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Abstract

Background: One of the major challenges facing investigators in the microbiome field is turning large numbers of
reads generated by next-generation sequencing (NGS) platforms into biological knowledge. Effective analytical workflows
that guarantee reproducibility, repeatability, and result provenance are essential requirements of modern microbiome
research. For nearly a decade, several state-of-the-art bioinformatics tools have been developed for understanding
microbial communities living in a given sample. However, most of these tools are built with many functions that require
an in-depth understanding of their implementation and the choice of additional tools for visualizing the final output.
Furthermore, microbiome analysis can be time-consuming and may even require more advanced programming skills
which some investigators may be lacking.

Results: We have developed a wrapper named iMAP (Integrated Microbiome Analysis Pipeline) to provide the
microbiome research community with a user-friendly and portable tool that integrates bioinformatics analysis and data
visualization. The iMAP tool wraps functionalities for metadata profiling, quality control of reads, sequence processing and
classification, and diversity analysis of operational taxonomic units. This pipeline is also capable of generating web-based
progress reports for enhancing an approach referred to as review-as-you-go (RAYG). For the most part, the profiling of
microbial community is done using functionalities implemented in Mothur or QIIME2 platform. Also, it uses different R
packages for graphics and R-markdown for generating progress reports. We have used a case study to demonstrate the
application of the iMAP pipeline.

Conclusions: The iMAP pipeline integrates several functionalities for better identification of microbial communities
present in a given sample. The pipeline performs in-depth quality control that guarantees high-quality results and
accurate conclusions. The vibrant visuals produced by the pipeline facilitate a better understanding of the complex and
multidimensional microbiome data. The integrated RAYG approach enables the generation of web-based reports, which
provides the investigators with the intermediate output that can be reviewed progressively. The intensively analyzed case
study set a model for microbiome data analysis.
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Background
Understanding the diversity of microbes living in a given
sample is a crucial step that could lead to novel discoveries.
The choice of bioinformatics methodology used for analyz-
ing any microbiome dataset from pre-processing of the
reads through the final step of the analysis is a key factor
for gaining high-quality biological knowledge. Most of the
available bioinformatics tools contain multiple functions
and may require an in-depth knowledge of their imple-
mentation. In most cases, several tools are used independ-
ently to analyze a single microbiome dataset and to find
the right combination of tools is even more challenging.
Obviously, finding suitable tools that complete the analysis
of microbiome data can be time-consuming and may even
require more high-level programming experiences which
some users may be lacking.
The core step in microbiome analysis is the taxonomic

classification of the representative sequences and clustering
of OTUs (Operational Taxonomic Units). OTUs are prag-
matic proxies for potential microbial species represented in
a sample. Performing quality control of the sequences prior
to taxonomic classification is paramount for the identifica-
tion of poor-quality reads and residual contamination in the
dataset. There are several public tools available for inspect-
ing read quality and filtering the poor-quality reads as well
as removing any residue contamination. For example, pre--
processing tools such as Seqkit [1], FastQC [2] and
BBduk.sh command available in the BBMap package [3] are
designed to help investigators review the properties and
quality of reads before further downstream analyses. High
quality reads coupled with stringent screening and filtering
can significantly reduce the number of spurious OTUs.
The most famous microbiome analysis tools integrate

different quality control approaches in their pipelines.
Mothur [4] for example is well known for its intensive
quality filtering of poor sequences before OTU clustering
and taxonomy assignment. Quantitative Insight Into Mi-
crobial Ecology (QIIME-2), a successor of QIIME-1 [5]
(see http://qiime.org/) uses DADA2 [6] to obtain high-
quality representative sequences before aligning them
using MAFFT [7] software. Nevertheless, the most com-
mon sequencing error is the formation of chimeric frag-
ments during PCR amplification process [8, 9]. Briefly,
chimeras are false recombinants formed when prema-
turely terminated fragments during PCR process reanneal
to another template DNA, thus eliminating the assump-
tion that an amplified sequence may have originated from
a single microbial organism. Detecting and removing
chimeric sequences is crucial for obtaining quality se-
quence classification results. Both Mothur and QIIME-2
integrate special tools for chimera removal, specifically
UCHIME [10] and VSEARCH [11].
The sequences that pass the filtering process are typically

searched against a known reference taxonomy classifier at a

pre-determined threshold. Most classifiers are publicly
available including the Ribosomal Database Project (RDP)
[12], SILVA [13], Greengenes [14], and EzBioCloud [15].
Use of frequently updated databases avoids mapping the
sequences to obsolete taxonomy names. In some cases,
users may opt to train their custom classifiers using, for ex-
ample, q2-feature-classifier protocol [14, 15] available in
QIIME-2 [16, 17] or use any other suitable method. Over-
classification of the representative sequences can result in
spurious OTUs, but this can be avoided by applying strin-
gent cut-offs [18].
Frequently, users adopt the default settings of their

