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Abstract

Prediction of clinical drug response (CDR) of cancer patients, based on their clinical and

molecular profiles obtained prior to administration of the drug, can play a significant role in

individualized medicine. Machine learning models have the potential to address this issue

but training them requires data from a large number of patients treated with each drug, limit-

ing their feasibility. While large databases of drug response and molecular profiles of preclin-

ical in-vitro cancer cell lines (CCLs) exist for many drugs, it is unclear whether preclinical

samples can be used to predict CDR of real patients. We designed a systematic approach

to evaluate how well different algorithms, trained on gene expression and drug response of

CCLs, can predict CDR of patients. Using data from two large databases, we evaluated vari-

ous linear and non-linear algorithms, some of which utilized information on gene interac-

tions. Then, we developed a new algorithm called TG-LASSO that explicitly integrates

information on samples’ tissue of origin with gene expression profiles to improve prediction

performance. Our results showed that regularized regression methods provide better pre-

diction performance. However, including the network information or common methods of

including information on the tissue of origin did not improve the results. On the other hand,

TG-LASSO improved the predictions and distinguished resistant and sensitive patients

for 7 out of 13 drugs. Additionally, TG-LASSO identified genes associated with the drug

response, including known targets and pathways involved in the drugs’ mechanism of

action. Moreover, genes identified by TG-LASSO for multiple drugs in a tissue were associ-

ated with patient survival. In summary, our analysis suggests that preclinical samples can

be used to predict CDR of patients and identify biomarkers of drug sensitivity and survival.

Author summary

Cancer is among the leading causes of death globally and prediction of the drug response

of patients to different treatments based on their clinical and molecular profiles can enable

individualized cancer medicine. Machine learning algorithms have the potential to play a
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significant role in this task; however, these algorithms are designed based on the premise

that a large number of labeled training samples are available, and these samples are accu-

rate representations of the profiles of real tumors. However, due to ethical and technical

reasons, it is not possible to screen humans for many drugs, significantly limiting the size

of training data. To overcome this data scarcity problem, machine learning models can be

trained using large databases of preclinical samples (e.g. cancer cell line cultures). How-

ever, due to the major differences between preclinical samples and real tumors, it is

unclear how accurately such preclinical-to-clinical computational models can predict the

clinical drug response of cancer patients. Here, first we systematically evaluate a variety of

different linear and nonlinear machine learning algorithms for this particular task using

two large databases of preclinical (GDSC) and tumor samples (TCGA). Then, we present

a novel method called TG-LASSO that utilizes a new approach for explicitly incorporating

the tissue of origin of samples in the prediction task. Our results show that TG-LASSO

outperforms all other algorithms and can distinguish resistant and sensitive patients for

the majority of the tested drugs. Follow-up analysis reveal that this method can also iden-

tify biomarkers of drug sensitivity in each cancer type.

Introduction

Cancer is one of the leading causes of death globally and is expected to be the most important

obstacle in increasing the life expectancy in the 21st century [1]. Individualized cancer medi-

cine has the potential to revolutionize patient prognosis; however, two major challenges in this

area include the prediction of the individual responses to different treatments and the identifi-

cation of molecular biomarkers of drug sensitivity. While factors such as cancer type or its

symptoms have been traditionally used to identify the treatment [2], the development of high

throughput sequencing technologies [3] and sophisticated machine learning (ML) approaches

present the possibility of individualizing treatment based on molecular ‘omics’ profiles of

patients’ tumors [4]. However, due to the technical and ethical challenges of screening individ-

uals against many drugs [5], such models are either trained for only a handful of drugs [6] or

are trained using preclinical samples such as 2D cancer cell line cultures (CCLs) [7–10]. In

spite of the success of these methods in predicting the drug response of left-out preclinical sam-

ples using models trained on preclinical samples, they have had limited success in predicting

the CDR of real patients [9, 11], with some exceptions [12–14].

Various preclinical models of cancer have been developed to enable the study of cancer and

its treatment in the laboratory. CCLs, which are 2D cell cultures developed from tumor sam-

ples, are one of the least expensive and most studied of these models. Recently, several large-

scale studies have cataloged the molecular profiles of thousands of CCLs and their response to

hundreds of drugs [15–17]. Although various computational models have been developed to

predict the CCLs’ drug response using their molecular profiles [7–9], these models have shown

limited success in predicting CDR in real patients. In spite of sporadic successes for a handful

of drugs [12, 13], the current belief remains that developing an accurate computational ‘pre-

clinical-to-clinical’ model is extremely difficult if not impossible [5]. Our goal in this study

was to perform an unbiased systematic evaluation on a panel of drugs to determine 1) whether

regression models trained on in vitro preclinical samples can predict the CDR of real patients

for each drug and 2) what type of side information (e.g. interaction of the genes, the tissue of

origin of samples) might improve the CDR prediction.
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To this end, we first formed a computational framework to systematically evaluate the pre-

diction accuracy of different computational methods. We obtained preclinical training sam-

ples from the Genomics of Drug Sensitivity in Cancer (GDSC) database [16] and obtained

molecular profiles of tumor samples from The Cancer Genome Atlas (TCGA) [18]. We

focused on drugs that were shared between these two datasets and utilized the gene expression

profiles of samples to predict the drug response, since previous studies have demonstrated

gene expression to be most informative for this task [7]. Our analysis showed that regularized

linear regression models provide the best performance among various algorithms. In addition,

we included prior information on the relationship among genes (in the form of gene interac-

tion networks) using several algorithms; however, this prior information did not improve the

prediction.

Next, we developed a novel approach called Tissue-Guided LASSO (TG-LASSO) to explic-

itly include information on the tissue of origin of samples in the regularized regression model.

