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Abstract

Nutritional support using exclusive enteral nutrition (EEN) has been studied as primary ther-

apy for the management of liver diseases, Crohn’s disease, and cancers. EEN can also

increase the number of beneficial microbiotas in the gut, improve bile acid and lipid metabo-

lism, and decrease the number of harmful dietary micro-particles, possibly by influencing

disease occurrence and increasing immunity. This study investigated the effects of EEN-n-3

polyunsaturated fatty acids (3PUFAs) (EEN-3PUFAs) on the gut microbiome, intestinal bar-

rier, and lipid or bile acid metabolism in mice. Metagenomic sequencing technology was

used to analyze the effects of EEN-3PUFAs on the composition of gut microbiome signa-

tures. The contents of short-chain fatty acids (SCFAs) and bile acids in the feces and liver of

the mice were assayed by gas chromatography and ultra-high-pressure liquid chromatogra-

phy/high-resolution tandem mass spectrometry, respectively. The levels of lipopolysaccha-

ride (LPS) and D-lactic acid in the blood were used to assess intestinal permeability. The

results indicated that EEN-3PUFAs could improve the composition of gut microbiome signa-

tures and increase the abundance of Barnesiella and Lactobacillus (genus), Porphyromona-

daceae, and Bacteroidia (species), and Bacteroidetes (phylum) after EEN-3PUFAs

initiation. In addition, EEN-3PUFAs induced the formation of SCFAs (mainly including acetic

acid, propionic acid, and butyric acid) and increased the intestinal wall compared to the con-

trol group. In conclusion, EEN-3PUFAs modulate the alterations in gut microbiome signa-

tures, enhanced intestinal barrier, and regulated the fatty acid composition and lipid

metabolism shifts and the putative mechanisms underlying these effects.

Introduction

Dysbiosis of the gut microbiota has been associated with multiple metabolic diseases, such as

inflammatory bowel diseases (IBD) and Crohn’s disease (CD), cancer, hepatic steatosis, and

type 2 diabetes mellitus [1–3]. The gut microbiome affects host lipid metabolism through mul-

tiple direct and indirect mechanisms [4]. Bäckhed et al. suggested that the gut microbiome is
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an important environmental factor that affects energy harvest from the diet and energy storage

in the host [5]. Dysbiosis of the gut microbiome seriously influences the onset of multiple age-

or endocrine-associated diseases and affects metabolic health. E. coli in the gut is positively

correlated with the incidence of colorectal cancer, while Lactobacilli and Bifidobacteria can

regulate the intestinal micro-ecology and reduce the risk of colorectal cancer [6]. Gut micro-

biome dysbiosis, e.g., a decrease in Bifidobacteria and other anaerobic beneficial bacteria and

an increase of Gram-negative bacteria and other pathogenic bacteria, can easily induce intesti-

nal metabolic disorders. A decrease of intestinal mucosal cells has been associated with an

increase of the permeability and translocation of intestinal bacteria and various metabolites

that release bacterial endotoxins into the blood and promote the production of a series of

inflammatory factors with potential hepatotoxic effects [7,8]. Bäckhed et al. [5] found that dis-

orders of the gut microbiome also affected the degradation of polysaccharides in food, leading

to obesity and type I diabetes [9].

Among the major players in the intestinal microenvironment, bile acids (BAs) are synthe-

sized from cholesterol in the liver and then stored in the gallbladder, from where they are

secreted in the duodenal lumen upon food intake to facilitate fat digestion [10–12]. When they

reach the colon, primary BAs are transformed by the microbiome to secondary BAs. This

transformation is highly dependent on the microbiome composition and alterations, which

are affected by the dietary intake, e.g., the content of fat and type of dietary fibers. Part of the

secondary BAs is then reabsorbed, conjugated, and transported into the circulation. Studies

have suggested that some BAs are involved in carbohydrate and lipid metabolism and that

they can improve hyperglycemia [13], insulin resistance [14], intestinal inflammation [15],

cholestasis disease [16], and gut barrier permeability, whereas others stimulate tumor growth

[12] and colon cancer [17]. Hence, there is an urgent need to develop new methods for the

identification and quantification of BAs in biological matrices.