preferred pipelines. For example, the 97% threshold typ-
ically expressed as 0.03 in Mothur and 70% confidence
level expressed as 0.7 in QIIME-2 are default settings in
OTU clustering. The final output of most microbiome
analysis pipelines is the OTU table. Typically, the OTU
table is the primary input for most downstream analyses
leading to alpha and beta diversity information in both
Mothur and QIIME. The OTU table is typically a matrix
of counts of sequences, OTUs or taxa on a per-sample
basis. The quality of data in the OTU table depends pri-
marily on the previous analyses which provide input to
the pipeline’s subsequent steps. Making biological con-
clusions from the OTU table alone without reviewing
the intermediate output is a high risk that could result
in inaccurate conclusions.
In the present paper, we developed an improved micro-

biome analysis pipeline named iMAP (Integrated Micro-
biome Analysis Pipeline) that integrates exploratory analysis,
bioinformatics analysis, intensive visualization of intermedi-
ate and final output, and phylogenetic tree annotation. The
implementation of iMAP pipeline is demonstrated using a
case study where 360 mouse gut samples are intensively
analyzed. Throughout the manuscript, “iMAP pipeline”
terminology is used instead of “iMAP” for easy readability.

Methods
Workflow
Code for implementing iMAP pipeline contains bundles of
commands wrapped individually in driver scripts for per-
forming exploratory analysis, preprocessing of the reads,
sequence processing and classification, OTU clustering
and taxonomy assignment, and preliminary analysis, and
visualization of microbiome data (Fig. 1). The pipeline
transforms the output obtained from major analysis steps
to provide data structure suitable for conducting explora-
tory visualization and generating progress reports.

Implementation
A detailed guideline for implementing iMAP pipeline is
in the README file included in the iMAP repository. It
is mandatory that all user data files are placed in the
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designated folders and must remain unaltered through-
out the entire analysis.

Robustness, reproducibility, and sustainability
Ability to reproduce microbiome data analysis is crucial.
Challenges in robustness and reproducibility are acceler-
ated by lack of proper experimental design, the complexity
of experiments, constant updates made to the available
pipelines, lack of well-documented workflows, and relying
on inaccessible or out-of-date codes. The pre-release ver-
sion of iMAP described in this manuscript (iMAP v1.0) is
at the preliminary phase, and perhaps it lacks significant
reproducibility aspects compared to the modern bioinfor-
matics workflow management systems such as Nextflow
[19], NextflowWorkbench [20], or Snakemake [21]. In its
current state, users will be able to follow the guideline pre-
sented in the README file and reuse the associated code
interactively, including nested bash and visualization
scripts to realize similar results. In an effort to ensuring
that the iMAP pipeline is reproducible, portable, and
shareable, we created Docker images that wrangle the de-
pendencies including software installation and different
versions of R packages. Using Docker images makes it eas-
ier for users to deploy the iMAP and run all analyses using
containers. Instructions on how to work with Docker are

available in the README file. The iMAP pipeline also
comes with both mothur and QIIME2 Docker images for
the classification of the 16S rRNA gene sequences.
Future sustainability and reproducibility of iMAP de-

pend highly on the use of a well-established workflow
management system to provide a fast and comfortable
execution environment, which will probably increase the
usability as well. A long-term goal is to automate most
of the interactive steps and integrate the pipeline with a
code that defines rules for deploying across multiple
platforms without any modifications.

Bioinformatics analysis
The iMAP pipeline is intended to be executed inter-
actively from a command line interface (CLI) or from a
Docker container CLI to optimize user interaction with
the generated output. A detailed guideline is provided in
the README file of the iMAP pipeline. Most of the ana-
lysis run at default settings unless altered by the user. By
default, the iMAP pipeline uses up-to-date SILVA seed
classifiers [13] for mothur-based taxonomy assignments
or Greengenes classifiers [14] if using QIIME2 pipeline.
The SILVA seed and Greengenes databases are relatively
small compared to the SILVA NR version which is avail-
able for both mothur and QIIME2. Users need to be

Fig. 1 Schematic illustration of the iMAP pipeline. The required materials including data files, software, and reference databases must be in place
before executing the iMAP pipeline. The initial step in the analysis is sample metadata profiling followed by pre-processing and quality checking
of demultiplexed 16S read pairs which are then merged, aligned to reference alignments, classified then assigned conserved taxonomy names.
Output from each major step is transformed, visualized, and summarized into a progress report
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aware that the larger a dataset is, the more memory
(RAM) the system requires. Users may opt to use their
preferred classifiers and make a small modification in
the sequence classification script. Instructions to do so
are available in the README file. We are aware that
some microbiome experiments do sequence a mock
community to help in measuring the error rate due to
biases introduced in PCR amplification and sequencing.
The mock community sequences are removed automat-
ically before OTU clustering and taxonomy assignment.
However, the group name(s) of the mock samples is re-
quired. By default, the iMAP removes two groups named
Mock and Mock2. Instruction to replace the mock
group names is available in the README.