This method outperformed all other approaches evaluated. Using this method, we showed that

the CDR of cancer patients can be predicted using preclinical CCL training samples, for the

majority of drugs. More specifically, out of 12 drugs, TG-LASSO separated resistant patients

from sensitive patients for 7 drugs. In addition, for each tissue type and drug, TG-LASSO iden-

tified a small set of genes that may be used as tissue-specific biomarkers of drug response for

each drug. We showed that genes selected by TG-LASSO for prediction of drug response are

informative of patient survival when used as a gene signature, and also provide pathway-level

insights into mechanisms of drug action. These results emphasize the clinical relevance of

molecular profiles of preclinical samples cataloged in large-scale databases and demonstrate

the importance of properly including information on the lineage of samples in follow-up

analyses.

Results

Prediction of clinical drug response of cancer patients using in vitro
experiments on preclinical cancer cell lines

In this study, our first goal was to determine whether commonly used machine learning algo-

rithms are capable of predicting the clinical drug response (CDR) in cancer patients using

computational models trained only on cancer cell lines’ (CCLs) basal gene expression profiles

(i.e. before administration of the drug) and their drug response. For this purpose, we identified

23 drugs (Supplementary S1 Table) that were administered to patients of The Cancer Genome

Atlas (TCGA) [18] and were also present in the Genomics of Drug Sensitivity in Cancer

(GDSC) [16] database. We obtained the gene expression profiles of 531 primary tumor sam-

ples of TCGA patients (17 different cancer types) who were administered any of these drugs

from the Genomic Data Commons [19] (see Methods and Supplementary S1 Table). We

obtained the carefully collected and curated information on clinical drug response (CDR) of

these patients from [6]. Similarly, we obtained the gene expression profiles and the logarithm

of half-maximal inhibitory concentration (log (IC50)) of 979 cancer cell lines (of 55 different

tissues) from GDSC (see Supplementary S1 Table for the number of cell lines from each

tissue).

We formed a computational framework to systematically evaluate the prediction capability

of different algorithms (Fig 1). In this framework, we first normalize the data and remove

batch effects to ensure that the gene expression profiles from these two datasets are comparable

(Methods). This is particularly important since GDSC contains microarray gene expression

values, while TCGA contains RNA-seq data. We used ComBat [20] for batch effect removal,

which has been previously used to successfully remove the batch effect between RNA-seq and
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microarray data [21] (see Supplementary S1 Fig for the distribution of samples before and

after batch effect removal). Note that the CDR of the test samples were not used during this

step. Next, we trained a regression model to relate the gene expression profiles of CCLs to their

log (IC50) values for a specific drug. Given this model, we then estimated log (IC50) values for

different patient tumors using their gene expression profiles. Finally, we compared the esti-

mated log (IC50) values to the true CDR of the tumors of patients treated with the same drug

to determine the accuracy of prediction.

We used a one-sided nonparametric Mann Whitney U test to determine whether the esti-

mated log(IC50) values of resistant tumors (those with CDR of ‘clinical progressive disease’

or ‘stable disease’) are significantly larger than sensitive tumors (those with CDR of ‘partial

response’ or ‘complete response’). One should note that due to the difference in the type of

measured drug response in the training set (continuous-valued log(IC50)) and the test set

Fig 1. The pipeline used for prediction of clinical drug response of cancer patients using computational models

trained on gene expression and drug response of preclinical cell line samples. The input gene expression data (A)

corresponding to cancer cell lines (training set) and patients’ tumors (test set) are first homogenized and their batch-

effect is removed. The homogenized gene expression training data (B) and the cell lines’ log (IC50) values are used to

train a regression model (C). The trained model is applied to gene expression profiles of patients’ tumors to predict

their log (IC50) values, which are then used to evaluate the prediction performance (D).

https://doi.org/10.1371/journal.pcbi.1007607.g001
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(categorical CDR), such an approach is necessary and other measures of performance such

as concordance index or mean squared error are not suitable. In this evaluation, we only used

12 drugs that had at least 2 tumor samples in each category of resistant or sensitive and had at

least 8 total samples with known CDR. Table 1 shows a summary of the performance of differ-

ent methods. In this table, we used the combined p-value of all 12 drugs (using Fisher’s method

to combine p-values) as a measure to summarize the results of different methods. Table 2 and

Supplementary S2 Table contain the detailed performance of LASSO and all other methods,

respectively, for prediction of the CDR of each drug. We focused on these methods as they

have been previously used for this task (but for fewer drugs and using other datasets), with dif-

ferent degrees of success [12, 22, 23]. Recently, [5] reported a computational model based on

ridge regression to predict the CDR of TCGA patients using GDSC training samples. Table 1

also includes the performance of this method using our evaluation, based on the predictions

reported in the original paper.

Table 1. The performance of different algorithms in predicting the CDR of patients using models trained on preclinical CCL samples. The second column shows

the properties of the algorithm (linear versus nonlinear; single task versus multi-task learning). The third column shows the number of drugs for which a statistically signif-

icant discrimination between resistant and sensitive patients was obtained (one-sided Mann Whitney U test). The fourth column shows the total number of drugs included

in the evaluation, and the fifth column shows the combined p-value (using Fisher’s method) for all the drugs in the analysis.

