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Abstract: Optical monitors have proven their versatility into the studies of air quality in the workplace
and indoor environments. The current study aimed to perform a screening of the indoor environment
regarding the presence of various fractions of particulate matter (PM) and the specific thermal
microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic)
and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The
objectives were to assess the potential exposure of students and academic personnel to PM and
to observe the performances of various sensors and monitors (particle counter, PM monitors, and
indoor microclimate sensors). PM1 ranged between 29 and 41 µg m−3 and PM10 ranged between
30 and 42 µg m−3. It was observed that the particles belonged mostly to fine and submicrometric
fractions in acceptable thermal environments according to the PPD and PMV indices. The particle
counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was
estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may
influence the indoor microclimate and PM levels but additional experiments should be performed at
a finer scale.

Keywords: PM2.5; PM1; size segregated mass fractions; thermal microclimate; predicted mean vote
(PMV); predicted percentage of dissatisfied (PPD); particle counter; mask wearing; acute dose rate
(ADR)

1. Introduction

Particulate matter (PM) represents small particles that range in size from less than
1 micron to about 100 microns [1]. These particles remain suspended in the environment for
a long time. When they are inhaled in various microenvironments, they penetrate deep into
the lungs, having the direct effect of increasing morbidity in the exposed individuals [2].
These particles are also responsible for significant economic losses due to their corrosive
properties and adhesion to the surfaces on which they eventually settle down [3].

A particle diameter of fewer than 10 microns was considered to protect human health
because it can enter the thoracic cavity through respiration. Inhalable particles larger
than 10 microns in diameter have a much lower potential effect on health. In the United
States, this standard entered into force on 31 July 1987 [4]. Under the Air Quality Directive
2008/EC/50, the European Union has set limit values for outdoor particulate matter (PM10
and PM2.5) regarding the protection of human health, (https://eur-lex.europa.eu/eli/dir/
2008/50/oj, accessed on 5 June 2021).

The main adverse effects on the health of the population are generated by particles
with an aerodynamic diameter of fewer than 10 micrometers, which pass through the
nose and throat, reaching the lung alveoli causing inflammation and intoxication [5]. The
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most affected vulnerable groups are people with cardiovascular and respiratory diseases,
children, the elders, and asthmatics [6]. Long-term exposure to a constant concentration of
suspended particles can cause cancer and premature death [7,8].

Young people inhale a higher amount of air, and depending on its load, it results
in a more pronounced exposure to the concentrations of air pollutants [9]. It has been
demonstrated that PM aggravates the symptoms of asthma, manifested by breathing
difficulties, cough, chest pain, etc. [10]. More attention should be given for the fractions
lower than 4 µm considered as a threshold for the respirable fraction [11].

PM is a potential carrier of allergens or microorganisms, including viruses, which
are unable to survive separately. Studies have found that PM1 and PM2.5 are virus-
carrying particles that can be inhaled into the lower respiratory tract triggering an immune
response and increasing secretions and expressions of inflammatory cytokines [12]. Recent
epidemiological studies pointed out that the smaller the particle diameter, the higher
the possibility of deeper penetration into the lungs up to the alveolar level [13,14]. A
study in Belgium involving measurements of a large number of indoor and outdoor air
pollutants at 30 elementary schools (90 classrooms total) demonstrated that concentrations
of many chemicals including various fractions of PM were much higher indoors than
outdoors. It also showed high variability in concentrations between classrooms [15]. A
recent study found that human walking induced indoor PM2.5 resuspension leads to an
increase in indoor particulate matter requiring regular cleaning of the indoor dust to reduce
the secondary pollution caused by indoor activities [16]. Within the university indoor
environments, the main source of a PM is related to the resuspension of particles because
of mobility of occupants and the outdoor concentrations enter indoors and remain inside
the closed environment [17]. In these microenvironments, the students and academic
personnel spend several hours being exposed to the concentrations of various air pollutants
including PM. Thus, it is important to know the levels of exposure by using reliable sensors,
methodology, and modeling algorithms [18].