Data transformation and preliminary analysis
The final output of most microbiome analysis pipelines
is the OTU table, which is typically a matrix of counts of
sequences, the observations, i.e. OTUs or taxa on a per-
sample basis. The OTU tables are transformed into data
structures suitable for further analysis and visualization
with R [22]. Most of the analyses and visualization are
executed via the RStudio IDE (integrated development
environment) [23]. We understand that different investi-
gators prefer different analysis types based on the hy-
potheses under question. In the following section, we
used a case study to demonstrate the application of the
iMAP pipeline and the exploratory visualization that
provides an insight into the results.

Phylogenetic annotation with iTOL
We specifically chose a phylogenetic-based annotation
with iTOL (integrative Tree Of Life) [24] to be part of the
iMAP pipeline as a model for displaying multivariate data
in easily interpretable ways. Briefly, phylogenetic annota-
tion of the groups (samples) or taxa requires a pre-built
tree such as Newick tree. Fortunately, in both mothur and
QIIME2, there are methods for producing Newick trees
where samples are clustered using the UPGMA (Un-
weighted Pair Group Method with Arithmetic Mean). The
annotation is done interactively by first uploading the tree
into the iTOL tree viewer and then adding prepared plain
text annotation files on top of the tree. We advise users to
get an overview of different videos, tutorials, and functions
available at the iTOL site to understand the details
involved in the annotation process.

Application
Reproducible case study
Here we use a case study to demonstrate step-by-step
how to use iMAP to analyze microbiome data. We use a
dataset from a published microbiome study to demon-
strate the implementation of the iMAP pipeline. Using
published data enables users to see the added value, such

as the metadata profiling, preprocessing of reads, ex-
tended visualization, and generation of the progress
report at every major analysis step. Review of these re-
ports facilitates making an informed decision on whether
to proceed or terminate the analysis and make more
changes to the experiment.

Preamble
In 2012 Schloss et al. [25] published a paper in Gut Mi-
crobes journal entitled “Stabilization of the murine gut
microbiome following weaning”. In this study, 360 fecal
samples were collected from 12 mice (6 female and 6
male) at 35 time points throughout the first year. Two
mock community samples were added in the analysis for
estimating the error rate. The mouse gut dataset was
chosen because it has been successfully used in several
studies for testing new protocols and workflows related
to microbiome data analysis [26, 27].

Raw data
The demultiplexed paired-end 16S rRNA gene reads gener-
ated using Illumina’s MiSeq platform were downloaded
from http://www.mothur.org/MiSeqDevelopmentData/Sta-
bilityNoMetaG.tar. These reads were the result of amplifi-
cation of region four (V4) of the 16S rRNA gene. Sample
metadata file describing the major features of the experi-
ment and the associated variables was manually prepared.
Mapping files, that link paired-end sequences with the sam-
ples and design files that linked sample identifiers to
individual experimental variables were extracted from the
metadata file in a format compatible with Mothur (Add-
itional file 1). Installation of software and download of
required reference databases was done automatically. All
required materials were placed in the designated folders
precisely as described in the guideline and verified using a
check file script.

Metadata profiling
Metadata profiling was done as part of exploratory ana-
lysis to specifically explore the experimental variables to
help in planning the downstream analysis and find out if
there were any issues such as missing data. The sample
identifiers were inspected and uniformly coded to facili-
tate sorting across multiple analytical platforms and for
better visualization and uniform labeling of the axes.

Sequence pre-processing and quality control
Read pre-preprocessing included (i) general inspection
using seqkit [1] software to provide basic descriptive in-
formation about the reads including data type (DNA or
RNA), read depth and read length, (ii) assessing the base
call quality using FastQC [2] software, and (iii) trimming
and filtering poor reads and removing any retained phiX
control reads using BBDuk tool from BBMap [28]
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package. The quality of altered reads was again verified
by re-running the FastQC software. The FastQC output
was summarized using MultiQC [29] software.