Algorithm Properties Drugs with P<0.05 Drugs Combined P (Fisher)

LASSO Linear, Single task 5 12 5.21E-09

ElasticNet Linear, Single task 5 12 1.18E-08

MTL-LASSO Linear, Multi-task 5 12 3.64E-06

Ridge Linear, Single task 4 12 1.75E-05

MTL-ElasticNet Linear, Multi-task 3 12 4.83E-06

SVR (Linear Kernel) Linear, Single task 3 12 1.10E-05

SVR (Polynomial Kernel) Nonlinear, Single task 3 12 1.82E-05

SVR (RBF kernel) Nonlinear, Single task 3 12 2.92E-05

K-Nearest Neighbor Nonlinear, Single task 3 12 8.26E-05

Multi-Layer Perceptron Nonlinear, Single task 2 12 4.86E-02

Gelhar, et al. (2017) Linear, Single task 1 11 1.85E-02

Random Forest Nonlinear, Single task 1 12 0.19

https://doi.org/10.1371/journal.pcbi.1007607.t001

Table 2. The performance of LASSO algorithm in predicting the CDR of patients using models trained on preclinical CCL samples. The second column shows the

p-value (one-sided Mann Whitney U test) for the predicted log (IC50) values of sensitive and resistant tumors. The third and fourth columns show the number of resistant

and sensitive tumors used in the statistical test.

Drug P-value (one-sided) Num Resistant (PD or SD) Num Sensitive (CR or PR)

bicalutamide 0.34 3 14

bleomycin 0.10 4 46

cisplatin 6.67E-05 25 111

docetaxel 0.98 17 55

doxorubicin 3.42E-03 7 54

etoposide 7.57E-04 10 71

gemcitabine 0.14 43 37

paclitaxel 0.62 28 74

sorafenib 0.19 13 2

tamoxifen 8.82E-03 4 14

temozolomide 9.08E-02 84 11

vinorelbine 2.10E-03 6 23

https://doi.org/10.1371/journal.pcbi.1007607.t002
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These results suggest several important points. First, consistent with the reports in [12, 22],

we observed that regularized linear models resulted in the best performance, with LASSO per-

forming the best. Second, we observed that although the method proposed in [5] is based on

ridge regression, its performance is inferior to the ridge regression utilized in our study. This

is likely due to the difference between the preprocessing and batch effect removal approaches

used in the two studies. More specifically, instead of using ComBat to homogenize the gene

expression data in the preclinical and clinical samples (as was done in our study and also in

[12]), they simply standardized the mean of each gene to zero and its variance to one. This

point emphasizes the importance of data preprocessing in pharmacogenomics studies. Third,

we observed that for some drugs, the CDR could be predicted independent of the method,

while for others, the choice of the method is important. For example, the CDR of cisplatin

could be predicted (p<0.05) using ten out of the twelve methods above (as an example Table 3

shows that 92% of resistant patients are correctly designated using LASSO, while keeping pre-

cision at ~30% and specificity at ~50%). As another example, the majority of the methods

could not predict the CDR of taxane-based chemotherapy agents (docetaxel and paclitaxel).

We suspect that this lack of success is due to the existence of various parameters that influence

their response, such as tissue dependence or microenvironmental factors [25, 26], which may

not be captured using these simple methods trained on gene expression profiles of CCLs. In

fact, we later show that including the tissue of origin explicitly in the predicting model using

TG-LASSO can significantly improve the drug response prediction for paclitaxel.

Including information on gene interactions does not improve CDR

prediction

Various studies have suggested that including information on the interaction of the genes (and

their protein products) or their involvement in different pathways can improve the accuracy of

different bioinformatics tasks [27] such as gene prioritization [28], gene function prediction

[29], gene set characterization [30], and tumor subtyping [31]. Since the genes (and their

protein products) involved in a drugs mechanism of action biochemically and functionally

interact with each other, we sought to determine whether including these interactions could

improve CDR prediction. Since linear models provided the best performance in our prelimi-

nary analyses (Table 1), we focused on methods that incorporate gene interaction networks

into linear predictive models. These included Generalized Elastic Net (GELnet) [32], Net-

work-Induced Classification Kernels (NICK) [33], Sparse Group LASSO (SGL) [34], as well

as a method based on LASSO combined with single sample gene set enrichment analysis

(ssGSEA) [35] (see Methods). In all cases, we used four gene interaction networks: an experi-

mentally verified network of protein-protein and genetic interactions, a gene co-expression

network, and a network built based on text mining from the STRING database [36], as well as

the HumanNet integrated network [37] (see Methods and Supplementary S1 Table for details).

Table 4 summarizes the results and Supplementary S3 Table provides the details of the evalua-

tions. These results suggest that in this application, incorporating network information using

Table 3. The contingency table of predictions using LASSO for cisplatin. The predicted log(IC50) values were

labeled as resistant or sensitive based on the threshold that obtained the highest oddsratio [24] (oddsratio = 10.5,

p<0.001).

Predicted Resistant Predicted Sensitive Total

True Resistant 23 2 25

True Sensitive 58 53 111

Total 81 55 136

https://doi.org/10.1371/journal.pcbi.1007607.t003
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these methods does not improve the prediction compared to linear models (e.g. LASSO) that

do not incorporate such information (Table 1). This was in spite of the fact that some of these

network-guided methods (e.g. NICK with STRING Text Mining) do improve the performance

of within-dataset cross-validation (using only GDSC samples) compared to LASSO (see Sup-

plementary Methods in S1 Text).

Incorporating the tissue of origin to improve CDR prediction

Up to this point, we only used the tissue of origin of the preclinical and clinical samples implic-
itly (through their gene expression profiles) by training a single model for a drug on all CCLs

of different lineages, and then using this global model to predict the response of patients with

different cancer types. However, due to the importance of the tissue of origin in the efficacy of

anticancer drugs observed in various studies [38–40] and its inclusion as auxiliary information

in some drug response prediction studies [9, 41, 42], we sought to determine whether explicitly
including the tissue of origin would improve the prediction of CDR, and if so, the best method

for this inclusion. For our analysis, we focused on variations of LASSO (without including

gene interactions), which previously yielded the best performance among all the tested algo-

rithms (Table 1). We matched the lineage of the CCLs with those of cancer patients, identify-

ing 13 shared tissue types.

