approach. As expected, however,
across our non-redundant test set DynaMut2 shows a bet-
ter performance toward predicting multiple mutations
with a destabilizing effect, achieving a Pearson's correla-
tion of r = 0.56 (RMSE = 2.66), while for stabilizing
entries the performance drops to r = 0.42 (RMSE = 2.94).
These results indicate a need for new experimental data
on multiple point mutations, especially those with stabi-
lizing effects, since the use of hypothetical reverse muta-
tions is likely to add more uncertainty to the model.

2.3 | Web server

We have implemented DynaMut2 as a freely available and
user-friendly web server (http://biosig.unimelb.edu.au/

TABLE 2 Comparative performance across the S276 blind test

of experimental ΔΔG

Method R MAE (kcal/Mol)

DynaMut2 0.52 0.88

DeepDDG 0.55 0.86

SDM 0.48 1.02

mCSM 0.46 0.90

I-mutant 0.45 0.91

STRUM 0.44 0.88

MUpro 0.19* 1.06

*p Value < .05 compared with DynaMut2 using z test.
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dynamut2/). The frontend was developed using Mat-
erializecss version 1.0.0 and the backend uses the Flask
module (1.0.2) from the Python programming language. The
web server is hosted on a Linux machine running Apache.

2.4 | Input

DynaMut2 can be used in three different ways1:
predicting ΔΔG for single point mutations,2 predicting
ΔΔG for multiple point mutations (up to three), and also
analysis of protein dynamics based on NMA. For
predicting single point mutations, similarly to our previ-
ous implementation of DynaMut, two different inputs are
available: “Single mutation” and “List of Mutations”. For
the Single Mutation option, users are required to provide
a protein structure on PDB format or provide a four-digit
code of an entry on the PDB, the chain identifier where
the mutation occurs and the point mutation defined as

string comprising wild-type residue one-letter code, residue
position, and mutant residue one-letter code. For the List of
Mutations option, users must provide the structure of the
protein, similarly to the Single Mutation option, and also
upload a file with the list of variants (one per line), follow-
ing the same mutation code previously defined.

For predicting the effects of multiple mutations, users
are required to provide the structure of the protein, as
previously described, and also the multiple mutations
separated by a comma. DynaMut2 also allows for submit-
ting a list of multiple point mutations to be analyzed in
batch. These can be input by uploading a file with one
entry of multiple mutations separated by comma per line.

Alternatively, for protein dynamic analysis, users are
required to input the protein structure by uploading a file
using the PDB format or provide a valid four-digit code
for a PDB entry, and also select one of the force fields
available to guide structural interactions for NMA. All
force field options available are detailed in Table S12.

FIGURE 3 Predictive performance of DynaMut2 on 10-fold cross-validation (a) and non-redundant test sets (b) for multiple point

mutations. 10% of outliers are shown as pink crosses

TABLE 3 Comparative

performance on multiple mutations

prediction across different correlation

coefficients

Methods

Overall Stabilizing Destabilizing

rp Tau rs rp Tau rs rp Tau rs

DynaMut2 0.71 0.58 0.75 0.42 0.38 0.53 0.56 0.47 0.63

MAESTRO 0.19* 0.13+ 0.19# 0.12* 0.07+ 0.08# 0.21* 0.14+ 0.21#

FoldX 0.33* 0.21+ 0.31# 0.04* 0.06+ 0.09# 0.30* 0.19+ 0.27#

*p Value < .05 compared with DynaMut2 using Fisher r-to-z transformation.
+p Value <.05 by transforming tau-to-r followed by Fisher r-to-z transformation.
#p Value <.05 by transforming rho-to-r followed by Fisher r-to-z transformation.
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2.5 | Output

For single point mutations on the “Single Mutation”
option, predicted ΔΔG is shown at the top with details of
users' input and also the wild-type residue environment
(Figure 4). All interatomic contacts calculated with
Arpeggio are also displayed as an interactive viewer using

NGL viewer.53 On the “Mutation List” option, the results
are displayed as a downloadable table with options to
view details of each variation separately, similarly to the
analysis provided by the “Single Mutation”, option.

The results for multiple mutations, predictions are
displayed at the top of the page with detailed information
for each mutation, if a list is provided these results are

FIGURE 4 DynaMut2 results

page. The figure depicts the

prediction results page for single-

point mutations. The predicted

effect of a mutation in stability and

dynamics is given as the variation in

Gibbs Free Energy (in Kcal/mol)

(1), together with complementary

information about the mutation

provided (2). Users can inspect the

wild-type residue environment via

an interactive viewer (3), which also

allows the visualization of non-

covalent interactions established by

the mutated residue
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shown as a table. An interactive viewer allowing for the
analysis of residue contacts is also available.

For NMA submissions, the results are displayed on
three panels. The first two provide information on trajec-
tory representation of the molecule motion and porcu-
pine plots, summarizing vector field representation, for
the first non-trivial modes. Finally, the last panel displays
a residue correlation matrix and structural representa-
tions using all modes.

2.6 | API

DynaMut2 conveniently offers an API (Application Pro-
gramming Interface) to assist users in integrating our pre-
dictive tool into their research pipelines. All jobs submitted
to DynaMut2 are labeled with a unique identifier, which is
used to query the status of the job. Input fields follow the
same rules of our website implementation. A full descrip-
tion of these with examples using curl and Python are avail-
able at http://biosig.unimelb.edu.au/dynamut2/api.

