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For many-body methods such as MCSCF and CASSCF, in which the number of one-
electron orbitals is optimized and independent of the basis set used, there are no problems
with using plane-wave basis sets. However, for methods currently used in quantum
computing such as select configuration interaction (CI) and coupled cluster (CC) methods,
it is necessary to have a virtual space that is able to capture a significant amount of
electron-electron correlation in the system. The virtual orbitals in a pseudopotential plane-
wave Hartree–Fock calculation, because of Coulomb repulsion, are often scattering states
that interact very weakly with the filled orbitals. As a result, very little correlation energy is
captured from them. The use of virtual spaces derived from the one-electron operators has
also been tried, and while some correlations are captured, the amount is quite low. To
overcome these limitations, we have been developing new classes of algorithms to define
virtual spaces by optimizing orbitals from small pairwise CI Hamiltonians, which we term as
correlation optimized virtual orbitals with the abbreviation COVOs. With these procedures,
we have been able to derive virtual spaces, containing only a few orbitals, which are able to
capture a significant amount of correlation. The focus in this manuscript is on using these
derived basis sets to target full CI (FCI) quality results for H2 on near-term quantum
computers. However, the initial results for this approach were promising. We were able to
obtain good agreement with FCI/cc-pVTZ results for this system with just 4 virtual orbitals,
using both FCI and quantum simulations. The quality of the results using COVOs suggests
that it may be possible to use them in other many-body approaches, including coupled
cluster and Møller–Plesset perturbation theories, and open up the door to many-body
calculations for pseudopotential plane-wave basis set methods.
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INTRODUCTION

Quantum chemistry is one of the first and most successful scientific
applications of digital computers (Mulliken et al., 1941; Mulliken and
Rieke, 1941; Boys, 1950; Parr and Mulliken, 1950; Hall, 1951;
Roothaan, 1951; Boys et al., 1956; Nesbet, 1960; Allen and Karo,
1962; Nesbet, 1963; Pople et al., 1965; Kohn and Sham, 1965; Reeves,
1966; Pulay, 1969). This success has led to a large number of research,
open-source (Dupuis et al., 1989; Stanton et al., 1992; Schmidt et al.,
1993; Briggs et al., 1996; Challacombe, 2000; Gygi, 2008; Giannozzi
et al., 2009; Deslippe et al., 2012; Hutter et al., 2014; Gonze et al., 2016;
Harrison et al., 2016; Apra et al., 2020), and commercial codes (Kresse
and Furthmüller, 1996; te Velde et al., 2001; Betteridge et al., 2003;
Clark et al., 2005; Werner et al., 2012; Shao et al., 2015; Frisch et al.,
2016; Neese, 2018) (for a larger list of quantum chemistry software,
see (Wikipedia, The Free Encyclopedia, 2020)), which are used on a
regular basis by tens of thousands of scientists, engineers, and
students from a variety of scientific and engineering domains.
With Moore’s law as a backdrop (Moore, 2006), the cycle of new
machines leading to new algorithms stimulated the field for many
decades, and as a consequence, a large number of quantum chemistry
methods were developed along with a variety of numerical methods
to solve them. However, in recent decades, the maturity and success
of these codes coupled with the imminent death of Moore’s law
(Dubash, 2005; Rotman, 2020) that made numerical software
development much more difficult and less accessible to the
average scientist have resulted in the field having priorities other
than just new science, such as porting and optimizing these codes to
the next generation of computers (Bylaska et al., 2017a, Bylaska et al.,
2017b; Richard et al., 2018; van Dam et al., 2020), standardization of
methods (Crawford et al., 2017; Wilkins-Diehr and Crawford, 2018),
and marketing (Goldbeck, 2017; Hocquet and Wieber, 2017).

With the advent of quantum computing, there is excitement
again, and quantum chemists are beginning to rethink how they carry
out quantum chemistry calculations, in particular very accurate and
very expensive instances of systems containing strong electron-
electron correlations. This is because it is anticipated that
quantum computers with 50–100 qubits will be able to surpass
classical digital computers for these types of calculations (Preskill,
2018). Quantum computing has thus emerged as an alternative
avenue to the continuity of quantum chemistry in the long run
(Wasielewski et al., 2020) but poses several challenges that demand
careful consideration in order to eventually mature into a viable
replacement for classical computers and large, highly parallelizable
high-performance computing clusters.

Present quantum devices are plagued by short coherence times
and vulnerability to environment interference, i.e., noise. Albeit
quantum algorithms have been developed with proved exactness,
such as quantumphase estimation, these are not a viable option in the
present/near-term time frame. Therefore, it is desirable to limit the
operation of quantum processors to a complementary concerted
execution with classical counterparts, whereby each of these
components is only in charge of those tasks for which it is more
suitable. This has materialized into the variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) and other hybrid
algorithms. Briefly, this class of algorithms strives to find the
lowest eigenvalue of a given observable by assuming that the

associated quantum state can be accurately represented by a trial
wave function and whose parameters are varied according to the
Rayleigh—Ritz method (variational principle), with these parameters
being updated by the classical computer. The burden on the quantum
processor can be further alleviated with strategies such as
Trotterization, which in turn introduce other challenges
(Evangelista et al., 2019; Grimsley et al., 2020) but can be
successfully exploited in the construction of favorable ansatz, as
long as a predefined form for the trial wave function is imposed.
This is at the heart of the ADAPT-VQE (Grimsley et al., 2019).

Most high-level methods for strongly correlated systems in use
today (e.g., full configuration interaction (CI), coupled cluster
(CC) and Green’s function (GF) approaches) are based on
second-quantized Hamiltonians, which are written in terms of
creation and annihilation operators for fermion orbitals. These
methods are amenable to quantum computers because fermionic
creation and annihilation operators can be readily mapped to
qubits through the use of some established transformation,
among which Jordan—Wigner (Jordan and Wigner, 1928),
Bravyi—Kitaev (Bravyi and Kitaev, 2002), and binary codes
(Steudtner and Wehner, 2018) stand out, where the number of
qubits scales with the number of orbitals in the second-quantized
Hamiltonian. In principle, converting the full many-body
electronic Hamiltonian to a second-quantized form is exact
and popular CC and GF approximations based on this form are
very accurate. However, this conversion has a drawback in that it
requires the introduction of a basis set, which, for computational
cost reasons, needs to be small. Typically, these basis sets are
composed of atomic-like orbitals generated with heuristics based
on an atom calculation for each kind of atom in the system. An
example of this type of basis set is the popular Dunning correlation
consistent basis set (Dunning and Hay, 1977; Dunning, 1989) in
which the atomic orbitals are optimized at the CISD (configuration
interaction method with single and double excitations) level of
theory. While the size of this basis set is small compared to other
basis sets used in quantum chemistry, such as plane waves, it still
needs to contain a large number of atomic orbitals to produce a
truly accurate result.