One of the most common methods of including the tissue of origin in regression analysis is

introducing new binary features to each sample, representing whether the sample belongs to

that tissue (‘1’) or not (‘0’) [15]. We included 13 such binary features in the analysis (‘method

1’). However, the prediction results of this approach were almost identical to the results of

LASSO when not including any tissue information. This is not surprising, since in this applica-

tion the number of one type of features (i.e. genes) is much larger than the number of the

other type of features (i.e. tissue types). As a result, the predicted drug response values will be

highly biased by the influence of gene expression data and the tissue of origin’s influence will

be overlooked. As an alternative, we trained different LASSO models for each tissue type by

Table 4. The performance of network-based algorithms in predicting the CDR of patients using models trained on preclinical CCL samples. The third column

shows the number of drugs for which a statistically significant discrimination between resistant and sensitive patients was obtained (one-sided Mann Whitney U test). The

fourth column shows the total number of drugs included in the evaluation, and the fifth column shows the combined p-value (using Fisher’s method) for all the drugs in

the analysis. As a point of comparison, LASSO without the use of any network yielded p-value< 0.05 for five of 12 drugs, with combined p-value of 5.21E-09 (Table 1).

Network Algorithm Drugs with P<0.05 Drugs Combined P (Fisher)

STRING PPI NICK 5 12 1.79E-06

GELnet 5 12 1.21E-04

SGL 3 12 1.75E-05

ssGSEA-LASSO 3 12 6.94E-06

STRING Co-Expression NICK 5 12 2.40E-06

GELnet 5 12 1.07E-04

SGL 2 12 2.62E-04

ssGSEA-LASSO 4 12 1.40E-2

STRING Text Mining NICK 5 12 2.14E-06

GELnet 5 12 1.23E-04

SGL 3 12 7.95E-05

ssGSEA-LASSO 3 12 2.57E-02

HumanNet Integrated Network NICK 5 12 1.09E-06

GELnet 5 12 1.21E-04

SGL 3 12 7.69E-04

ssGSEA-LASSO 4 12 6.06E-07

https://doi.org/10.1371/journal.pcbi.1007607.t004
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restricting the training (CCL) and test (tumor) samples to those originating from the same tis-

sue of interest (‘method 2’). For tumor samples without CCLs with matching tissue, we used

all CCLs to train the model. This method resulted in poor performance, with only one drug

having a significant p-value and a combined p-value (Fisher’s method) of 0.16. The reason

behind this poor performance is the small number of samples in training each model: due to

the tissue-specificity condition imposed above, only a small fraction of the total samples are

used in training each model, which results in poor generalizability of the models.

To overcome these issues, while explicitly incorporating information on the samples’ tissue

of origin, we devised a new approach called Tissue-Guided LASSO (TG-LASSO). The idea

behind this approach is to use all CCLs originating from different tissue types in training the

LASSO model, but choose the hyperparameter of the LASSO model, α, in a tissue-dependent

manner (Fig 2). This avoids the issues caused by the small number of training samples in

Method 2, while adding a tissue-dependent aspect to the training of the model. Since α con-

trols the number of features (i.e. genes) used by the LASSO model, this approach allows us to

optimally select the number of predictive genes for each tissue type (see Methods for details)

yet use all CCLs to train these tissue-dependent regression models.

This approach resulted in the best performance among all the methods tested, with 7

(out of 12) drugs showing significant discrimination between resistant and sensitive tumors

(p<0.05) and a combined p-value (Fisher’s method for all 12 drugs) of 2.25E-10 (Fig 3, Table 5

Fig 2. The TG-LASSO pipeline. The steps of TG-LASSO are depicted for one tissue type. These steps are repeated for

each tissue type. To predict the drug response of tumors corresponding to tissue t, the cell lines of the same lineage are

identified (A). These cell lines are used as the validation set, while cell lines of all other lineages are used as the training

set for hyperparameter tuning (B). The identified hyperparameter is used to train a tissue-dependent model using all

the CCLs (C). The trained model is used to predict the drug response of tumors from tissue t (D). Since the

hyperparameter is tuned in a tissue-dependent manner (B and C), the models trained for each tissue type are distinct

(C and D).

https://doi.org/10.1371/journal.pcbi.1007607.g002
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Fig 3. The drug response prediction performance of seven drugs for which TG-LASSO predictions separated

sensitive patients from resistant (p< 0.05). A) The box plots reflect the distribution of estimated log (IC50) values

using TG-LASSO for each group of resistant or sensitive patients. The p-values correspond to a one-sided Mann-

Whitney U test. The Precision@20% (written as P@20%) is the precision of the method when samples with the

predicted log (IC50) above 80th percentile of the training log(IC50) values are declared as resistant and those below the

20th percentile are declared as sensitive. B) The Precision@k% as a function of k.

https://doi.org/10.1371/journal.pcbi.1007607.g003
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and Supplementary S4 Table). These results not only show that including the tissue of origin

can improve CDR prediction using preclinical samples, but also suggest that the method of uti-

lizing this information has a significant influence on the performance.

To better assess the ability of TG-LASSO in predicting whether a drug should be adminis-

tered to a patient or not, we defined a measure which we called Precision@k%. Intuitively, this

measure represents the precision of the method when test samples with predicted log(IC50)

above the (100—k)th percentile of the training samples’ log(IC50)s are labeled as resistant and

those below the kth percentile are labeled as sensitive (see Methods for details). Five drugs

(bicalutamide, cisplatin, etoposide, vinorelbine and temozolomide) had a Precision@20%

equal to 100% and the average value of this measure for all drugs was equal to 80% (see Fig 3B

and Supplementary S4 Table). These results suggest that the 20th and 80th percentiles of the

training samples’ log (IC50) may be good thresholds for deciding whether a patient is sensitive

or resistant to these drugs.