Sequence processing and classification
This case study uses mothur-based functions to process
and classify the representative sequences. The iMAP code
also includes a batch script for analyzing the sequences
using QIIME2. Preprocessed paired-end reads were merged
into more extended sequences then screened to match the
targeted V4 region of the 16S rRNA gene. The pipeline
generated the representative sequences and aligned them to
the SILVA-seed v132 rRNA reference alignments [30] to
find the closest candidates. Post-alignment quality control
involved repeating the screening and filtering the output by
length and removal of poor alignments and chimeric se-
quences. All non-chimeric sequences were searched against
SILVA-seed classifiers at 80% identity using a k-nearest
neighbor consensus and Wang approach precisely as
described in the Mothur MiSeq SOP tutorial [24].
Additional quality control was done automatically using

‘remove.lineage’ function run within mothur to remove
any non-bacterial or unknown sequences before further
analysis. Briefly, by default, the pipeline classified the
sequences using SILVA seed taxonomy classifier. If the
classifier did not find a match in the database, it grouped
the unclassified sequences into ‘unknown’ category. The
iMAP code was set to remove all undesirable matches in-
cluding the unknown and any sequences classified to non-
bacterial lineages such as eukaryotes, chloroplast, mito-
chondria, viruses, viroid and archaea. The sequencing
error rate was then estimated using sequences from the
mock community. Finally, after error rate estimation all
mock sequences were removed from further analysis.

OTU clustering and conserved taxonomy assignment
We used a combination of phylotype, OTU-based and
phylogeny methods to assign conserved taxonomy to
OTUs. Briefly, in phylotype method, the sequences were
binned into known phylotypes up to genus level. In the
OTU-based method, all sequences were binned into clus-
ters of OTUs based on their similarity at ≥97% identity,
and precision and FDR were calculated using the opticlust
algorithm, a default mothur function for assigning OTUs.
The phylogeny method was used to generate a tree that
displayed consensus taxonomy for each node. The output
from phylotype, OTU-based and phylogeny methods was
manually reviewed, de-duplicated and integrated to form
a complete OTU taxonomy output.

Data transformation and preliminary analysis
We prepared data structures for further analysis and
visualization with R packages executed via RStudio IDE. In
summary, the preliminary analysis included measuring

diversity in community membership using Jaccard dissimi-
larity coefficients based on the observed and estimated
richness. The diversity in community structure across
groups was determined using Bray-Curtis dissimilarity coef-
ficients. The Bray-Curtis dissimilarity coefficients were fur-
ther analyzed using ordination methods to get a deeper
insight into the sample-species relationships. Included in
the ordination-based analysis were: (i) Principal Compo-
nent Analysis (PCA), (ii) Principal Coordinate Analysis
(PCoA or MDS) and (iii) Non-Metric Dimensional Scaling
(NMDS). Scree plot was used to find the best number of
axes that explained variation seen on PCA plots while
PCoA loadings and goodness function in vegan [31] was
used to generate values for plotting observations into ordin-
ation space. Shepard plot was used to compare observa-
tions from original dissimilarities, ordination distances and
fitted values in NMDS.

Phylogenetic annotation
Phylogenetic annotation was done using iTOL tree viewer
[24] interactively. To see how the samples clustered to-
gether we uploaded mothur-based Newick tree generated
from the Bray-Curtis dissimilarity distances into the iTOL
tree viewer. We then added on top of the tree three iTOL-
compatible annotation files prepared manually to specific-
ally include selected output, including species richness,
diversity and relative abundances at phylum-level.

Results
Metadata profiling
Preliminary analysis of the metadata (Additional file 1:
Sheet 1) was done to explore the experimental variables
and find out any inconsistency or missing values. The re-
sults were automatically summarized into a web-based
progress report 1 (Additional file 2). The main variables
studied were sex (female and male), time range (early and
late) grouped based on days-post-weaning (DPW) (Fig. 2).
Reviewing the report enabled us to inspect the input data,
find the inconsistency in sample coding, and missing data.
Before further analysis, the sample identifiers were uni-
formly re-coded to six figures, e.g., F3D1, F4D11, M4D145
to F3D001, F4D011, M4D145, respectively. In the subse-
quent analyses, we defined the numeric categoric variables
(DPW) as factors and coded it uniformly as shown in
DayID column in the metadata file (Table 1).

Read pre-processing and quality control
Pre-processing results were automatically summarized
into a web-based progress report 2 (Additional file 3).
The whole dataset contained 3,634,461 paired-end reads.
The original FastQC results showed a minimum Phred
score (Q) near 10 and trimming poor quality reads at
the default settings (Q = 25) and removal of phiX con-
taminations resulted into high quality reads (Fig. 3).
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Distribution of changes was visualized using boxplots,
density plots and histogram plots (Fig. 4). The difference
between the original and pre-processed reads was very
small, barely visible in the distribution plots. Only 2692
(0.07%) poor-quality reads were identified in each for-
ward and reverse read (Table 2) indicating that over
99.9% of the reads qualified for downstream analysis.