Solving relevant chemistry problems analogously to what is
classically done with MCSCF or FCI on near-term quantum
computers that contain 10s to 100s of noisy qubits (Reiher
et al., 2017), in which only limited numbers of operations can
be performed, is a monumental challenge. One way to reduce the
cost of these calculations is to develop new procedures for
optimizing basis sets. In this manuscript, a new method is
presented for generating a plane-wave derived correlation
optimized orbital basis sets. These derived basis sets can also be
used in other many-body approaches, including CC theory, and
can easily be generalized to work with recently developed Filon’s
Integration Strategy for two-electron integrals in periodic systems
(Bylaska et al., 2020). This method is different from other plane-
wave derived optimized orbital basis sets (Shirley, 1996;
Prendergast and Louie, 2009; Chen et al., 2011); in that, it is
based on optimizing small select CI problems rather than fitting
one-electron eigenvalue spectra and band structures.

The paper is organized as follows. In Section 2, a brief
description of the second-quantized Hamiltonian and the
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double unitary CC downfolding method that can be used with the
pseudopotential plane-wave method is given, followed by
comparisons between restricted Hartree–Fock (RHF)
calculations using plane-wave and Gaussian basis sets. Using
this framework, CI calculations up to 20 virtual orbitals,
generated from plane-wave Hartree–Fock and one-electron
Hamiltonians, are shown for the H2 molecule. The VQE
quantum computing algorithms used in this work are
described in Section 3. Section 4 presents a new class of
algorithms for generating a virtual space in which the orbitals
are generated byminimizing small pairwise CI Hamiltonians, and
a complete set of equations for implementing these optimizations
is given in Subsections 4.1–4.4. Using this new type of virtual
space, CI calculations up to 18 virtual orbitals for the ground state
energy curve of the H2 molecule are presented in Section 5
followed by results using quantum computing simulations in
Section 6, and lastly, the conclusions are given in Section 7.

PSEUDOPOTENTIAL PLANE-WAVE
MANY-BODY HAMILTONIAN

The nonrelativistic electronic Schrödinger eigenvalue equation of
quantum chemistry can be written as

H
∣∣∣∣Ψ(x1, x2, . . . , xNe)〉 � E

∣∣∣∣Ψ(x1, x2, . . . , xNe)〉, (1)

where H is the electronic structure Hamiltonian under the
Born–Oppenheimer approximation and

∣∣∣∣Ψ(x1, x2, . . . , xNe)〉 is the
quantummechanical wave function that is a function of the spatial and
spin coordinates of the Ne electrons, xi � (ri, σ i). When solving this
equation, the Pauli exclusion principle constraint of particle exchange
must be enforced, in which the wave function changes sign when the
coordinates of two particles, xi and xj, are interchanged; i.e.,∣∣∣∣Ψ(x1, x2, . . . xi, . . . xj, . . . , xNe)〉

� −∣∣∣∣Ψ(x1, x2, . . . xj, . . . xi, . . . , xNe)〉. (2)

For the Born–Oppenheimer Hamiltonian, the interaction
between the electrons and nuclei is described by the proper
potentials Ze

|ri−RA |, which for plane-wave solvers can cause
trouble with convergence because of the singular behavior
at |r − RA|. A standard way to remove this issue in plane-wave
calculations is to replace these singular potentials with
pseudopotentials. By making this replacement, the
Hamiltonian, H, in Eq. 1 can be written as

H � −1
2
∑Ne

i�1
∇2
i

+∑Ne

i�1
∑NA

A�1
⎛⎝V(A)

local(|ri − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠
+∑Ne

i�1
∑Ne

j> i

1∣∣∣∣ri − rj
∣∣∣∣,

(3)

where the first term is the kinetic energy operator, the second
term contains the local and nonlocal pseudopotentials, V(A)

local and

V̂
(A),lm
NL represent the electron-ion interactions, and the last term is

the electron-electron repulsion.
Instead of writing the many-electronic Hamiltonian in the

traditional Schrödinger form, as in the equations above, it is
more common today to write it in an alternative representation,
known as the second-quantization form, defined using the
creation, a†p, and annihilation, ap, operators. The second-
quantized Hamiltonian is written as

H � ∑Nbasis

p�1
∑Nbasis

q�1
hpqa

†
paq +

1
2
∑
pqrs

hpqrsa
†
pa

†
r asaq,

hpq � ∫ dxϕp
p(x)(−12∇2)ϕq(x)

+ ∫ dxϕp
p(x)⎡⎢⎢⎣∑NA

A�1
⎛⎝V(A)

local(|r − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠⎤⎥⎥⎦ϕq(x),

hpqrs � ∫ dx1dx2ϕ
p
p(x1)ϕp

r(x2)
1

|r1 − r2|ϕs(x2)ϕq(x1),
(4)

where ϕp(x) represent the one-electron spin-orbital basis. A
nice feature about this form of the Hamiltonian is that the
antisymmetry of wavefunction requirement as given in Eq. 2
is automatically enforced through the standard fermionic
anticommutation relations {ap, a†q} � δpq and {ap, aq} �
{a†p, a†q} � 0.

In this formulation, the choice of the one-electron spin-
orbital basis is nebulous and requires some care in its
choosing in order to obtain accurate results with this type
of Hamiltonian. Typically, in quantum chemistry, one uses
the filled and virtual orbitals from a Hartree–Fock
calculation. For methods that utilize linear combinations
of atomic orbitals (LCAO) as the basis, the size of the
basis set and subsequently generated Hartree–Fock orbitals
is fairly small. However, for plane-wave solvers and other
grid-based solvers, the size of the basis set is very large and
the number of the one- and two-electron integrals in Eq. 4
will become prohibitive if all possible Hartree–Fock orbitals
are used.