One interesting observation was that paclitaxel, the response of which could not be pre-

dicted accurately with the majority of methods reported in Table 1, showed a significant

improvement in the response prediction with TG-LASSO (p = 0.048, one-sided Mann Whit-

ney U test), suggesting a prominent role for the tissue of origin in its drug response. On the

other hand, the CDR prediction of docetaxel did not improve (p = 0.99), even though doce-

taxel is also a taxane, like paclitaxel, and these two drugs have a statistically significant corre-

lation in their CCL responses (Spearman rank correlation = 0.38, p = 1.7E-13). We suspected

that this difference between the performance of TG-LASSO for docetaxel and paclitaxel is

related to how well the CCL panel used for training represents the tumor samples of patients

to whom these drugs were administered. To evaluate this, we calculated the similarity

between the gene expression profiles of tumor samples to those of CCLs from the same tissue

of origin for these drugs. This analysis showed a lower similarity between the docetaxel-

administered tumors and CCLs (average cosine similarity = 0.07) compared to paclitaxel-

administered tumors and CCLs (average cosine similarity = 0.11). These results provide

evidence in favor of our hypothesis that the difference in the performance of TG-LASSO is

related to how well the CCLs represent the profile of tumors to which these two drugs were

administered.

Since some of the drugs used in our study were administered in combination with other

drugs, we asked how well TG-LASSO predicts the CDR in such cases of treatment with drug

combinations. For this purpose, we evaluated its CDR prediction for a drug only on patients

for whom that drug was administered over a period overlapping their treatment with at least

one other drug. We limited our analysis to 9 drugs with at least two samples (patients) in

each group (sensitive and resistant) and with at least 8 samples in total. Supplementary S5

Table shows that, consistent with our previous results, TG-LASSO outperforms all other

methods, capable of predicting the CDR of 6 (out of 9) drugs (p<0.05, one-sided Mann

Whitney U test).

Table 5. The prediction performance of different approaches that incorporate information on tissue of origin in LASSO. The second column shows which subset of

the training samples were used for training. The third column shows how tissue information was used. The fourth column shows the number of drugs for which a statisti-

cally significant discrimination between resistant and sensitive patients was obtained (one-sided Mann Whitney U test). The fifth column shows the total number of drugs

included in the evaluation, and the sixth column shows the combined p-value (using Fisher’s method) for all the drugs in the analysis.

Algorithm Training Samples Tissue information Drugs with P<0.05 Drugs Combined P (Fisher)

TG-LASSO All samples Used during hyperparameter tuning 7 12 2.25E-10

Method 1 All samples Used as new binary features 5 12 5.21E-09

Method 2 Only samples matching the test samples’ tissue Used to identify relevant training samples 1 12 0.16

https://doi.org/10.1371/journal.pcbi.1007607.t005
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Next, we sought to evaluate the effect of batch-effect removal and preprocessing on the per-

formance of TG-LASSO. For this purpose, we did not perform ComBat data homogenization

or z-score normalization on the gene expression data. As expected, the performance of both

TG-LASSO and LASSO deteriorated, with the former resulting in 4 drugs with p< 0.05 and

the latter with only 3 (Supplementary S6 Table). In spite of this, TG-LASSO still performed

better than LASSO, emphasizing the importance of including the tissue information.

Characterization of genes identified by TG-LASSO

During its training phase, TG-LASSO automatically selects a subset of genes to be used in the

regression model by tuning the hyperparameter α introduced above. The number of genes

selected in this manner depends on the drug and tissue type for which the model is trained to

make response predictions and was found to range between 9 and 808 genes with a median of

174 genes. The genes identified by TG-LASSO included many direct targets of each drug. (For

these analyses we used all 23 drugs shared between TCGA and GDSC and not just those with a

large number of samples in TCGA). For example, EGFR, which is a direct target of both cetux-

imab and gefitinib [43], was selected by this algorithm when trained to predict response of

these drugs in each of the 13 tissue types (Supplementary S7 Table). Similarly, FLT3, a target of

the drugs sorafenib and sunitinib [43], was selected by TG-LASSO for predicting response to

these drugs in 13 and 12 tissues, respectively. In addition to direct targets, many of the identi-

fied genes have been shown to be indirect targets of these drugs and to be involved in their

mechanism of action. For example DNER, a gene identified by TG-LASSO for all tissue types

for cisplatin (but was not identified by LASSO for this drug), has been shown to be signifi-

cantly upregulated in response to this drug in NCI-H526 cell lines [44].

More importantly, the knockdown or overexpression of many of the identified genes has

been shown to influence the sensitivity of cancer cells to these drugs. For example, the shRNA

knockdown of CHI3L1, a gene identified for etoposide and cisplatin response in every tissue

(but was not identified using LASSO for any of these drugs), has been shown to sensitize gli-

oma cells to these two drugs, while its overexpression reduced their sensitivity [45]. As another

example, the knockdown of SALL4 (identified in all tissues) in cancer cell lines has been

shown to increase the sensitivity of lung cancer cells [46] and esophageal squamous cell carci-

noma cells [47] to cisplatin. Supplementary S8 Table summarizes some of the evidence we

curated from literature for the role of different genes identified by TG-LASSO in all tissue

types for cisplatin (and whether they could have been identified using LASSO or not), as an

illustration. These examples show the fact that the genes utilized by TG-LASSO in prediction

of CDR of patients not only include targets of respective drugs, but also include genes whose

expression has been experimentally shown to predict the sensitivity of these drugs: a property

necessary for any predictive model of drug response. In addition, many of these genes could

not be identified by simply using LASSO.