Voitk et al. [18,19] first reported on the value of exclusive enteral nutrition (EEN) in the

management of active IBD in the 1970s. Today, EENis recommended as first-line therapy for

the treatment of active CD [20]. EEN has been shown to be beneficial for controlling disease,

maintaining clinical remission, and addressing malnutrition in pediatric and adult patients

with active CD [21]. In addition, there is no optimal formula that can achieve a maximal clini-

cal response [22,23]. So far, wide ranges of formulations have been made commercially avail-

able, and decisions regarding formula choice are influenced by peripheral factors, such as

patient comorbidities and volume status, or other complex factors [20,24]. EEN rich in n-3

polyunsaturated fatty acids (PUFAs) (fish oil) is widely used in clinical practice. EEN contain-

ing n-3 PUFAs have a certain beneficial effect when treating IBD and other diseases [25]. Fur-

thermore, the addition of n-3 PUFAs to EEN can effectively reduce brain damage caused by

transient cerebral ischemia in the middle cerebral artery and contribute to the recovery of neu-

rological function after brain injury [26]. A previous study showed that n-3 PUFAs were bene-

ficial to the recovery of respiratory function in patients with acute respiratory distress

syndrome (ARDS) or ICU patients [27].

Overall, EEN, especially EEN rich in n-3 PUFAs, is an established therapy for inducing CD

remission in the pediatric population; yet, its role as primary therapy for adult CD or other dis-

eases (including critical patients) remains to be defined. In addition, the evidence confirming

the accurate effects of n-3 PUFAs is limited, and the lack of evidence resulted in insignificant

practice variations in the clinic. Therefore, the aim of this study was to develop and explore rel-

evant assays to analyze gut microbiota alteration caused by EEN enriched in n-3 PUFAs on the

lipid metabolism shifts with respect to lipid metabolism of n-3 PUFAs in the intestine and

intestinal barrier.
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Materials and methods

Study design

We conducted animal tests and animal control studies between November 2019 and January

2020 at the Animal Scientific Research Center of Zhejiang University, China.

All animal studies (including the mice euthanasia procedure) were done in compliance

with the regulations and guidelines of Zhejiang University institutional animal care and con-

ducted according to the AAALAC and the IACUC guidelines. Mice and related control data

records were declared to the China data protection authority and registered at the China

Experimental Test Registry. The study was approved by the Animal Care and Use Committee

of Zhejiang University and IACUC.

Animal grouping and processing

All animal studies (including the mouse euthanasia procedure) were done in compliance with

the regulations and guidelines of Zhejiang University institutional animal care and conducted

according to the AAALAC and IACUC guidelines. Mice and related control data records were

declared to the China data protection authority and registered at the China Experimental Test

Registry.

A total of 18 specific-pathogen-free BALB/c mice (nine males and nine females), weighing

18–20 g, were obtained from Shanghai Slack Co., Ltd, China. The mice were acclimatized for 1

week under controlled environmental conditions (temperature, 20–24˚C; humidity, 40%-60%;

light-dark cycle, 12–12 h) prior to the experiment. They were randomized according to three

females and three males in the control group and three females and three males in two differ-

ent treatment groups (two observational duration of treatment). The mice in the control group

were given sterile water and were allowed to ingest food. The mice in the experimental groups

were given 0.4 ml of EEN (Sino-Swed Pharmaceutical Corp. Ltd, China) on a daily basis [28].

The content of n-3 PUFAs in EEN was 1.5 g/500 ml. The two experimental groups were fed for

2 and 8 weeks, respectively, before mouse feces and blood samples collected. This was followed

by blood samples taken from the eyes. The mice were euthanized by cervical dislocation and

dissected upon completion of sample collection.

Stool sample and fecal DNA extraction

Baseline fecal samples were collected 1 week prior to treatments and at 2 and 8 weeks after

switching from the original polymeric diet to EEN rich in n-3 PUFAs. Two samples were col-

lected at each time point to allow for separate analyses of bacterial DNA and metabolites. For

sample collection, the subjects’ caregivers were supplied with sterile fecal sample tubes, freezer

biohazard bags, instructions on sample collection, a Styrofoam cooler, and ice packs. Caregiv-

ers were instructed to collect a fecal sample within 24 h at each time point. After collection, the

samples were immediately stored in a biohazard bag in -80˚C freezers until further analysis.