One approach to this problem is to only include virtual
orbital up to a certain energy threshold, and another related
approach is to use the plane-wave derived optimized orbital
basis set, e.g., the Shirley approach. While the number of
these orbitals needed to accurately describe eigenvalue
spectra over a range of ∼100 eV is significantly smaller
than the number of plane waves, it is still significantly
larger than the number of orbitals generated by an LCAO
method. The reason for this is that the virtual orbitals in a
plane-wave Hartree–Fock calculation, because of Coulomb
repulsion, are often unbound scattering states that interact
very weakly with the filled orbitals. As a result, very little
correlation energy is captured from them. In contrast, LCAO
basis methods can only describe bound states, and hence,
Hartree–Fock calculations on this basis do not generate these
types of scattering states.
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Many-Body Downfolding Techniques
One technique for reducing the dimensionality of large plane-
wave calculations is to construct effective Hamiltonians that
capture correlation effects of the full calculation in manageable
active spaces. That way, all many-body effects are retained as
opposed to simply truncating the orbital space. In Bauman et al.
(2019), we introduced downfolding techniques, which utilize the
double unitary CC (DUCC) ansatz for exact ground state wave
function |Ψ〉,

|Ψ〉 � eσext eσint |Φ〉 , (5)

where σ int and σext are the general type anti-Hermitian operators

σ†
int � −σ int, (6)

σ†ext � −σext , (7)

defined by amplitudes defining action within and outside of
the predefined active space, respectively; i.e., the amplitudes
defining the σext operator must carry at least one inactive
spin-orbital index whereas all amplitudes defining the σ int
operator carry active spin-orbital indices only. In Eq. 5, |Φ〉
designates properly chosen reference function (usually
chosen as a Hartree–Fock (HF) Slater determinant). The
exactness of the expansion 5 has been recently discussed in
Kowalski and Bauman (2020), where it was also shown that
the standard UCC expansions can provide a basic
approximation of the exact σ int and σext operators, i.e.,

σ intxTint − T†
int, (8)

σextxText − T†
ext , (9)

where Tint and Text are single-reference-type internal and external
cluster amplitudes (in the sense defined above).

Using ansatz in Eq. 5 we have shown (Kowalski and Bauman,
2020) that the exact energy of the systems can be reproduced by

the diagonalization of the effective (or downfolded) Hamiltonian

H
(DUCC)
eff in the corresponding active space:

H
(DUCC)
eff eσint |Φ〉 � Eeσ int |Φ〉, (10)

where

H
(DUCC)
eff � (P + Qint)e−σextHeσext(P + Qint) . (11)

In Eq. 11, P and Qint are the projection operators onto the
reference function and all active-space excited Slater
determinants (with respect to |Φ〉).

We will discuss the utility of the downfolding techniques
in the next section for the ground state calculations of H2.
This is just one of the two approaches presented in this paper
for reducing the dimensionality of the quantum problem
(Figure 1).

Results for the 1Σ+
g Ground State of H2 Using

Virtual Space From Hartree–Fock and
One-Electron Hamiltonians
The NWChem program package (Kendall et al., 2000; Valiev
et al., 2010; Bylaska et al., 2011; Bylaska, 2017; Apra et al.,
2020) was used for all calculations in this study, except for
the FCI calculations, which used the TINYMRCC suite by Jiří

FIGURE 1 | Schematic representation of the dimensionality reduction
algorithms considered in this paper: (1) discretization of the many-body
problem by employing efficient single-particle basis sets (in this paper, we
consider correlation optimized virtual orbitals (COVOs)) and (2)
downfolding techniques based on the double unitary coupled cluster (DUCC)
formalism (Bauman et al., 2019; Kowalski and Bauman, 2020); in this step, the
many-body problem is rerepresented in a subspace of entire Hilbert space.

FIGURE 2 | The ground state energy curves for H2 with RHF, CCSD, and
DUCC/QDK methods using plane-wave and LCAO Gaussian basis sets. It
should be noted that for the two-electron H2 molecule CCSD gives the same
answer as FCI.
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Pittner. The plane-wave calculations used a simple cubic
box with L � 26a0 and cutoff energy of 100 Ry. The valence
electron interactions with the atomic core are approximated
with generalized norm-conserving Hamann (Hamann, 1989)
pseudopotentials modified to the separable form suggested
by Kleinman and Bylander (Kleinman and Bylander, 1982).
The pseudopotentials used in this study were constructed
using the following core radii: H: rcs � 0.8 a.u. and rcp � 0.8
a.u.; Be: rcs � 1.219 a.u., and rcp � 1.219 a.u. (vide infra).
The RHF and coupled cluster singles and doubles (CCSD)
LCAO calculations used the Dunning cc-pVTZ Gaussian
basis set.

As can be seen in Figure 2, the RHF ground state energy curve
of the H2 molecule using plane-wave and LCAO Gaussian basis
sets gives nearly identical results. However, when we performed
plane-wave FCI calculations (not shown) for this system using up
to 20 RHF virtual orbitals, the amount of correlation energy

calculated was nearly zero (<1.0 e-4 Hartree). This result was not
surprising since most of the virtual states were scattering states as
shown in Figure 3.

Instead of using virtual states of the RHF Hamiltonian,
virtual states were also generated using the 1-electron part of
the RHF Hamiltonian, H1 (i.e., just the kinetic energy and
pseudopotential terms). As shown in Figure 3, the H1

Hamiltonian generated virtual orbitals that were bound
and looked like the virtual orbitals generated in an LCAO
RHF calculation. Using these H1 generated orbitals, we
performed plane-wave CI calculations using 19 of these
virtual orbitals. As seen in Figure 2 and Table 1, a
significant improvement was seen using these orbitals as
they were able to capture a nonzero amount of the
correlation energy; however, it was still significantly less
than that found in LCAO calculations. In addition, results
using the quantum phase estimation (QPE) algorithm in the
Microsoft QDK package (Svore et al., 2018; Low et al., 2019)
in which the number of orbitals was reduced to 4 and 6
orbitals using the DUCC method are shown. These results
showed that the DUCC QDK QPE method produces total
energies that are within a few milli-Hartrees of the 20 orbital
FCI result with only 4 or 6 orbitals.

VARIATIONAL QUANTUM EIGENSOLVER
METHODS

VQE is a method to find the quantum state that minimizes a
cost function defined in operator form (Peruzzo et al., 2014;
O’Malley et al., 2016). This is a hybrid computational
approach in which the preparation of the quantum circuit
is tuned using feedback from classical evaluations of the cost
function. Reduction of a given problem to minimization,
such as solving for the ground state energy (lowest energy
eigenvalue) of a molecular Hamiltonian, may then rely on
the variational principle to affirm that only the true ground
state could satisfy the minimum energy (Kandala et al., 2017;
McCaskey et al., 2019).