Genes identified for multiple drugs in a tissue are associated with patient

survival

We hypothesized that genes that were identified by TG-LASSO as response predictors of many

drugs in a single tissue (Supplementary S9 Table) may be able to predict the survival of patients

who have cancer that originated from that tissue, as they may play a significant role in the

development and progress of the disease. To test this, we obtained gene expression values of

4908 primary tumors from 10 different cancer types (corresponding to the tissue types in our

study) from TCGA, requiring the data to include at least 170 patients and 20 incidents of

deaths for each cancer type (Supplementary S10 Table). Then, we clustered the primary
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tumors of each cancer type into two groups based on the expression of genes identified by

TG-LASSO for more than 5 different drugs in the tissue corresponding to that cancer type.

We used hierarchical clustering with cosine similarity. Kaplan-Meier survival analysis showed

that this clustering approach could separate patients with poor survival from those with better

survival (log-rank test, p < 0.05) for 6 out of the 10 cancer types (Fig 4, Supplementary S2 Fig,

Supplementary S10 Table).

Next, we repeated the analysis above using genes identified by LASSO for more than 5

drugs as a benchmark (Supplementary S10 Table). The Kaplan-Meier survival analysis was sig-

nificant for only 3 cancer types (log-rank test, p< 0.05), with the Lower Grade Glioma (LGG)

clusters having the smallest p-value equal to p = 0.013 (compare to 6 significant cases using

TG-LASSO and the log-rank p-value of the LGG clusters equal to p = 7.61E-13). These results

provide further evidence in favor of the role of the genes identified by TG-LASSO in the prog-

ress of the corresponding cancer type.

Functional and pathway enrichment analysis of LGG related genes

Since Kaplan-Meier analysis of LGG clusters obtained using TG-LASSO genes resulted in the

smallest p-value (log-rank test, p = 7.61E-13), we sought to further characterize the identified

genes that resulted in this significant patient stratification using functional and pathway

enrichment analysis. For this purpose, we used the KnowEnG’s gene set characterization pipe-

line [27] and identified 20 GO terms and two pathways enriched (FDR< 0.05) in this gene set

(Supplementary S11 Table).

Several of the most significantly enriched GO terms were related to extracellular matrix

(ECM), which plays an important role in the infiltration of glioma cells into the brain [48,

49]. Another important GO term was neutrophil degranulation (FDR = 2.1E-3). Neutrophils

are the most abundant type of white blood cells and the number of infiltrating neutrophils

has been shown to be associated with the malignancy of glioma and its drug resistance [50].

In addition, it has been shown that in patients with glioblastoma, neutrophil degranulation

is associated with peripheral cellular immunosuppression [51]. Another noteworthy GO

term was integrin binding (FDR = 0.037). Integrins are transmembrane proteins that

mediate cell adhesion, play an important role in promoting the invasiveness of glioma cells

[52], and have been suggested as potential targets with diagnostic and prognostic value in

glioma [53]. Several enriched GO terms were related to the activity of endopeptidases and

collagen. It has been shown that the level of collagen in glioma patients is increased, and it

also plays a key role in promoting the tumor progression [54]. Matrix metalloproteinases

(MMPs) are one important class of endopeptidases that are responsible for regulating the

turnover of collagens, and their expression and activity has been associated with the progres-

sion of human glioma [54, 55]. Finally, ‘response to drug’ was another enriched GO term,

which reflects the relevance of the identified genes to the general mechanisms of drug

response in a cell.

The enriched pathways included miRNA targets in ECM and membrane receptors

(FDR = 2.0E-3) and Syndecan-1-mediated signaling (FDR = 0.04). Syndecan-1 is a cell surface

heparan sulfate proteoglycan and its expression has been shown to be correlated with tumor

cell differentiation in various cancers [56]. In addition, its knockdown has been shown to

inhibit glioma cell proliferation and invasion and has been suggested as a therapeutic target

for glioma [57]. These results support our expectation that the LGG-related gene set not only

involves drug response related genes, but also includes those that play important roles in gli-

oma and may act as diagnostic biomarkers or therapeutic targets.
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Fig 4. The Kaplan Meier survival analysis results for six cancer types. Patients were clustered based on the expression of genes that were identified by

TG-LASSO for more than 5 drugs in the corresponding tissue. The p-value was calculated using a log-rank test.

https://doi.org/10.1371/journal.pcbi.1007607.g004
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Discussion

Ideally, a predictive model of CDR should be trained on data obtained directly from patients.

Similarly, identification of biomarkers of drug sensitivity has the most potential clinical impact

when based on patient data. However, since in practice most patients only receive the ‘stan-

dard of care’ treatment based on their specific cancer type, CDR data is scarcely available for

the newly approved drugs or drugs that have not yet passed the clinical trial, limiting our abil-

ity to decipher the mechanisms of drug sensitivity for these drugs. An alternative approach is

to train ML models on preclinical samples (e.g. CCLs) to predict the CDR of patients, then use

these predictions to discover novel biomarkers and druggable targets.

Recent large-scale studies that have cataloged the molecular profiles of thousands of CCLs

and their response to hundreds of drugs [15–17] are great resources to achieve this goal. In

this study, we adopted such an approach and systematically assessed a variety of linear and

non-linear single-task and multi-task ML algorithms. Our analyses showed that the CDR of

many drugs can be predicted using ML models (especially, regularized linear models) trained

on CCLs. However, by evaluating a variety of methods that include auxiliary information (e.g.

interaction of the genes, the tissue of origin, etc.), we observed that improving the performance

beyond what is achievable using linear models is extremely difficult and requires careful

modeling and novel computational techniques. It appears that the way by which auxiliary

information is utilized has a large impact: for example, several methods that include the tissue

of origin did not improve the results obtained by LASSO, and only TG-LASSO could improve

the performance. Additionally, we showed that TG-LASSO identifies tissue-dependent gene

sets for each drug that include various targets of the drug, genes involved in the drug’s mecha-

nism of action, and genes whose under- or over-expression could sensitize cancer cells to the

drug. Moreover, these sets include genes that are involved in cancer progression and are asso-

ciated with patient survival. These results suggest that in addition to a superior drug response

prediction performance, TG-LASSO can identify biomarkers of patient survival and drug

sensitivity.