For the purpose of analysis, 300 mg of collected feces of individuals were mixed together in the

same group and used for DNA extraction, high-throughput sequencing, and bioinformatics

analysis. Metagenomic DNA was extracted from the mixed feces by the QIAamp DNA stool

mini kit (Qiagen, USA) according to the manufacturer’s instructions. The extracted DNA was

sub-packaged into four tubes to avoid multi-gelation before it was stored at 20˚C.

Analysis of gut microbiome signatures

High throughput sequencing and bioinformatics analyses were used to analyze the bacteria in

the gut. Extracted intestinal macro-genomic DNA was segmented into the proper size for
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high-throughput sequencing. The DNA fragments were tied on a joint primer on both ends

and connected to a flow cell by covalent bonds to achieve bridge amplification. Species classifi-

cation was carried out on the processed sequences by the software RDP classifier (v2.10.1),

which was based on Bergey’s taxonomy, adopting the Naive Bayesian assignment algorithm

for each sequence to calculate p values to rank at different levels; the classification result was

usually reliable (p> 0.8). Bergey’s taxonomy was divided into six layers: phylum, class, order,

family, genus, and species. The dominant bacteria were mainly analyzed on the phylum,

genus, and species levels. The approach to empirical research adopted for this study was one of

qualitative, semi-structured high throughput sequencing and bioinformatics analyses of

microorganisms.

Determination of short-chain fatty acids in feces

For the analysis of the short-chain fatty acids (SCFAs), SCFAs were extracted from 60 mg of

lyophilized stool samples. The samples were placed in a round-bottom flask and were gently

suspended in 1.6 mL of distilled water. Subsequently, 0.4 mL of 50% aqueous H2SO4 and 2 ml

of diethyl ether were added and mixed with an orbital shaker for 45 min, and then centrifuged

at 3000 ×g for 5 min at room temperature. Anhydrous CaCl2 was mixed with the collected

supernatant to remove the residual water. Then, 2 μL of supernatant was analyzed by gas chro-

matography, using an Agilent 7890A gas chromatograph fitted with a flame ionization detector

(FID) and a GC column (ZB-FFAP, Phenomenex, America) of 30 m×0.32 mm×0.25 μm.

Nitrogen was supplied as the carrier gas at a flow rate of 1.69 mL/min in non-split mode (injec-

tor temperature: 250˚C). The initial oven temperature was 100˚C for 2 min, which was then

increased at a rate of 8˚C/min to 240˚C, and kept there for 10 min. SCFAs were quantified by a

standard external method using the standard mix solution of acetic, propionic, butyric, and

valeric acids.

Determination of blood intestinal barrier index

The Pierce Chromogenic Endotoxin Quant Kit (Thermo Fisher Scientific, Waltham, MA,

USA) and D-Lactate Assay Kit (Fluorometric, #ab174096, Abcam, Cambridge, UK) were used

to analyze the levels of endotoxin and D-lactic acid, respectively, in the blood of the mice,

according to the manufacturers’ instructions.

Determination of bile acids (BAs) in feces

All BAs standards were purchased from Sigma (St. Louis, MO, USA). A standard stock solu-

tion of each free and conjugated BA was prepared at a concentration of 1 mg/mL in methanol.

To be able to make solutions for calibration points, mixture solutions of all free BAs and conju-

gated BAs were prepared separately, at a concentration of 50 μg/mL in methanol. Stool sam-

ples, which were kept at -80˚C, were allowed to thaw at room temperature. The samples were

then accurately weighed (100 mg) and mixed with 200 μL of (NH4)2CO3. After 5 min, the sam-

ples were spiked with 500 μL of the internal standard precipitant solution (4˚C, Sigma; 250μL

of 80 M sodium cholate made by mixing 20μL of standard and 230μL of ultrapure water) and

500 μL of cold methanol. The samples were vortexed for 30 s and extracted for 2 min with

ultrasound. After centrifugation at 13,000 ×g for 10 min at 4˚C, the supernatant was collected

and transferred to clean tubes and stored at -20˚C. The residue was then reconstituted in

100 μL of ultrapure water and transferred into vials to be injected in the ultra-high-pressure

liquid chromatography (UHPLC)-high-resolution tandem mass spectrometry (HRMS/MS)

system. The stool samples were analyzed using a Waters Acquity UHPLC system (Waters Cor-

poration, Milford, MA, USA). The samples were injected onto a Waters Acquity UHPLC
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BEHC18 column (1.8 μm, 2.1 × 100 mm; Waters Corporation). The temperature of the column

was 40˚C, and the flow rate was 0.4 mL/min. The mobile phases consisted of 10 mmol/L

ammonium acetate in water (eluent A) and 0.1% formic acid in methanol (eluent B). The gra-

dient elution was performed as follows: 35%-60% B (0–3 min) and 60%-100% B (3–4.5 min).