Sequence processing and quality control
The sequence processing and taxonomy assignment re-
sults were automatically summarized into a web-based
progress report 3 (Additional file 4). This process in-
volved merging 3,631,769 high-quality read pairs to form
much longer sequences that were then screened based
on their length. Merging the forward and reverse reads

Fig. 2 Frequency of categorical variables. The sex and time variables contain two levels each. The days post weaning (DPW) variable contains 35
levels representing data points where D stands for the day the data was collected followed by a numeric value specifying the day number within
a year, starting from 0 to 364

Table 1 Descriptive statistics of the metadata

Variable q_zeros p_zeros q_na p_na q_inf p_inf type unique

SampleID 0 0.00 0 0 0 0 character 360

Group 0 0.00 0 0 0 0 character 360

Sex 0 0.00 0 0 0 0 character 2

Time 0 0.00 0 0 0 0 character 2

DPW 12 3.33 0 0 0 0 integer 35

DayID 0 0.00 0 0 0 0 character 35

Description 0 0.00 0 0 0 0 character 1

Key: q_zeros quantity of missing data, p_zeros percentage of missing data, q_na quantity of NA, p_na percentage of NA, q_inf quantity of infinite values, p_inf
percentage of infinity values, type factor, character, integer or numeric, unique frequency of the values
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resulted in sequences with 250 nucleotides (Fig. 5a). The
250-nucleotide sequence length is perfectly in-line with
the targeted V4 region of the 16S rRNA gene. Most of
the overlap fragments were 150 nucleotide long (Fig. 5b)
and had mostly zero mismatches (Fig. 5c). Representative
sequences (non-redundant) were then searched against
SILVA rRNA reference alignments [13] to find the closest
16S rRNA gene candidates for downstream analysis. The
query length (Fig. 5d) and alignment length (Fig. 5e)
showed a high percent identity mostly around 90 and 100%
identity (Fig. 5f). Post-alignment quality control which in-
volved removing poor alignments and chimeric sequences
yielded 2,934,726 clean sequences for downstream analysis.

Sequence classification
All 2,934,726 non-chimeric sequences were searched
against Mothur-formatted SILVA-bacterial classifiers at 80%
identity using a k-nearest neighbor consensus and Wang
approach as described [20, 21]. The error rate estimated
after removing any remaining non-bacterial sequences was
0.00047 (0.047%). Removal of mock community finalizes
sequence processing and quality control. Tabular and

graphical representation showed a slight alteration of the
number of processed sequences (Table 3, Fig. 6).

OTU clustering and taxonomy assignment
OTU and taxonomy results including preliminary ana-
lysis were automatically summarized into a web-based
progress report 4 (Additional file 5). Clustering of 2,920,
782 clean sequences into OTUs and assigning taxonomy
names was done using a combination of phylotype,
OTU-based and phylogeny methods as described in
mothur platform [32, 33]. Taxonomy assignment in
OTU-based method is by default optimized using opti-
clust algorithm [34]. This algorithm yielded high-quality
results with high precision and low FDR ≤ 0.002 (Table 4)
.

OTU abundance and preliminary analysis
The phylotype method yielded 197 OTUs at genus level
while 11,257 OTU clusters were generated by the OTU-
based method at 97% identity. The phylogeny method
generated 58,929 tree nodes which were taxonomically
classified at 97% identity. As part of reviewing the

Fig. 3 Summary of FastQC quality scores of paired-end reads from 360 samples. The number of reads with average quality scores before (a) and
after trimming at Q25 and removal of phiX contamination (b)
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Fig. 4 Distribution of pre-processed reads. The figure displays jittered boxplots (a, b), stacked density plots (c, d), and stacked histograms (e, f) of
the forward reads. All plots give a summary of number of reads split by experimental variables; sex (male and female: a, c, e) and time (early and
late: b, d, f). The legend on top of the figure shows the QC variables where Original_R1 indicates the forward reads before preprocessing,
TrimQ25_R1 shows the forward after trimming at 25 Phred score, and NophiX_R2 shows the reverse reads after removing phiX contamination.
Adding jitter on top of the boxplots made the variables more insightful. The line that divides the box plots into two parts and the dotted line on
density plots and histograms represents the median of the data

Table 2 Descriptive statistics of the pre-processed reads and total count from all samples

Statistics Original_R1 TrimQ25_R1 NophiX_R1 Original_R2 TrimQ25_R2 NophiX_R2

Min. 14 14 14 14 14 14

1st Qu. 5368 5365 5365 5368 5365 5365

Median 8001 7996 7996 8001 7996 7996

Mean 10,096 10,089 10,088 10,096 10,089 10,088

3rd Qu. 13,636 13,630 13,630 13,636 13,630 13,630

Max. 40,113 40,077 40,077 40,113 40,077 40,077

Total reads 3,634,461 3,631,940 3,631,769 3,634,461 3,631,940 3,631,769
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intermediate results, we compared the taxonomy results
across the three classification methods. A high redun-
dancy rate was revealed where different sequences were
assigned to same lineages at different percent identity,
ranging from 97 to 100%, and had significantly inflated
the number of OTUs, particularly in the OTU-based
and phylogeny methods. We used the interactive Venn
diagram viewer [35, 36] to show all possible logical rela-
tionships between the three classification methods.
Briefly, the list of lineages or the taxa names was
uploaded as input. The output was a tabulated textual
output indicating the taxonomy lineages or taxon
names that were in each intersection or unique to a
specific method. Additionally, a graphical output show-
ing the number of elements in each method in the form
of symmetric Venn diagrams was generated (Table 5,
Fig. 7).