Formally, we may consider the problem of solving for the
ground state energy, Eg , as

Eg � min
|Ψ〉

〈Ψ|H|Ψ〉, (12)

FIGURE 3 | The HOMO and first three LUMOs generated from the
straight HF calculation and the H1 Hamiltonian are shown in the left and right
panels, respectively. The orbitals are displayed in the order of decreasing
orbital energy from top to bottom. The isovalues of positive and negative
isosurfaces are 0.007226 and −0.007226 for the RHF LUMO 1; 0.01148 and
−0.01148 for the RHF LUMO 2; 0.002404 and −0.002404 for the RHF LUMO
3; and 0.03117 and −0.03117 for the others. Notice that the isovalues of RHF
LUMO 1 are very close to zero, which indicates that it is a scattering state. The
orientation of H2 is rotated by 90° in the bound LUMO 3 relative to the bound
LUMO 2.

TABLE 1 | Total energies as a function of distance from plane-wave FCI
calculations for the H2 molecule 19 H1 virtual orbitals.

R (H-H) PW FCI PW QDK PW QDK CCSD

(Å) 19 H1 Virt. DUCC 4 DUCC 6 cc-pVTZ

0.423 −0.99396 −0.99113 −0.99052 −1.01540
0.529 −1.10715 −1.10363 −1.10440 −1.12144
0.741 −1.15340 −1.14968 −1.15010 −1.17234
1.058 −1.11042 −1.10768 −1.10785 −1.13617
1.588 −1.01251 −1.01435 −1.01417 −1.05526
2.117 −0.94070 −0.94303 −0.94318 −1.01485
4.233 −0.83962 −0.84025 −0.84156 −0.99965
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where H represents the second-quantized Hamiltonian of
Eq. 4 and |Ψ〉 labels the electronic configuration. Within the
context of quantum computing, the fermionic
representations of the Hamiltonian and state are
transformed to alternate representations in terms of the
spin operators. This transformation recast the
molecular Hamiltonian into a representation HP that is
defined in terms of the usual Pauli spin operators.
Similarly, the electronic state |Ψ〉 is represented as a
variable unitary operator Û( θ→) acting on a fiducial quantum
state (|0>). This yields the equivalent representation of Eq.
13 as

Eg � min
θ
→ 〈0∣∣∣∣Û†( θ→)HPÛ( θ→)∣∣∣∣0〉. (13)

The second equality is pertinent to the current context as it
makes explicit the fact that 1)HP, the Hamiltonian in terms of
strings of Pauli operators, relates to H through some
transformation that maps fermionic creation and
annihilation operators to qubits operators, and 2) the trial
wave function emerges from the action of the parameterized
unitary operator Û( θ→) which builds entanglement, usually
starting from an unentangled wave function, such as
Hartree–Fock. For practical considerations, H is
transformed into HP with the Jordan-Wigner
transformation (Jordan and Wigner, 1928), but alternatives
have been reported in the literature (Bravyi and Kitaev, 2002;
Setia and Whitfield, 2018; Steudtner and Wehner, 2018). The
classical search for the quantum state that minimizes the
energy represents the conventional computing task, while
evaluation of the expectation value is performed using the
quantum computer. In particular, the quantum state is
prepared by executing a quantum circuit, which is
expressed formally as a series of unitary operators acting
on a well-defined initial state. The action of a specific
sequence of unitaries is to prepare a given state that is
subject to the measurements necessary to recover the
desired expectation value.

In practice, the quantum state that minimizes the
energy is unknown, and, therefore, a search over possible
unitaries is necessary to find the form that minimizes the
energy. This variational approach to circuit synthesis
underlies the VQE method and an essential choice is the
selection of a quantum circuit ansatz which defines the range
of unitaries that may be formed to prepare and evaluate a
quantum state. For electronic structure calculations,
seemingly randomized unitaries may offer advantages for
efficient circuit construction, but they lack much of the
intuition available from theoretical chemistry (Kandala
et al., 2017). Rather, ansatz circuits derived from unitary
coupled cluster theory offer a convenient connection to the
expected unitary forms of the minimal quantum state
(Romero et al., 2017).

VQE has been applied previously to recover the electronic
energy from the Hamiltonian presented in Eq. 4. The
literature provides several examples of usage of VQE for

problems of chemical interest, in terms of both simulation
and implementation on actual quantum hardware. Given the
current limitations faced by present quantum computers,
these instances are usually accompanied by strategies that
reduce the effective Hilbert space, thus leading to a decrease
in the computational expense, such as the use of active spaces
and natural orbitals (Verma et al., 2020), as well as
downfolding techniques introduced earlier. Another route
is to modify the form of the ansatz; an example of this
alternative would be the so-called Trotterization, which
can be used in conjunction with Hilbert space-reducing
techniques.

Recently, the principle of VQE was extended to use ansatz
circuits that are tailored to computational chemistry
applications and specifically the unitary coupled cluster
singles and doubles (UCCSD) ansatz state. Adaptive ansatz
construction is attractive because it obeys the underlying
complexity of the electronic structure in question, whereas a
predefined form for the trial wave function in Eq. 13 may fall
short of the flexibility necessary for intricate problems. The
prime example of this class of algorithms is the ADAPT-VQE,
which iteratively assembles a circuit according to the expected
energy gain signaled by the gradient with respect to the
variational parameters.

An important consideration in the performance of both
VQE and ADAPT-VQE is the depth of the ansatz circuit
and the time required to construct the optimal variational
circuit. For electronic structures dominated by weak
correlation, ADAPT-VQE tends to be very economical,
adding only operators that make a meaningful
contribution toward the lowest eigenvalue in the
spectrum of the Hamiltonian in Eq. 14. On the other
hand, the usual UCCSD, by virtue of being defined ahead
of time, may contain operators with little impact on the
energy, but the classical optimizer will still need to perform
a number of calls to the cost function in order to find their
best values. Also, the gates originating from these
operators, even if they are deemed unimportant because
of a small associated parameter, will nevertheless be present
in the circuit, adding to its depth. If high accuracy is sought,
then ADAPT-VQE may require an ansatz comprised of a
large number of operators, which in turn adds to the depth
of the underlying circuit. More operators also mean more
variational parameters, leading to an onerous optimization
process. A more detailed analysis of this trade-off can be
found in Grimsley et al. (2019).

ALGORITHM FOR DEFINING A VIRTUAL
SPACE WITH A SMALL CI HAMILTONIAN

In this section, we present a downfolding method to define
virtual orbitals for expanding the second-quantized
Hamiltonian given in Eq. 4. These new types of orbitals are
able to capture significantly more correlation energy than the
virtual orbitals coming from Hartree–Fock and one-electron
Hamiltonians tested in Section 2.2. The basis of this method is
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to define a set of virtual orbitals, {ψ(n)
e (r)}with n � 1 . . .Nvirtual ,

which we call correlation optimized virtual orbitals or COVOs
for short, by optimizing a small select CI Hamiltonian with
respect to a single virtual orbital and then the next virtual
orbitals in sequence, subject to them being orthonormal to the
filled and previously computed virtual orbitals. The algorithm
to calculate these new types of orbitals can be formulated as
follows:

1. Set n � 1.
2. Using the ground state one-electron orbital, ψg(r) (or

ground state orbitals for many-electron systems), and
the virtual orbital to be optimized, ψ(n)

e (r), generate a CI
matrix.