At 4.5 min, the amount of B was kept constant at 100% for 0.5 min, followed by a quick drop

to 35% for 1 min, and finally maintaining this concentration for 1 min for equilibration and

column conditioning. The sample injection volume was 10 μL, and the auto-sampler tempera-

ture was 4˚C. The Mass Spectrometry (MS) analysis was done using a Waters Xevo G2 QTOF

(Waters MS Technologies, Manchester, UK) equipped with an electrospray ionization (ESI)

source and operated in the positive ion mode. A capillary voltage of 2500 V, a sample cone

voltage of 30 V, a source temperature of 150˚C, and a desolation temperature of 450˚C were

applied. Data were collected in the centroid sensitivity mode in the range 100–800 m/z, with a

lock spray scan collected every 30 s and an average of 3 scans to perform the mass correction.

For quantification, the m/z of each molecular ion was used with a tolerance of 0.03 Da.

Statistical analysis

Statistical significance between the control and EEN-treated groups was determined using a

one-way analysis of variance (ANOVA). A P value <0.05 was considered statistically signifi-

cant. Data analyses were performed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA).

Results and discussions

Effects of EEN rich in n-3 PUFAs on mouse health

There were no differences in body weight between the experimental groups and the control

group (P>0.05). At 2 and 8 weeks, the stool samples of all groups were brown, dry, and with-

out diarrhea. The mice’s fur was smooth and shiny. All mice were in good health. No adverse

health reactions were observed. These data suggested that EEN-3PUFAs did not affect mice

growth.

Comparisons of fecal bacterial communities in the treatment and control

groups

The bacteria taxa present within the fecal samples collected from the treatment and control

groups are shown in Fig 1. α-diversity, a measure of species richness, was similar in the two

groups.

In this experiment, we selected the specific-pathogen-free BALB/c mice as experimental

animals because of their clear metabolic background and demonstrable fattening factor. To

explore whether EEN-3PUFAs could induce modifications of the intestinal microbiota for the

experimental durations, we quantified the highly abundant bacteria in the gut. Our data indi-

cated that the fecal bacterial communities in control subjects clustered separately in the princi-

pal coordinate(s) analysis (PCoA) space compared to the treatment groups (p< 0.05). We used

a linear discriminant analysis to compare the taxa present in the samples from the controls

with taxa in baseline samples, i.e., before applying EEN-3PUFAs treatment. We found that Fir-
micutes were the most dominant bacteria in the gut, accounting for 50%-60% of the total bac-

terial population, followed by Bacteroidetes. Proteobacteria had a low abundance in the normal

intestine, and their proportion was often less than 1%. Actinomyces is a type of strictly anaer-

obe Gram-positive bacterium. Although the number of bacteria in the gut was not dominant,

Bifidobacterium was common in the intestine. Those results are supported by previous studies

that reported those bacteria in the healthy gut [29–31].
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Streptomyces, Proteobacteria, and Putamen were the most common phylum in the experi-

mental mice fed with 0.4 ml EEN-3PUFAs. Bacteroides is a probiotic bacterium that helps the

host to break down polysaccharides, increases the nutrient utilization rate [5], accelerates the

formation of blood vessels in the intestinal mucosa [32], improves host immunity [33], and

maintains the intestinal micro-ecological balance [34,35]. In particular, Bacteroides have a par-

ticularly prominent role in the utilization of polysaccharides [5]. As shown in Fig 1, the pro-

portion of Proteobacteria, most of which are pathogenic bacteria that are associated with

infectious and non-infectious IBD [36], was reduced in the treatment group, indicating the

potential beneficial effects of EEN-3PUFA in the management of IBD.

As shown in Fig 2, the relative abundance of gut microbiome distributions between the

experimental and control groups was compared and analyzed at the genus level. The propor-

tion of Barnesiella in the intestinal microbiome fed with EEN-3PUFAs increased significantly.