Alpha diversity analysis
Species accumulation
The number of new species added as a function of sites
sampling effort was determined using four different ac-
cumulator functions as described in the vegan package
[31], i.e. exact, random, collector and rarefaction (Fig. 8).
Typically, the exact, random, and rarefaction methods
calculate standard error bars which can guide investi-
gators to determine which one to choose. Addition-
ally, we used the iNEXT package [37], which enabled
us to demonstrate the plotting of rarefaction and ex-
trapolation of species diversity based on sample-size
and sample coverage (see details in Additional file 5).

Species richness and diversity
Estimated and observed species richness were deter-
mined using Chao and Sobs calculators, respectively

Fig. 5 Features of the assembled and aligned sequences. Merging the forward and reverse reads resulted in sequences with 250 nucleotides (a).
The 250-nucleotide sequence length is perfectly in-line with the targeted V4 region of the 16S rRNA gene. Most of the overlap fragments were 150
nucleotides long (b) and had zero mismatches (c). The query length (d) and alignment length (e) showed a high percent identity at 90 and 100% (f)

Table 3 Descriptive statistics of processed sequences

Statistics Original Screened Aligned Denoised NonChimeric BacteriaOnly NoMock

Minimum 14 8 6 6 6 6 6

1st Quantile 5365 4689 4658 4658 4336 4328 4328

Median 7996 7052 7012 7012 6590 6578 6578

Mean 10,088 8819 8767 8767 8119 8113 8113

3rd Quantile 13,630 11,937 11,870 11,870 10,740 10,733 10,733

Maximum 40,077 34,866 34,590 34,590 32,161 32,156 32,156

Total reads 3,631,769 3,174,898 3,156,040 3,156,040 2,922,704 2,920,782 2,920,782
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(Fig. 9). Three diversity indices including inverse Simp-
son, Shannon, and phylo-diversity were used to account
for the abundance and evenness of species present in
the samples.

Beta diversity analysis
Clustering and ordination projections
The difference in microbial community composition
across the groups was measured using the raw abundance
data and the Bray-Curtis (dis)similarity coefficients. Clus-
tering and ordination projection methods including parti-
tion around medoids (PAM) [38], principal component
analysis (PCA), principal coordinate analysis (PCoA) and
non-metric multidimensional scaling (NMDS) showed

Fig. 6 Distribution of assembled sequences after quality control. The bar plots a show the maximum values in each variable without much
details. The jitter boxplots b clearly added more insights, showing the distribution, midpoint and outliers. The stacked density plots (c) and the
stacked histograms (d) show the skewness of the sequence depth. Histograms separated the differences better than the other plots. Dotted lines
indicate mean values of the density plots and histograms and marginal rugs are at the bottom. A slight shift of the mean line to the left is
probably due to the removal of poorly aligned sequences at the denoising step. Legend key: Screened = sequences screened by length (default:
min = 100, max = 300), Aligned = sequences aligned to a reference (default = SILVA alignments), Denoised = good alignments, only 1 mismatch
per 100 nucleotides, NonChimeric = non chimeric sequences, BacteriaOnly = bacterial sequences only, NoMock = sequences after removing
mock community

Table 4 Statistical parameters calculated in OTU-based
approach

Parameter Value

Cutoff 0.2

Sensitivity 0.998

Specificity 0.999

PPV 0.998

NPV 0.999

Accuracy 0.999

MCC 0.997

F1 score 0.998
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similar grouping (Additional file 5). A few components ex-
plained the variability of dissimilarity coefficients across
the samples in all methods. Silhouette [39] graphical rep-
resentation validated the consistency within PAM clusters
(Fig. 10). Scree plots and data loadings were used to show
components that best explained the variation in PCA and
PCoA, respectively. Shepard or stress plot confirmed
linearity between the original and reduced dimensions in
NMDS (see details in Additional file 5).

Phylogenetic relationship of samples
Bray-Curtis-based Newick tree was uploaded into iTOL
(Interactive Tree Of Life) viewer [24] to interactively
display unrooted, circular and regular cladograms or phy-
lograms (Fig. 11). Annotation of circular and regular clad-
ograms with various datasets including species richness,
diversity indices and relative abundances at phylum-level
enabled us to see the diversity across samples.