Another important factor that played an important role in the performance of the ML mod-

els was data homogenization and batch-effect removal. The performance of TG-LASSO and

LASSO both deteriorated when we did not remove the existing batch-effect between the train-

ing dataset and the test dataset. In spite of this, TG-LASSO could distinguish between resistant

and sensitive patients for four drugs, when applied to non-homogenized data. This suggests

two approaches when dealing with scenarios in which new test samples arrive. The first

approach is to simply use the model trained on non-homogenized preclinical samples and

accept the worse performance. The alternative is to retrain the model every time a new test

sample arrives. This allows for training and prediction on homogenized data, but significantly

increases the computational cost. An alternative could be developing a new data homogeniza-

tion and batch effect-removal method that only transforms the gene expression of the test sam-

ples (keeping the gene expression profiles of training samples unchanged) by mapping them to

the subspace spanned by the training samples. However, the development of such a method is

beyond the scope of this study.

We note that due to the major differences between CCLs and tumors (e.g. the greater het-

erogeneity of cells in a tumour compared to CCLs), obtaining more accurate results based on

classical ML techniques may not be possible. The reason is that classical ML methods assume

that the training samples and the test samples are drawn from the same or similar distribu-

tions. While batch-effect removal and other homogenization and normalization techniques

help to alleviate this issue, more realistic preclinical models of cancer are necessary to signifi-

cantly improve these results. Recent advances in developing human derived xenografts [58]
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and 3D human organoids [59] may enable developing a more accurate predictive model of

CDR in cancer. However, due to the current high cost of these models, a more practical

approach is developing computational methods that explicitly model these differences. Such

methods must go beyond utilizing bulk gene expression data and take advantage of multi-

omics analysis of bulk and single-cell sequencing profiles of samples. Due to the rapid

advances in these domains, we expect that large databases of single-cell multi-omics profiles

of preclinical and clinical samples and their drug response will become available in the near

future.

Methods

Datasets, preprocessing and batch effect removal

We obtained the gene expression profiles (FPKM values) of 531 primary tumor samples of

TCGA patients who were administered any of the 23 drugs mentioned earlier. First, we

removed genes that contained missing values. We also removed any gene that was not

expressed (i.e. FPKM<1) for more than 90% of the samples. Then, we performed a log-trans-

formation and obtained log2(FPKM+0.1) values for each gene. The resulting gene expression

matrix contained 19,437 genes and 531 samples. We obtained the CDR of these patients from

the supplementary files of [6] (see the original paper for their approach in curating this data

from TCGA). Similarly, we obtained the Robust Multi-array Average (RMA)-normalized

basal gene expression profiles and the logarithm of half maximal inhibitory concentration, log

(IC50), of 979 cancer cell lines from GDSC (Supplementary S1 Table) for 17,737 genes.

To homogenize the gene expression data from these two datasets, we first removed genes

not present in both datasets as well as genes with low variability across all the samples (stan-

dard deviation < 0.1), resulting in a total of 13,942 shared genes. Then, we used ComBat [20]

for batch effect removal to homogenize the gene expression data from TCGA (RNA-seq) and

GDSC (microarray). This approach, which has been previously used to successfully homoge-

nize these two data types [21], removed the batch effect present in the gene expression datasets

(see Supplementary S1 Fig). For all follow-up analysis, we performed z-score normalization

on each gene across all the samples to ensure a mean of zero and a standard deviation equal to

one.

For the network-guided analyses, we downloaded four networks of gene interactions in

humans from the KnowEnG’s knowledgebase of genomic networks [27] (https://github.com/

KnowEnG/KN_Fetcher/blob/master/Contents.md). The details of each network including the

number of nodes and edges are provided in Supplementary S1 Table.

Machine learning regression models

The baseline models (Table 1) were all implemented using Scikit-learn [60] in Python and the

hyperparameters were selected using cross validation (using only CCL samples from GDSC).

The multi-task learning methods (MTL-LASSO and MTL-ElasticNet) require availability of

training drug response values for all drugs and all samples. Since the training drug response

matrix contains missing values, to obtain the results reported in Table 1 we used the ‘average

strategy’ (average of the drug response values across cell lines of a single drug) to impute the

missing values. We also tried a different approach (i.e. dropping cell lines with missing values),

but since the results were much worse, we did not include them in Table 1.

For the network-based algorithms (Table 4), we used four networks summarized in Supple-

mentary S1 Table. We used the normalized graph Laplacian of these networks to run GELnet

[32]. This method forces neighboring genes in the graph to have similar weights in order to

guide drug response prediction. Specifically, it defines a regularization penalty R(w) for the
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standard linear model.

R wð Þ ¼ l1

X

j

djjwjj þ
l2

2
wTPw

where d and P are additional penalty weights for individual features and pairs of features,

respectively. Our basic GELnet implementation sets P = L and d = 0. Furthermore, we used

Network-Induced Classification Kernels (NICK), a method closely related to GELnet. The

NICK framework is actually a special case of the GELnet, with P = (I + βL) for some β� 0 and

d = 0. The parameter β provides a trade-off between graph-driven regularization and the tradi-

tional ridge regression penalty of the SVMs.