Barnesiella can produce SCFAs in the gut and directly or indirectly act as an anti-inflammatory

agent by increasing the content of SCFAs in the intestinal tract [37], protecting the intestinal

barrier function [38], and regulating the role of lipid metabolism shifts and immunity [39]. It

also plays an important role in the prevention and treatment of metabolic diseases, such as

obesity, insulin resistance, and diabetes [39]. In addition, the amount of Bacteroides (3.64-fold

that of the control group) and Helicobacter (15.8-fold that of the control group) increased,

whereas Desulfovibrio (0.038-fold that of the control group) was greatly reduced in the experi-

mental group. Although several species in the Helicobacter Genus (e.g. H. pylori H. bizzozero-
nii,H. felis, H. salomonis,H. suis, and H. heilmannii) have been known to associate with

Fig 1. Effects of exclusive enteral nutrition (EEN)-n-3 polyunsaturated fatty acids (3PUFAs) on the gut

microbiome (phylum level) after 8 weeks of treatment in mice compared with mice fed a regular diet. The bacteria

were analyzed using the sequencing of the V4 region of the 16S ribosomal RNA. 3PUFAs-8 week: the experimental

group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g001
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increased risk of gastritis, colorectal polyps, and especially the malignant diseases [40], a

majority of other species have yet been functionally defined; therefore, their roles are still

uncertain. In addition, accumulating evidence also suggests that H. pylori, as well as other spe-

cies in the Helicobacter Genus (e.g. H. mustelae) may exert beneficial roles in obesity, child-

hood asthma, inflammatory bowel disease (IBD) and celiac disease among others [41–44]. As

such, the result that Helicobacter (15.8-fold that of the control group) was increased is espe-

cially intriguing and the increased species remain to be further specified and functionally

investigated in future studies.

Guts containing pathogens at very high relative abundances (referred to as dominance)

have a higher risk of developing bloodstream infections caused by that same dominant organ-

ism [45]. As shown in Fig 3, the relative abundance of gut microbiota in the 8-week treatment

and control groups was compared in relation to the levels of phyla, class, order, and family.

The abundance of Lachnospiraceae (Clostridae, Firmicutes), which are commonly found in a

healthy colon, was higher in the control group than in the treatment group. The intestinal flora

of the treatment group consisted mainly of Barnesiella (genus), Porphyromonadaceae (family),

Bacteroidia (class), and Bacteroidetes (Phylum). Bacteroidetes, which are considered health-

promoting bacteria, were distinguished by an increased abundance of common nosocomial

pathogens, e.g., Enterococcus and the family Enterobacteriaceae. Again, this underlines a posi-

tive shift toward a more healthy gut microbiome using EEN-3PUFA.

When comparing control samples with the entire collection of study samples (i.e., all-time

points), we found that the study samples were enriched with Bacteroidetes bacteria. Interest-

ingly, neither of these taxa was dominant in samples collected after EEN initiation; they were

Fig 2. Effects of exclusive enteral nutrition (EEN)-n-3 polyunsaturated fatty acids (3PUFAs) on the gut microbiome (genus level) after 8 weeks of

treatment in mice compared with mice fed a regular diet. The bacteria were analyzed at the genus level using the sequencing of the V4 region of the

16S ribosomal RNA. 3PUFAs-8 week: the experimental group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g002
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replaced by dominant populations of Bacteroides in the mice. These results showed that the

intestinal microbiota in the treatment groups underwent major changes. Despite the interindi-

vidual variations, we observed unambiguous EEN-3PUFAs-induced changes in the micro-

biota. Previously, Suzuki et al. [46] reported that Firmicutes bacteria had a certain effect on

individual obesity. Hence, the reduction of Gram-positive bacteria could reduce the incidence

of obesity. The Desulfovibrio was the more common pathogenic bacteria found in the control

group. Desulfovibrio can reduce sulfates to sulfides in the intestine [47] and inhibit the oxida-

tion of butyrate, thus leading to intestinal barrier dysfunction [48–51].

The content of Lactobacillus (Lac) in the feces of the experimental mice was significantly

higher than that of the control group. Lactobacillus bacteria are non-toxic and harmless, rod-

like bacteria, which can ferment carbohydrates and produce large quantities of lactic acid [52].