2.7 | Processing time

Finally, we compared the performance of DynaMut2 with
our previous implementation, DynaMut, in terms of
processing time for single-point mutations on six differ-
ent protein structures. For each structure, we submitted a
single-point mutation to each server and computed the
processing time in seconds. This procedure was repeated
10 times for each mutation and the results are summa-
rized in Table S13 and Figure S2. Clearly, the greater the
number of residues comprising the protein structure the
longer it takes for our NMA based methods to generate
predictions. However, DynaMut2 runs much faster than
DynaMut on all sets of experiments with very little differ-
ences in each repetition and an improvement of more
than six times in the worst-case scenario.

3 | CONCLUSION

Here we present DynaMut2, a tool that incorporates
information on protein dynamics and structural environ-
ment properties of wild-type residue with our graph-
based signatures approach to provide an accurate predic-
tion of mutation effects on stability and dynamics for sin-
gle and multiple point mutations. Our updated server has
shown to outperform other methods on predicting
changes in stability caused by single point mutations and
also comparable results for when used for estimating
ΔTm. In addition, our new approach was significantly

faster compared to the original DynaMut, which will be
of great benefit toward large scale analysis and large
structures. Finally, we have extended our method to pre-
dict the effects of multiple point mutations (double and
triple mutants) and an API, which conveniently enables
users to programmatically run predictions and represents
a great contribution in terms of a novelty for this type of
tool. We believe DynaMut2 represents an invaluable
resource for the study of protein dynamics and to help
understand the role of mutations in diseases. Web server
and API with examples are freely available at http://
biosig.unimelb.edu.au/dynamut2.

4 | MATERIALS AND METHODS

4.1 | Data set

We have collected experimental data on 2,648 single
point mutations on 125 globular proteins from
Protherm.39 Of these, 2,080 are destabilizing
(ΔΔG < 0.0 kcal/mol) and 568 stabilizing
(ΔΔG > 0.0 kcal/mol) (Figure S1). To minimize the
imbalanced nature of our dataset (Figure S1) and as a
sanity check evidenced by other studies, here we use
hypothetical reverse mutations.36,54 However, differently
from our previous implementation of DynaMut, hypo-
thetical reverse mutations with more drastic changes on
Gibbs free energy (ΔΔG < −2.0 kcal/mol or
ΔΔG > 2.0 kcal/mol) were left out of our study due to
uncertainties about the quality and biological significance
of the modeled mutant. Our final dataset comprised
4,633 mutations (2,640 destabilizing and 1,993 stabiliz-
ing), which were split into 4,022 entries (S4022) for train-
ing our predictive model and a non-redundant test set
comprising 611 entries (S611), following the protocol
from our initial version of DynaMut.38 For further perfor-
mance evaluation and comparison with other methods,
here we also consider a test set of 276 mutations (S276)
with low sequence identity to proteins in the original
ProTherm dataset, and an independent test set compris-
ing 173 variants (S173) in six proteins with experimental
melting temperature changes available (ΔTm). The latter
includes the structure of guanylate kinase (GK) obtained
through homology modeling with Modeller55 using the
mouse GK as a template (PDB: 1LVG), similarly to previ-
ous works.56,57

For the data on multiple point mutations, we were
able to extract 1,323 entries from ProTherm; however,
since the majority of entries were double and triple
mutants (Figure S3) and for the sake of simplicity, here
we only considered those two types. Our final dataset
comprised 1,098 entries (710 destabilizing and
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388 stabilizing) (Figure S4), which were randomly split
into train and test sets comprising 872 and 227 entries,
respectively.

In this study, we prioritize the use of biological
assembly structures author assigned, if not available, for
structures generated using NMR for instance, the asym-
metric unit was considered. All data used in this study is
freely available for download at http://biosig.unimelb.
edu.au/dynamut2/data.

4.2 | Normal model analysis

NMA provides a valuable approach for the study of
dynamics and accessible conformations in a system as an
alternative to time-consuming and computationally
expensive Molecular Dynamics simulations. Similarly
with our previous work, here we incorporated dynamics
properties extracted from the protein structure generated
with the module NMA of the bio3D tool.58

4.3 | Graph-based signatures

Our in-house graph-based signatures approach to repre-
sent molecular structures35,59–61 has proven to be success-
ful for a range of applications toward the study of protein
structure and changes carried out by missense
mutations,35,37,41–48 including phenotypic changes.16,62,63

These signatures comprise physicochemical and geomet-
rical properties from the wild-type environment based on
distance patterns mined from the 3D structure by rep-
resenting atoms as nodes and their interactions as edges.
Physicochemical properties are then defined based upon
the amino acid properties, namely pharmacophore, and
distance patterns between atoms are summarized as
cumulative distribution functions.

4.4 | Analysis of mutation effects

Changes in Gibbs Free energy of folding can occur due to
a myriad of factors related and in order to incorporate
these properties, we used Arpeggio40 to calculate the
number of hydrophobic contacts involving the wild-type
residue and contact potential scores from AAINDEX
database.64

4.5 | Machine learning

In this study, we used the implementation of the Ran-
dom Forest algorithm available on the scikit-learn

Python library for both the prediction of ΔΔG for sin-
gle and multiple mutations. In order to avoid the curse
of dimensionality and improve performance, we
selected our features using an incremental stepwise
greedy approach.

5 | GENERAL STATEMENT

Small changes in proteins can have large phenotypic out-
comes. By considering the changes of mutations within
the context of the protein 3D structure, we have been
able to accurately predict the molecular consequences of
single and multiple point mutations on protein folding,
stability, and dynamics. We have made this tool available
through an easy to use website and API.
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