Discussion
We developed iMAP, a CLI-based pipeline that stream-
lines different functionalities from published tools, to
collectively unleash the hidden biological knowledge
from marker-based microbiome data. The development
of this pipeline is guided by the need for a tool that is ef-
ficiently executed by a novice user to investigate bacter-
ial communities represented in diverse samples. The
iMAP pipeline is integrated with custom functions that
generate reports progressively to facilitate RAYG (re-
view-as-you-go), a new approach associated with the
pipeline to enable the investigators to review the inter-
mediate output graphically and correct any obvious er-
rors that may lead to wrong or misleading conclusions.
The iMAP pipeline supports a wide range of funda-

mental analyses for profiling microbial communities
present in an environmental sample. Currently, the pipe-
line operates on demultiplexed data generated by the
Illumina platform and performs metadata profiling,

Table 5 OTU abundance observed in three methods

Method Lineages Unique lineages Unique terms Unique taxon

Phylum Class Order Family Genus

Phylotype 197 197 197 15 24 52 88 139

OTU-based 11,257 197 197 15 24 52 88 139

Phylogeny 58,929 423 162 10 14 32 54 76

Fig. 7 Venn diagram and taxon term representation. Visual representation of taxon terms highlighted the most abundant taxon based on the
frequency of being assigned to an OTU or tree nodes. Muribaculaceae was the most frequently assigned family and Muribaculaceae_ge was the
dominating genus assigned to most sequences
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tunable quality filtering, sequence processing, and clas-
sification before clustering the representative sequences
into OTUs and conserved taxonomy assignment. The
idea of implementing RAYG approach at every major
step gives the investigators an opportunity of taking
care of issues that could result in spurious OTUs and
misleading conclusions.
The output generated from the major analysis steps

described in the workflow (Fig. 1) is further transformed
to simplify exploratory data analysis. We know that

some of the intermediate output can be very large to ex-
plore but, in such a situation, iMAP uses custom scripts
to extract vital information, then transform it for apply-
ing in diverse visualization modules. Reproducibility of
the iMAP pipeline is ensured by including in the reposi-
tory the code used for bioinformatics analysis and some
custom R-based scripts for generating publication-ready
images commonly reported in microbiome-related
manuscripts. Users may want to explore the bioinfor-
matics analysis results using methods of their choice or

Fig. 8 Species accumulation curves. Four methods were compared including exact (magenta), random (green), rarefaction (orange) and collector (blue).
The standard deviation (except in collector curves) is indicated by the vertical lines which are highly condensed due to the large dataset (360 samples)
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Fig. 9 Species richness and diversity. The species richness and diversity values are displayed using line plots (left panel), the scatter diagrams with
correlation coefficients (middle panel), and the jittered notched boxplots (right panel). The observed species richness (a, b, c) and the estimated
species richness (d, e, f) show similar pattern. The inverse Simpson diversity index (g, h, i) and the Shannon diversity index (j, k, l) are plotted
against the species richness. Both indices show similar pattern in estimating number of observed species in a sample. The Phylogenetic diversity
index (m, n, o) shows a better direct proportion with the species richness. The figure clearly reveals the differences observed in species
abundances when comparing the main experimental variables including sex (orange) and time post weaning (green)
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Fig. 10 (See legend on next page.)
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may modify provided scripts to best describe the differ-
ent types of data being analyzed. Examples of
publication-ready images are presented in each pro-
gress report (Additional files 2, 3, 4 and 5). Choice of
which type of visualization to use is entirely user-
dependent and could also depend on how much detail
is required.
Post-classification annotation emphasized in this manu-

script aim at making the results more accurate. A good
example is the number of OTUs identified using different
methods where a large was due to the high redundancy
rate. Frequently, observed OTU abundance is published
unfiltered. While this is not surprising, it can result in
misleading conclusions. The fact that there could be some
species that contribute disproportionately to the commu-
nity, it would be sensible to stratify the analyses or
performing intensive data annotation afterward. In micro-
biome data analysis it is normal to see exceptionally

abundant species analyzed in the same way as those that
are extremely rare. The situation is even worse if the high
abundance values are influenced by having lots of redun-
dant values. Adopting focused annotation is the key to
achieving appropriate conclusions.
The preliminary analysis workflow included in the

pipeline provides several methods for helping users in
assessing diversity and statistical comparisons of the var-
iables studied. Species accumulation and rarefaction, for
example, provide the best way that allows investigators
to figure out whether to continue sampling or whether
the data is not enough for drawing a valid conclusion or
for estimating normalized sample size for statistical
comparisons. Other methods such as heatmap, PAM
clustering, and phylogenetic analysis are integrated into
the pipeline to find out the relationship of the samples
and groups while ordination projections using multivari-
ate statistical techniques such as PCA, PCoA, and