Among lactic acid bacteria, Lactobacillus was the largest genus, which was defined as rod-

shaped Lactobacilli. These types of bacteria can prevent pathogens from invading and coloniz-

ing the intestine, inhibit pathogens, resist infections [53], maintain the micro-ecological bal-

ance of the intestine [54,55], enhance the body immunity, and prohibit the production of

endotoxins. Therefore, the presence of Lactobacilli in the gut of the body is an important mea-

sure for the prevention and treatment of diseases. These data suggested that EEN-3PUFAs

could increase the content of some probiotics, such as Lactobacillus, in the gut and improve

the microbial environment.

Fig 3. Effects of exclusive enteral nutrition (EEN)-n-3 polyunsaturated fatty acids (3PUFAs) on the gut microbiome (species level) after 8 weeks of treatment in

mice compared with mice fed a regular diet. The bacteria were analyzed using the sequencing of the V4 region of the 16S ribosomal RNA. 3PUFAs-8 week: the

experimental group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g003
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As shown in Fig 3, the dominant bacteria of the treatment group with EEN-3PUFAs at the

species level involved Bacteroidetes, Bacteroidia, Porphyromonadaceae, and Barnesiella compared

with the control group. Moreover, Firmicutes, Clostridia,Deltaproteobacteria, Bacilli,Desuifovi-
brionales, Lachnospiraceae, Lactobacillaceae, and unclassified bacteria were all suppressed in

abundance. These data showed that the diversity of the gut microbiome was significantly altered

after EEN-3PUFAs was applied. Under normal conditions, the human body is relatively stable in

its bacterial structure and does not cause any adverse manifestations to the host [56,57]. The pro-

portion of beneficial bacteria in the intestine of healthy people and ordinary people is 70% and

25%, respectively. Dysbiosis in the gut can regulate lipid metabolism shifts, trigger low-grade

chronic inflammation, and destroy the intestinal barrier [51] as a result of the alterations of the

gut microbiome signatures. Furthermore, the gut microbiome regulates the mechanical barrier,

immune barrier, and biological barrier of the intestinal mucosal system [58].

The effect of EEN-3PUFAs on SCFAs (short-chain fatty acids) in mouse feces

SCFAs are products of unabsorbed dietary fibers that are mainly fermented by enteric bacteria

in the colon [59]. Acetic acid, propionic acid, butyric acid, and valeric acid (or acetate, propio-

nate, butyrate, and valerate) account for approximately 83% of the SCFAs produced [60]. Over

Fig 4. Effects of exclusive enteral nutrition (EEN)-n-3 polyunsaturated fatty acids (3PUFAs) on the content of short-chain fatty acids (SCFAs) after 8 weeks of

treatment and compared with mice fed a regular diet. �, P<0.05; ��, P<0.01. 3PUFAs-8 week: the experimental group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g004
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recent years, studies showed that SCFAs had an enhanced effect on the immune function of

the body [44] and intestinal function. SCFAs are absorbed and utilized by colon cells immedi-

ately after their formation and have an important protective effect on intestinal function

[39,61].

The concentrations of SCFAs within fecal samples collected before and after the EEN-

3PUFAs intervention are shown in Fig 4. These measurements were done only on samples

from the study mice. The concentration of acetic, propionic, and butyric acid, key metabolites

in fermentative metabolism, were significantly higher in the 8-week treatment samples than in

the control groups. Moreover, compared with the control group, the content of SCFAs (mainly

including acetic acid, propionic acid, and butyric acid) in the feces of the experimental mice

were significantly increased to varying degrees (1.45-fold, 1.95-fold, and 2.25-fold, respectively;

all P<0.05), thus suggesting that the intake of EEN-3PUFAs might increase the levels of intesti-

nal SCFAs in mice.

Part of the SCFAs are not oxidized by the colonic mucosal cells, and fatty acids can be con-

verted into glutamine and ketone bodies (acetoacetic acid and beta-hydroxybutyric acid, etc.)

through the portal vein and entering the systemic circulation together with some non-liver-

transformed SCFAs, eventually reaching the intestines [62]. These substances are an important

source of energy in the small intestine mucosa [63]. The increase of the levels of SCFAs in the

feces was mainly caused by changes in the gut microbiome, which were related to the intake of

EEN-3PUFAs. Besides, the amount of SCFAs produced by probiotics can maintain the normal

function of the intestinal mucosal cells and has a protective effect on the intestinal mucosal

barrier function.