3. Calculate the select CI expansion coefficients by diagonalizing
the CI matrix.

4. Using the CI coefficients associated with the lowest
eigenvalue, calculate the gradient with respect to the
ψ(n)
e (r) and then update with a conjugate-gradient or

similar method while making sure that ψ(n)
e (r) is

normalized and orthogonal to ψg(r) and ψ(m)
e (r) for m �

1, . . . , n − 1.
5. If the gradient is small, then n � n + 1.
6. If n≤Nvirtual , go to step 2; otherwise, finish.

In the case of the H2 molecule, a small CI wave function for
the 2 electron system composed of 2 one-electron orbitals,
ψg(r) and ψ(n)

e (r), can be written as a linear combination of 6
determinant wave functions, or just 3 determinant wave
functions for just singlet (or triplet) states,

Ψi[ψg(r),ψe(r)] � c(i)g Ψg[ψg(r)]
+ c(i)e Ψe[ψe(r)]
+ c(i)m Ψm[ψg(r),ψe(r)] + . . . .

Using this small CI ansatz, the energies of the system can
be obtained by diagonalizing the following eigenvalue
equation:

HCi � EiSCi,

where

H � ⎡⎢⎢⎢⎢⎢⎣ 〈Ψg

∣∣∣∣H∣∣∣∣Ψg〉 〈Ψg

∣∣∣∣H|Ψe〉 〈Ψg

∣∣∣∣H|Ψm〉
〈Ψe|H

∣∣∣∣Ψg〉 〈Ψe|H|Ψe〉 〈Ψe|H|Ψm〉
〈Ψm|H

∣∣∣∣Ψg〉 〈Ψm|H|Ψe〉 〈Ψm|H|Ψm〉
⎤⎥⎥⎥⎥⎥⎦,

S � ⎡⎢⎢⎢⎢⎢⎣ 〈Ψg

∣∣∣∣Ψg〉 〈Ψg |Ψe〉 〈Ψg |Ψm〉
〈Ψe

∣∣∣∣Ψg〉 〈Ψe|Ψe〉 〈Ψe|Ψm〉
〈Ψm

∣∣∣∣Ψg〉 〈Ψm|Ψe〉 〈Ψm|Ψm〉
⎤⎥⎥⎥⎥⎥⎦,

Ci � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ c
(i)
g

c(i)e

c(i)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(14)

Note that the overlap matrix, S, is the identity matrix for
orthonormal ψg and ψe. The variation with respect to ψe(r) can
be simply obtained using the following formula:

δEi

δψp
e(r)

� c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g + c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψe〉
δψp

e(r)
c(i)e

+ c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψm〉
δψp

e(r)
c(i)m + c(i)e

δ〈Ψe

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g

+ c(i)e

δ〈Ψe|H|Ψe〉
δψp

e(r)
c(i)e + c(i)e

δ〈Ψe|H|Ψm〉
δψp

e(r)
c(i)m

+ c(i)m

δ〈Ψm

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g + c(i)m

δ〈Ψm|H|Ψe〉
δψp

e(r)
c(i)e

+ c(i)m

δ〈Ψm|H|Ψm〉
δψp

e(r)
c(i)m .

(15)

It should be noted that the above formulas can be generalized
to work beyond two-electron systems by using corresponding
orbitals techniques (King et al., 1967; Bylaska and Rosso, 2018).
The next two Subsections 4.1–4.4 provide formulas that can be
used to generate the matrix elements in Eq. 14 and the gradients
with respect to ψp

e(r) in Eq. 15.
We also note that the COVO approach proposed in this work is

similar in spirit to the optimized virtual orbital space (OVOS) approach
developed over 30 years ago by Adamowicz and Bartlett (Adamowicz
and Bartlett, 1987; Adamowicz et al., 1988). The differences in our
approach compared to this previous work is that the variational space
used byCOVOs is significantly bigger because plane-wave basis sets are
used instead of LCAO Gaussian basis sets and that a second-order
Hylleraas functional (Hylleraas, 1928; Hylleraas, 1929; Hylleraas, 1930;
Hylleraas, 1964; Koga, 1992) was used to describe the correlation in the
OVOS procedure rather than a small CI Hamiltonian. Other
differences with the COVOs approach are that the orbitals are
optimized one at a time and the cost to generate them is similar to
generating regular RHF virtual orbitals (just 4 to 9 times more
expensive relative to RHF). Moreover, the resulting electronic
gradient is non-Hermitian, which in addition to requiring more
involved optimizers can result in extended energy plateaus that
occur during the initial stages of the geodesic line searches in a
conjugate-gradient or quasi-Newton optimization method.

One-Electron Orbitals for Two-State
Hamiltonian
The four one-electron spin orbitals of two-state Hamiltonian are

χ1(x) � ψg(r)α(s),
χ2(x) � ψg(r)β(s),
χ3(x) � ψe(r)α(s),
χ4(x) � ψe(r)β(s),
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where the spatial orbitals and spin functions are
orthonormalized,

∫ψp
g(r)ψe(r)dr � ∫ψp

e(r)ψg(r)dr � 0,

∫ψp
g(r)ψg(r)dr � ∫ψp

e(r)ψe(r)dr � 1,

∫ αp(s)β(s)ds � ∫ βp(s)α(s)ds � 0,

∫ αp(s)α(s)ds � ∫ βp(s)β(s)ds � 1.