In addition to the above methods that utilize the graph Laplacian of each network in the

regression algorithm, we used sparse group LASSO (SGL). This method takes a collection of

pathways as input and induces sparsity at both the pathway and the gene level to generate the

input. We performed community detection on each of the networks in Table 4 by maximizing

the modularity using the Louvain heuristics [61] to identify gene sets to be used in the SGL

algorithm. We then ran SGL by fitting a regularized generalized linear model with group

memberships of genes as deemed by the community detection to predict drug response.

Finally, we developed a heuristic method based on ssGSEA [35] followed by LASSO. In

this method, we used ssGSEA to assign a score to each sample for the enrichment of its gene

expression profile in communities of each network, obtained earlier. These scores where then

used as features to train a LASSO model for prediction of CDR.

Methods for including tissue of origin in CDR prediction

In the first approach (Method 1 in Table 5), we augmented the gene expression profile of each

sample (both CCLs and tumors) with binary features corresponding to different tissues of ori-

gin shared between the TCGA and GDSC samples (a total of 13 features). For each sample its

tissue of origin was assigned a value of ‘1’, and other tissues were assigned a value of ‘0’. Then,

the LASSO algorithm was used to train a drug response model on CCLs and predict the CDR

of tumors.

In the second approach (Method 2 in Table 5), we trained different LASSO models for each

drug-tissue pair (23 drugs and 13 tissue types). More specifically, to predict the CDR of drug d
in a tumor of tissue t, we trained a LASSO regression model using the log (IC50) of drug d in

only cell lines corresponding to tissue t (i.e. a subset of the training samples). For tumors origi-

nating in tissues without matching training CCLs, we used all the CCLs to train the model.

Prediction of CDR in cancer tumors using Tissue-guided LASSO

TG-LASSO is a method for predicting the CDR of tumors using the information in all training

samples (originating from different tissue lineages), while incorporating information on the

tissue of origin of the samples. By utilizing all the training samples, it overcomes the lack of

generalizability stemming from limited number of CCLs from each tissue type, a major issue

in Method 2 above. In addition, by incorporating the information on the tissue of origin of the

samples in the training step, it improves the performance of tissue-naïve regression methods,

such as those in Table 1.

During training, LASSO minimizes the objective function 1

2n ky � Xwk2

2
þ akwk1, where n

is the number of training samples, y is the response vector of length n, X is an n ×m feature

matrix (m is the number of features), k k2 denotes the L2 vector norm, k k1 denotes the L1 vec-

tor norm, and α is the hyperparameter that determines the sparsity of the model (i.e. number

Clinical drug response prediction using TG-LASSO

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007607 January 22, 2020 16 / 22

https://doi.org/10.1371/journal.pcbi.1007607


of features used in training). The hyperparameter tuning is usually achieved independent of

the structure of the training samples (e.g. their tissue of origin), for example using random

cross-validation or a regularization path. However, we and others [62] have shown that includ-

ing the group structure of data in selecting the hyperparameter is important in assessing the

generalizability of regression models. Motivated by these results, even though TG-LASSO uti-

lizes the gene expression and the drug response of all CCLs in training, the hyperparameter α
is selected in a tissue- and drug-specific manner, as explained below.

Let D be the set of all drugs and T be the set of all tissues in the test set (i.e. the TCGA dataset).

To train a model to predict the CDR of tumor samples from tissue t 2 T to drug d 2 D, we iden-

tify all the training CCLs corresponding to tissue t and use them as the validation set. In addi-

tion, we use all other CCLs as the training set. Then, the hyperparameter α is selected as the one

that obtains the best accuracy on predicting the log (IC50) values of the samples of tissue t in the

validation set. Designing the hyperparameter-tuning step such that the validation and the test

sets have the same tissues of origin ensures that the value of α is selected so as to generalize well

to the test set. The obtained value of α is then used with all CCLs (including those from tissue t)
to fit a model minimizing the LASSO objective function. In the prediction step, this fitted model

is then used with the gene expression of tumor samples from tissue t to predict their CDR.

Precision@k%

To further assess the performance of TG-LASSO, we defined a measure called Precision@k%

(motivated by Precision@k in information retrieval). To define Precision@k%, we first used

the log(IC50) values of the preclinical cell lines form GDSC to find the Kth percentile (K< =

50) and the (100-K)th percentile of each drug (separately), denoted as tK and t100-K, respec-

tively. Then, given the predicted log(IC50) values of the tumors and their annotation as ‘sensi-

tive’ or ‘resistant’ (based on their known CDR), we defined

Precision@k% ¼
R100� K þ SK
N100� K þ NK

;

where R100−K is the number of resistant tumors whose predicted log(IC50) is larger than t100

−K, SK is the number of sensitive tumors whose predicted log(IC50) is smaller than tK, N100−K

is the total number of tumors whose predicted log(IC50) is larger than t100−K, and NK is the

total number of tumors whose predicted log(IC50) is smaller than tK. Intuitively, this measure

shows the precision of predicting the tumors with predicted log(IC50) values larger than t100-K

as resistant and those with predicted log(IC50) values smaller than tK as sensitive. Note that

due to this definition of Precision@k%, for some values of k, the denominator may be equal to

0 and the measure may not be defined.

Gene ontology and pathway enrichment analysis

We used the gene set characterization pipeline of KnowEnG analytical platform [27] for this

analysis, which utilizes Fisher’s exact test to determine the significance of enrichments. We

excluded GOs or pathways with too few genes, focusing only on those with more than 10

members. For the pathway analysis, we used the ‘Enrichr’ pathways [63] available on Kno-

wEnG. All p-values were corrected for multiple hypothesis testing using Benjamini-Hochberg

false discovery rate, available as part of the python module [64].

Software availability

An implementation of TG-LASSO in python, with appropriate documentation and input files,

is available at: https://github.com/emad2/TG-LASSO.
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genes identified by TG-LASSO for more than 5 drugs in each tissue type.

(TIF)
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