The effect of EEN-3PUFAs on intestinal barrier

The intestinal mucosal barrier prevents harmful substances, such as bacteria and toxins, from

passing through the mucosa and affect other tissues and organs of the body [64]. The normal

intestinal mucosal barrier consists of a biochemical, mechanical, and immune barrier [64,65].

Fig 5. The effect of exclusive enteral nutrition (EEN)-n-3 polyunsaturated fatty acids (3PUFAs) on intestinal barrier functions 8 weeks after

treatment based on lipopolysaccharides and D-lactic acid levels. ��, P<0.01. 3PUFAs-8 week: The experimental group treated with 3PUFAs for 8

weeks.

https://doi.org/10.1371/journal.pone.0248482.g005
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Intestinal epithelial cells form a selective barrier between desmosomes, adherent junctions,

and tight junctions and prevent the entry of potentially harmful substances [60,61]. However,

when the intestinal mucosal barrier homeostasis is disrupted, intestinal epithelial permeability

increases, enabling bacteria translocation, which can lead to systemic inflammation [66].

Endotoxins are Lipopolysaccharides (LPS) in the cell wall of Gram-negative bacteria that are

decomposed and released during bacterial metabolism or death. When the intestinal barrier is

damaged and mucous membrane permeability increased, LPS enters the circulatory system

through the intestinal mucosa [64,65]. When the portal vein blood LPS concentration is

increased, the liver Kupffer cells are stimulated to release a series of cytokines, such as tumor

necrosis factor (TNF), IL1, IL6, free radicals, etc., thus causing damage to the whole body and

multiple organs [67]. As shown in Fig 5, the contents of LPS were significantly reduced in the

treatment group, which suggested the beneficial effect of the EEN-3PUFAs on the intestinal

barrier. Supplement of nutrition-rich in n-3 PUFAs was beneficial to maintaining the integrity

of the intestinal barrier through altering gut microbiome signatures.

D-lactic acid is a metabolite produced by bacterial fermentation [68]. Many kinds of bacte-

ria in the intestine can produce D-lactic acid [68]. When the intestinal barrier function is

impaired, a large amount of D-lactic acid in the intestine can enter the blood circulation sys-

tem through the damaged intestinal mucosa [68]. Therefore, monitoring D-lactate levels in the

blood can promptly reflect the changes in intestinal mucosal damage and permeability. Animal

experiments showed that the intestinal mucosal damage caused by acute intestinal ischemia in

rats could rapidly increase blood D-lactate levels [69]. With the prolongation of ischemic time

and increasing D-lactic acid concentration, the degree of intestinal barrier injury was aggra-

vated. The blood D-lactate content is significantly and positively correlated with intestinal

mucosal injury score and blood endotoxin levels, thus suggesting that blood D-lactate levels

can be used as a functional state reflecting the mechanical barrier in the intestinal barrier and

as an important indicator of endotoxin and bacterial translocation in the intestine [70]. As

shown in Fig 5, the levels of D-lactic acid in the blood of the treatment group were lower than

those in the control group, indicating that EEN-3PUFAs can enhance the intestinal barrier

function in mice.

Change in levels of bile acids (BAs) in response to EEN-3PUFAs

Studies have suggested that BAs involved in carbohydrate and lipid metabolism may improve

hyperglycemia [13], insulin resistance [14], intestinal inflammation [15], cholestasis disease

[16], and gut barrier permeability, but can also stimulate tumor development [12,17]. Up to

90% of the primary BAs in human adults are produced through the classical neutral pathway

in the liver, while the remaining 10% are synthesized via the acidic pathway [71]. In humans,

the BA pool size is kept comparatively stable at about 3–5 g through the enterohepatic circula-

tion [72]. During this process, about 95% of the BAs that have entered the small intestine are

reabsorbed from the terminal ileum back to the liver via the portal vein [11]. The remaining

BAs enter the large intestine, where they undergo an extensive bacterial transformation before

absorption/excretion [10,73]. Previous studies have shown that dietary factors can affect ath-

erogenesis in mice by microbial modulation of BA synthesis in the liver [74,75]. Both lingo

berries and resveratrol increase the numbers of Lactobacillus, Bifidobacterium, and Akkerman-
sia in the gut, and Lactobacillus and Bifidobacterium possess bile-salt hydrolase [76].