Two-Electron Orbitals for a Two-State
Hamiltonian
For the two-state system, there are six two-electronwave functions, two
ofwhich are singlet, two are triplet, and two contain amixture of singlet
and triplet character. These wave functions can be written as

∣∣∣∣χ1χ2〉 � Ψg(x1, x2)

� [ψg(r1)ψg(r2)] 1�
2

√ [α(s1)β(s2) − α(s2)β(s1)],∣∣∣∣χ3χ4〉 � Ψe(x1, x2)

� [ψe(r1)ψe(r2)] 1�
2

√ [α(s1)β(s2) − α(s2)β(s1)],∣∣∣∣χ1χ4〉 � Ψa(x1, x2)

� 1�
2

√ ⎡⎢⎣ ψg(r1)α(s1)ψe(r2)β(s2)
− ψe(r1)β(s1)ψg(r2)α(s2)

⎤⎥⎦,
∣∣∣∣χ2χ3〉 � Ψb(x1, x2)

� 1�
2

√ ⎡⎢⎣ ψg(r1)β(s1)ψe(r2)α(s2)
− ψe(r1)α(s1)ψg(r2)β(s2)

⎤⎥⎦,
∣∣∣∣χ1χ3〉 � Ψu(x1, x2)

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)][α(s1)α(s2)],∣∣∣∣χ2χ4〉 � Ψd(x1, x2)

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)][β(s1)β(s2)].
Note that Ψa and Ψb cannot be written as a product of a spatial

wave function times a spin function. Moreover, these functions are
not eigenfunctions of the spin operators S2 and Sz , and as a result,
these determinants contain both singlet and triplet components.
However, if we take linear combinations of them, we can get two new
wave functions that are separable in spatial and spin functions and at
the same time being eigenfunctions of S2 and Sz ,

Ψm � Ψa−b � 1�
2

√ (∣∣∣∣χ1χ4〉 − ∣∣∣∣χ2χ3〉)
� 1�

2
√ [Ψa(x1, x2) − Ψb(x1, x2)]

� 1�
2

√ [ψg(r1)ψe(r2) + ψe(r1)ψg(r2)]
× 1�

2
√ [α(s1)β(s2) − β(s1)α(s2)],

Ψp � Ψa+b � 1�
2

√ (∣∣∣∣χ1χ4〉 + ∣∣∣∣χ2χ3〉)
� 1�

2
√ [Ψa(x1, x2) + Ψb(x1, x2)]

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)]
× 1�

2
√ [α(s1)β(s2) + β(s1)α(s2)].

Matrix Elements From the One-Electron
Operators
The H1 operator for H2 molecule is

H1 � h(r1) + h(r2),
where h(r) is a function/operator of the coordinate r; i.e.,

h(r) � −1
2
∇2
r + ∑NA

A�1
⎛⎝V(A)

local(|r − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠,

〈Ψg

∣∣∣∣H1

∣∣∣∣Ψg〉 � 2∫ψp
g(r)h(r)ψg(r)dr,

〈Ψg

∣∣∣∣H1|Ψe〉 � 0, 〈Ψe|H1|Ψe〉 � 2∫ψp
e(r)h(r)ψe(r)dr,

〈Ψm|H1|Ψm〉 � ∫ψp
g(r)h(r)ψg(r)dr + ∫ψp

e(r)h(r)ψe(r)dr,

〈Ψg

∣∣∣∣H1|Ψm〉 � �
2

√ ∫ψp
g(r)h(r)ψe(r)dr,

〈Ψm|H1

∣∣∣∣Ψg〉 � �
2

√ ∫ψp
e(r)h(r)ψg(r)dr,

〈Ψe|H1|Ψm〉 � �
2

√ ∫ψp
e(r)h(r)ψg(r)dr,

〈Ψm|H1|Ψe〉 � �
2

√ ∫ψp
g(r)h(r)ψe(r)dr,

δ〈Ψg

∣∣∣∣H1

∣∣∣∣Ψg〉
δψp

e(r)
� 0,

δ〈Ψg

∣∣∣∣H1|Ψe〉
δψp

e(r)
� 0,

δ〈Ψe|H1|Ψe〉
δψp

e(r)
� 2h(r)ψe(r),

δ〈Ψm|H1|Ψm〉
δψp

e(r)
� h(r)ψe(r),

δ〈Ψg

∣∣∣∣H1|Ψm〉
δψp

e(r)
� 0,

δ〈Ψm|H1

∣∣∣∣Ψg〉
δψp

e(r)
� �

2
√

h(r)ψg(r),
δ〈Ψe|H1|Ψm〉

δψp
e(r)

� �
2

√
h(r)ψg(r),

δ〈Ψm|H1|Ψe〉
δψp

e(r)
� 0.
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Matrix Elements From the Two-Electron
Operators
The H2 operator for H2 molecule is

H2 � 1
r12

� 1

|r1 − r2|,

〈Ψg

∣∣∣∣H2

∣∣∣∣Ψg〉 � ∫∫ψp
g(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′,

〈Ψg

∣∣∣∣H2|Ψe〉 � ∫∫ψp
g(r)ψe(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′,

〈Ψe|H2

∣∣∣∣Ψg〉 � ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
e(r′)ψg(r′)drdr′,

〈Ψe|H2|Ψe〉 � ∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψe(r′)drdr′,

〈Ψm|H2|Ψm〉 � [∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′

+ ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′],

〈Ψg

∣∣∣∣H2|Ψm〉 � �
2

√ ∫∫ψp
g(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′,

〈Ψm|H2

∣∣∣∣Ψg〉 � �
2

√ ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′,

〈Ψe|H2|Ψm〉 � �
2

√ ∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψg(r′)drdr′,

〈Ψm|H2|Ψe〉 � �
2

√ ∫∫ψp
g(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψe(r′)drdr′,

δ〈Ψg

∣∣∣∣H2

∣∣∣∣Ψg〉
δψp

e(r)
� 0,

δ〈Ψg

∣∣∣∣H2|Ψe〉
δψp

e(r)
� 0,

δ〈Ψe|H2

∣∣∣∣Ψg〉
δψp

e(r)
� 2[∫ψp

e(r′)ψg(r′)
|r − r′| dr′]ψg(r),

δ〈Ψe|H2|Ψe〉
δψp

e(r)
� 2[∫ψp

e(r′)ψe(r′)
|r − r′| dr′]ψe(r),

δ〈Ψm|H2|Ψm〉
δψp

e(r)
� [∫ψp

g(r′)ψg(r′)
|r − r′| dr′]ψe(r),

+ [∫ψp
g(r′)ψe(r′)
|r − r′| dr′]ψg(r),

δ〈Ψg

∣∣∣∣H2|Ψm〉
δψp

e(r)
� 0,

δ〈Ψm|H2

∣∣∣∣Ψg〉
δψp

e(r)
� �

2
√ [∫ψp

g(r′)ψg(r′)
|r − r′| dr′]ψg(r),

δ〈Ψe|H2|Ψm〉
δψp

e(r)
� �

2
√ {[∫ψp

e(r′)ψg(r′)
|r − r′| dr′]ψe(r)

+ [∫ψp
e(r′)ψe(r′)
|r − r′| dr′]ψg(r)},

δ〈Ψm|H2|Ψe〉
δψp

e(r)
� �

2
√ [∫ψp

g(r′)ψe(r′)
|r − r′| dr′]ψe(r).