(See figure on previous page.)
Fig. 10 PAM clustering, Silhouette analysis and visualization of clusters. The best number of clusters obtained by PAM clustering method using
scaled abundance data for the OTUs (A1), phylum (B1), class (C1), order (D1), family (E1), and genus (F1). Silhouette analysis validates the
consistency within PAM clusters where scores with a large Si width (almost 1) indicates high-quality clustering, a small Si width (around 0) means
that the observation lies between two clusters while negative values are outliers. The right panel shows the exploratory ordination of the samples
onto two axes (Dim1 vs Dim2) based on the abundance of OTUs (A2), phylum (B2), class (C2), order (D2), family (E2), and genus (F2). Similar
samples are close to each other, and dissimilar samples are farther from each other

A

B

C D

Fig. 11 Phylogenetic relationship and annotation of samples grouped by sex variable. The circular phylograms (a), unrooted cladogram (b), and
the rectangular phylograms (c) display the relationships of the 360 samples used in the case study. Female (red) and male (blue) linked with
sequence counts showing the proportion of the number of classified (green) and unclassified (red) displayed on a pie chart followed by the
phyla abundance (heatmap) and species richness bar chart showing the observed (green) and estimated (maroon) richness. A portion of the tree
(d) is enlarged to show some details
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NMDS can be used to identify factors explaining differ-
ences among microbial communities. We also provide
statistical methods recommended in the mothur plat-
form to compare the experimental variables. AMOVA,
HOMOVA, and ANOSIM are among the methods that
use P-values to determine if the observed differences are
statistically significant or are by chance. The Metastats
program [40] can be used for detecting differentially
abundant microbial communities while the Kruskal–
Wallis one-way ANOVA is commonly used to determine
if there are statistically significant differences between
two or more groups. The mothur-based lefse command
modeled after the LEfSe program [41] is an excellent
tool for biomarker discovery while the weighted and un-
weighted UniFrac [42] can be used to compare the sam-
ples using their phylogenetic information.
The iMAP pipeline has been successfully tested in-

house using multiple datasets from our bushmeat project
(Project # HDTRA1–16-1-0005). Currently, it is being
used to analyze 186 bushmeat samples to characterize the
spectrum of microbes present in market bushmeat in
Tanzania. The analysis will integrate three groups of vari-
ables including three ecosystems (Serengeti, Ruaha, and
Selous), two seasons (wet and dry) and two conditions
(fresh and processed).

Conclusions
The iMAP pipeline wraps bioinformatics and visualization
tool for generating high-quality user-reviewed microbiome
data analysis output. The pipeline integrates read prepro-
cessing, quality control, sequence classification, and OTU
taxonomy assignment workflows with data visualization
tools to produce high-quality output and diverse visuals
for better understanding of complex and multidimen-
sional microbiome data. It also integrates functions that
generate reports progressively, emphasizing on the RAYG
(review-as-you-go) approach, especially for the in-between
process output. Integrating the iMAP with RAYG ap-
proach enables the investigators to discover and correct
any systematic errors that could lead to misleading con-
clusions. The multiple statistical methods incorporated in
the pipeline guide the investigators to make well-informed
decisions and predictions backed by data as well as gener-
ating data-driven hypotheses. We believe that users will
find this tool broadly useful and adaptable to their micro-
biome data analysis needs.

Availability and requirements
Project name: e.g. iMAP
Project home page: https://github.com/tmbuza/iMAP
Operating system(s): Platform independent if using the

associated Docker images. Mac OS X or Linux CLI if
run outside Docker images.

Programming language: Bash, R 3.5, Perl, Python.
Other requirements: Mothur v1.42 or higher, QIIME2

v2019, Java JDK, Chrome, Firefox, and Safari web browser.
License: MIT
Any restrictions to use by non-academics: None.

Additional files

Additional file 1: Format of input files. Includes sample-metadata map-
ping (sheet 1), sample-read-file mapping in mothur-format (sheet2), and
sample-variable mapping (sheet 3, 4 and 5). (XLSX 69 kb)

Additional file 2: Metadata profiling report generated automatically by
the iMAP to provide a summary of the samples and the associated
metadata. This report is the initial step in the RAYG (review-as-go)
process. The report also displays the R-commands that demonstrates
how to reproduce the report. The pipeline is set to automatically save the
output in the “reports” folder as “report1_metadata_profiling.html”. (HTML
953 kb)

Additional file 3: Preprocessing report generated automatically by the
iMAP to provide a summary of quality control of the reads. The iMAP
pipeline automatically saved the output in the “reports” folder as
“report2_read_preprocessing.html”. (HTML 3463 kb)

Additional file 4: Sequence processing report generated automatically
by the iMAP to provide a summary of the output. The report
was automatically saved in the “reports” folder as
“report3_sequence_processing.html”. (HTML 4205 kb)

Additional file 5: Preliminary analysis report generated automatically
by the iMAP to provide a summary of conserved taxonomy assigned to
OTUs and the initial analysis of OTUs and taxa data. The preliminary
analysis report was automatically saved in the “reports” folder as
“report4_preliminary_analysis.html”. (HTML 20379 kb)
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