As indicated in Figs 6 and 7, we found that the concentration of most unconjugated BAs

was higher (p< 0.001) in the liver of mice fed with EEN-3PUFAs for 2 or 8 weeks compared

with the control group. The liver concentration of some free BAs increased further and was

significant (p< 0.01 and p< 0.0001) for cholic acid (CA), ursodeoxycholic acid (UDCA), and
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deoxycholic acid (DCA) in the treatment for 2 or 8 weeks. The increase was, to a certain extent,

also reflected in the group fed EEN-3PUFAs. By comparing results in groups fed with EEN-

3PUFAs with the control group, the concentrations of CA, chenodeoxycholic acid (CDCA),

UDCA, DCA, and lithocholic acid (LCA) in feces were also higher (p< 0.05) in the treatment

for 2 or 8 weeks in mice, while their liver concentration was lower (p< 0.05). The concentra-

tion of taurine-conjugated BAs in the liver was similar in response to EEN-3PUFAs exposure

in the treatment for 2 or 8 weeks, while glycine-conjugated BAs were affected to a greater

extent. Thus, the group fed EEN-3PUFAs generally had higher feces concentrations of tau-

rine-conjugated BAs than the control group. A similar increase of glycine-conjugated BAs in

liver concentrations was seen in the group fed with EEN-3PUFAs compared with the control

group. These trends were reflected a certain extent also in the groups fed EEN-3PUFAs,

although with less significance. It should be emphasized that the BA pool in mice consisted

mostly of hydrophilic bile acids, muricholic acids, and cholic acid, which was different from

the hydrophobic BA pool composing of predominantly CDCA, CA, and DCA in humans.

Actually, compared with the control group, the liver or feces concentration of taurine- or gly-

cine-conjugated or free BAs generally increased in groups fed with EEN-3PUFAs, regardless

of the treatment durations. The pathway for interactions of SCFAs, BAs, and the gut micro-

biome is briefly summarized in Fig 8.

Taken together, the results indicate that EEN-3PUFA modulate the gut microbiome by pro-

moting the abundance of beneficial species and decreasing the abundance of pathogenic ones.

EEN-3PUFAs also modulated the intestinal barrier and increased the production of acetic

acid, propionic acid, and butyric acid, and shifted BAs towards unconjugated BAs. Those

Fig 6. Contents of bile acids in the liver of mice after 2 and 8 weeks of treatment with exclusive enteral nutrition (EEN)-n-3

polyunsaturated fatty acids (3PUFAs) compared with mice fed a regular diet. 3PUFAs-2 week: the experimental group treated with

3PUFAs for 2 weeks; 3PUFAs-8 week: the experimental group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g006
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effects possibly explain the positive effects of EEN and 3PUFA in patients with IBD and CD

[20,22–24,77,78]. Nevertheless, the exact mechanisms still need to be refined in future studies.

Conclusions

In summary, the data suggested that EEN-3PUFAs improves gut microbiome composition by

promoting the abundance of microbial beneficial species and decreasing the abundance of

pathogenic ones, especially Streptomyces, Proteobacteria, Putamen, Barnesiella, and Desulfovi-
brio. Interestingly, the Helicobacter Genus was also elevated by EEN-3PUFAs, but the specific

species remain to be further investigated and their functions to be further uncovered. Further-

more, EEN-3PUFAs also enhanced the intestinal barrier by decreasing peripheral levels of LPS

and D-lactic acid. In addition, EEN-3PUFAs increased the production of SCFAs involving ace-

tic acid, propionic acid and butyric acid, and shifted BAs towards unconjugated Bas; thereby

lipid or bile metabolism. Nevertheless, the underlying mechanism are required to be further

elucidated. Our study provides valuable data to future studies on n-3 PUFAs effects on metab-

olism and microbiome. However, large, well-designed trials should be performed to compare

conventional and n-3 PUFAs-based formulas in humans.

Fig 7. Contents of bile acids in feces of mice in the treatment for 2 and 8 weeks of treatment with exclusive enteral nutrition (EEN)-n-3

polyunsaturated fatty acids (3PUFAs) compared with mice fed a regular diet. 3PUFAs-2 week: the experimental group treated with

3PUFAs for 2 weeks; 3PUFAs-8 week: the experimental group treated with 3PUFAs for 8 weeks.

https://doi.org/10.1371/journal.pone.0248482.g007
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