RESULTS FOR 1Σ+
g GROUND STATE OF

THE H2 MOLECULE USING CORRELATION
OPTIMIZED VIRTUAL ORBITALS (COVOS)
The results for PW FCI calculations of H2 with 1, 4, 8, 12, and 18
COVOs are shown in Figure 4 and Table 2. The average difference
error for the 1, 4, 8, and 12 COVOs calculations from the 18 COVOs
calculation is 11.8 kcal/mol, 1.4 kcal/mol, 0.9 kcal/mol, and 0.3 kcal/
mol, respectively. While the error is significant for 1 virtual, the
difference is quite small by 4 virtual orbitals, and the error steadily
decreases as the number of virtual orbitals increases. The error seen in
the 4 optimized virtual orbitals’ calculations is similar to the 1.6 kcal/
mol error seen in the DUCC calculations for the 19H1 virtual orbitals’
calculations in Section 2.2. Another measure of the error is the
extensivity error. The energy for large R should be the same as the
energy of twice the energy of an isolated H atom. For the
pseudopotential plane-wave method being used, the energy of 2H
atoms is −0.997765 Hartrees (E(1H) � −0.498825 Hartrees). This
difference at R � 7Å is found to be 11.6, 1.2, 1.1, 0.5, and 0.4 kcal/mol
for 1, 4, 8, 12, and 18 optimized virtual orbital calculations, respectively.

FIGURE 4 | Plots of total energies as a function of distance from plane-
wave FCI calculations for the H2 molecule with 1, 4, 8, 12, and 18 correlation
optimized virtual orbitals. The top plot shows energy from R � 0.4 Å to
R � 7.0 Å, and the bottom plot zooms in near the energy minima.
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With only 4 optimized virtual orbitals, the correlation
energy at the minimum was found to be −0.035 Hartrees,
which is comparable to the −0.039 Hartrees found with
CCSD/cc-pVTZ. The correlation energy decreases to −0.037,
then −0.038, and finally −0.039 Hartrees as the number of
optimized virtual orbitals increases to 8, 12, and 18 orbitals,
respectively. These results showed that by 18 COVOs the same
amount of correlation energy was recovered as with the cc-
pVTZ LCAO basis set calculation. The results also showed that
there was systematic convergence toward the benchmark
LCAO result as the number of COVOs was increased, and
with just 4 COVOs, a significant portion of the correlation
energy was recovered.

QUANTUM SIMULATIONS OF THE 1Σ+
g

GROUND STATE OF THE H2 MOLECULE
USING COVOS
The previous section provides indisputable evidence for the
performance of the proposed virtual orbitals for correlation
energy recovery. Besides the possible ramifications in quantum
chemistry carried out with classical computers, one immediate
application is in the realm of quantum simulations. Because the
present quantum hardware has not fully matured, hybrid
algorithms that leverage classical resources and restrict the
workload delegated to quantum computers, namely, state
preparation and measurements of highly entangled states,
are essential to meaningful quantum computations. The
COVOs meet this requirement by decreasing the
dimensionality of the problem, i.e., by enabling simulations
with fewer qubits.

In order to probe the performance of COVOs in quantum
simulations, we use the Hamiltonian with 4 COVOs and simulate
the 1Σ+

g ground state of H2 in the same bond distances shown in
Table 2 and Figure 4. The ansatz circuit for the simulations is

generated according to the ADAPT-VQE algorithm as
implemented in the XACC (McCaskey et al., 2018b, McCaskey
et al., 2020) framework for hybrid quantum computing using the
tensor network quantum virtual machine (TNQVM) as the
noiseless simulator backend (McCaskey et al., 2018a). In the
present study, the ADAPT-VQE cycle is repeated until the norm
of the gradient vector falls below 1e-2 and we use an operator pool
containing all spin-adapted single and double excitation
operators (one- and two-body rotations). A detailed account
of ADAPT-VQE is exposed elsewhere (Grimsley et al., 2019).

TABLE 2 | Total energies as a function of distance for the H2 molecule from plane-wave FCI calculations with 1, 4, 8, 12, and 18 COVOs and ADAPT-VQE simulations with 4
COVOs. Nonparallelity errors (NPE) are evaluated with respect to the calculations with the largest virtual orbital space (PW FCI 18 COVOs) and reported in milli-Hartree.

R (H-H) PW FCI PW FCI PW VQE PW FCI PW FCI PW FCI

(Å) 1 COVO 4 COVOs 4 COVOs 8 COVOs 12 COVOs 18 COVOs

0.60 −1.13749 −1.15729 −1.15728 −1.15902 −1.16028 −1.16089
0.70 −1.15321 −1.17179 −1.17178 −1.17353 −1.17467 −1.17525
0.80 −1.15128 −1.16858 −1.16857 −1.17033 −1.17136 −1.17192
0.90 −1.14124 −1.15726 −1.15724 −1.15903 −1.15995 −1.16049
1.00 −1.12742 −1.14216 −1.14213 −1.14399 −1.14478 −1.14533
1.50 −1.05311 −1.06195 −1.06195 −1.06473 −1.06516 −1.06564
2.00 −1.00793 −1.01225 −1.01220 −1.01868 −1.01916 −1.01945
2.50 −0.98862 −1.00150 −1.00150 −1.00195 −1.00228 −1.00301
3.00 −0.98137 −0.99704 −0.99701 −0.99737 −0.99789 −0.99872
3.50 −0.97883 −0.99573 −0.99570 −0.99629 −0.99698 −0.99766
4.00 −0.97810 −0.99613 −0.99611 −0.99614 −0.99693 −0.99736
4.50 −0.97817 −0.99609 −0.99608 −0.99609 −0.99722 −0.99729
5.00 −0.97845 −0.99604 −0.99598 −0.99603 −0.99716 −0.99727
6.00 −0.97906 −0.99597 −0.99596 −0.99597 −0.99705 −0.99719
7.00 −0.97928 −0.99596 −0.99596 −0.99596 −0.99703 −0.99717
NPE 11.88 6.00 6.04 1.10 0.76 —

FIGURE 5 | Potential energy curves for FCI and ADAPT-VQE (top) and
the deviations in ADAPT-VQE energies with respect to FCI (bottom).

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 60301910

Bylaska et al. Optimized Virtual Spaces

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Optimization of the parameterized circuit is conducted with the
COBYLA (Powell, 1994) optimizer as implemented in the NLOpt
package (Johnson, 2007). Results for the simulated potential
energy curve are plotted in Figure 5.

It is evident from Figure 5 that ADAPT-VQE can generate a
circuit capable of reproducing the FCI results in the current active
space. These simulations deliver a smooth, continuous potential
energy curve that tracks the FCI values strikingly well. The
deviations from the corresponding FCI energies are all found
below 1e-4 Hartree. This means that not only do these
simulations deliver results that are well below the conventional
chemical accuracy mark, but also more importantly in the current
context is that this error is inconsequential compared to the effect
of noise in case of deployment on actual quantum hardware.

It is remarkable that the results degrade little throughout the
energy scan, which attests to the aptness and flexibility of
ADAPT-VQE in determining an ansatz according to the
complexity of the underlying electronic structure. The ansatz
in the vicinity of the equilibrium bond length 0.5–1.0 Å is
comprised solely by pair excitations as would be expected
given a restricted HF reference, which means no determinant
obtained via one-body rotations can lower the energy below that
of HF. As we approach the Coulson-Fischer point (Coulson and
Fischer, 1949), single excitations start to become part of the
ansatz, which signals the inadequacy of a restricted reference
wave function and that inclusion of these operators enables the
ansatz to remain in the 1Σ+

g potential energy curve, which means
that this flexibility may come at the expense of deeper circuits.
Because one-qubit gates tend to be executed in a short timescale
and are fairly insensitive to noise, we can use the number of
CNOTs present in the circuit as indicative of the complexity in its
implementation, which we provide in Figure 6, showing that the
ansatzes generated from ADAPT-VQE are much more affordable
than those obtained by ordinary UCCSD VQE simulations.

Along these lines, once the operator composition of the ansatz
is defined, by virtue of introducing more parameters, we are likely

to experience a more arduous optimization of the corresponding
parameterized gates. This has a compound effect with the circuit
depth since more measurements are needed, each of which
requires the circuit to be implemented and measurements to
take place. Figure 7 gives a profile of the optimization
performance along the potential energy scan.

It should come as no surprise that the optimization is more
difficult in the regime of stronger correlation. This region also
demands a more complex ansatz, as the top plot in Figure 7
shows that only in this vicinity (1.5–3.5 Å) we observe ansatzes
with more than four operators. Interestingly, the number of
objective function calls does not show large deviations for
ansatzes with 1–3 operators, regardless of where they are
found in the potential energy curve, which is further
corroborated by the relatively small error bars in the
corresponding columns of the bottom plot. This observation
does not hold as more parameters/operators are introduced in
the ansatz in order to accommodate a more complex electronic
structure. Thus, with four parameters, not only are more calls to
the objective function needed, but also there is a more
pronounced standard deviation. Ansatzes with five or more
operators can only be found in the (1.5–3.5 Å), as we can see
that the calls to the objective function coming from them
dominate the overall number of optimization cycles. Due to
the scarce occurrence of these ansatzes in the current energy
scan, the corresponding statistical information that can be
derived from these instances is not as reliable. All in all, this
plot is valuable in lending additional insight into the resources
required to perform these simulations. It is important to mention

FIGURE 6 | CNOT gate count for ADAPT-VQE and ordinary VQE with
both singlet-adapted singles and doubles operators.

FIGURE 7 | Number of objective function calls as a function of the H-H
distance for the different ansatz compositions (top) and the average number
of objective function calls per ansatz size, with error bars representing one
standard deviation (bottom). The bar colors on the top plot represent
the ansatz sizes in the bottom plot.
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that, for every new ansatz, the variational parameters are
initialized at zero. Alternatively, the parameters corresponding
to the previously optimizer ansatzes could be initialized at their
optimal values and the new parameter would be introduced in the
ansatz, which would accelerate convergence. Moreover, the
convergence profile likely displays pronounced dependence on
the chosen optimizer, which is not pursued here.

CONCLUSION

In summary, we have developed a new approach for defining
virtual spaces with a pseudopotential plane-wave code for use in
many-body methods described by second-quantized
Hamiltonians. The method is based on optimizing the virtual
orbitals to minimize a small select CI Hamiltonian (i.e., COVOs)
that contains configurations containing filled RHF orbitals and
the one virtual orbital to be optimized. Subsequent virtual orbitals
are optimized in the same way, but with the added constraint of
being orthogonal to the previously calculated filled and virtual
orbitals. The method was applied to the simple, but nontrivial, H2

molecule. As summarized in Figure 8, these new types of virtual
orbitals were significantly better at capturing correlation in plane-

wave calculations than from virtual spaces from Hartree–Fock
and one-electron Hamiltonian, and moreover, we were able to
obtain good agreement with Gaussian cc-pVTZ basis set results

FIGURE 8 | Summary of various plane-wave andGaussian basis set RHF and FCI calculations for the 1Σ+
g ground state of H2 molecule. FCI calculations (not shown)

using up to 20 RHF virtual orbitals produced only a negligible amount of correlation energy (<1.0 e-4 Hartree, i.e., visually the same as RHF results). It should be noted that
for the two-electron H2 molecule CCSD gives the same answer as FCI.

FIGURE 9 | Potential energy curves in kcal/mol for the Be2 dimer using
plane-wave Hartree–Fock and FCI with 5 COVOs calculations.
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with just 4 virtual orbitals for the H2 molecule. Subsequent
calculations showed that the correlation energy converged
steadily as more virtual orbitals were included in the
calculation. With 18 virtual orbitals, the correlation energies
were found to be converged to less than 0.5 kcal/mol. The
robustness of the proposed basis sets is corroborated by its
ready applicability to quantum simulations, which in the case
of ADAPT-VQE show remarkable agreement with the classical,
exact diagonalization result (FCI) in the same basis set (4
COVOs).

Because this study is focused on how one might carry out plane-
wave CI calculations on near-term quantum computers in the next
few years, we have only shown results for theH2 dimer. However, we
are optimistic that these correlation optimized virtual orbitals open
up the door tomany-body calculations using pseudopotential plane-
wave calculations, including coupled cluster, Møller–Plesset, and
Green’s function theories as well as other FCI-approaching methods
for quantum computers. We hope in future studies to more
thoroughly test the effectiveness of the COVOs procedure on
larger and more complicated molecules and materials. To lend
credence to this assertion, we show the promising results for Be2
dimer with a small number of COVOs in Figure 9. Also as shown in
Figure 10, the shapes of the COVOs end up being similar to what is
found for the virtual orbitals from LCAO calculations. This suggests

that new classes of LCAO basis sets might be able to be generated
using a simple rotation of the filled orbitals and COVOs. Future
work will focus on using this approach on larger molecular and
periodic systems. With the validation granted by our quantum
simulations, further studies are called for, including the further
reduction of dimension by employing active-space DUCC
downfolded Hamiltonians, OVOS, and natural orbitals, as well as
work in conjunction with VQE methods.
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