The reference methods for measuring the mass concentration of suspended particulate
matter (e.g., EN 12341:2014) are not capable of producing real-time data. EU regulations
allow the use of equivalent methods if the equivalence of methods complies with the
standards. It establishes a procedure for quantifying the correspondence between reference
methods and equivalent methods through a series of parallel field measurements (CEN EN
16450:2017) [19].

The aim is for equivalent instruments to provide daily data with a lower measurement
uncertainty than required by the ambient air quality directive (±25% with a 95% confidence
level) at concentrations close to the limit value. Gravimetric samplers with filters are
mainly based on operators for their maintenance and operation, especially if the filters are
changed daily and the subsequent weighing of the filters is necessary. Quality assurance of
measurements must be strictly applied, due to the additional ways in which errors occur
(e.g., handling of samples, transport, storage, and weighing). In addition, there may be
delays (sometimes several days) between the sampling stage and the reporting stage for
the filters to be weighed in a laboratory with special air conditioning conditions. This is
detrimental to the updating of information for the protection of public health and is contrary
to the reporting requirements of the directives in force [20]. Furthermore, the utilization of
gravimetric samplers in indoor studies is difficult because of the information is required
during the occupation of the analyzed room, which assumes various time intervals.

To overcome these shortcomings of the reference method, numerous PM10 and PM2.5
particle-measuring instruments (TEOM analyzer, beta attenuation monitor, optical devices,
etc.) and later on, a series of low cost sensors have been developed [21]. Some of the
existent equipment can also be used to measure the submicrometric fraction by changing
the impactor or cyclone (particle pre-selection devices according to the particle diameter)
or use a cascade impactor for several fractions [22].

Particle analyzers using optical methods are based on estimating the interaction
between suspended particles, on the one hand, and visible or infrared spectrum radiation
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or a laser beam, on the other. Nephelometric systems that operate based on a short closed
path to propagate the emitted radiation measure the light scattering responsible for most
of the total amount of light extinction. The advantage of these instruments is that a single
device can simultaneously monitor the fine particles—PM10 and PM2.5, but also the
submicrometric ones (PM1) [23]. Among other applications in which optical monitors
have proven their versatility are the studies of air quality in the workplace and indoor
environments [24].

The aim of the study was to perform a screening of the indoor environment regarding
the presence of various fractions of particulate matter (PM) and specific thermal micro-
climate in a classroom occupied with students in March 2019 (before COVID pandemic)
and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania.
The research hypothesis presumed differences between the groups of students on PM
load and indoor microclimate in the university classroom due to the number of occupants
and the use of masks. The objectives were to further assess the potential exposure of
students and academic personnel to PM and to observe the performances of various sen-
sors and monitors (particle counter, PM monitors, and indoor microclimate sensors). The
results are expected to provide contextual data for environmental exposure assessment
and useful insights about the influence of wearing masks on the indoor microclimate
modifications, and give perspectives for the future of sensors that can support medical and
occupational health and safety research in indoor environments. Furthermore, the study
provides several insights regarding the impact of COVID-19 safety regulations on indoor
air quality in a university classroom considering human patterns in view of developing
proper mitigation strategies.

2. Materials and Methods

The experiments were performed at different times in the same classroom located at
the 2nd floor of a fourth story building from the campus, which was finalized in 2015 with
a modern building envelope respecting the standards. It is watertight and wind speed or
temperature differences have less impact on the indoor measurements. The orientation of
the classroom is south-east as seen on the topographic map (Figure S1). The classroom is
equipped with a whiteboard with non-permanent markers, copy machine, video-projector,
and three desktop computers that may contribute to the emissions and resuspension of
PM (Figure S2). The dimensions of the classroom are typical for the campus in agreement
with the regulations contained in the Romanian Civil Code. Consequently, the results can
provide a general overview of the indoor conditions and a starting point for more detailed
setups for assessing the health risks of students exposed to PM and other compounds. This
will hopefully allow a better understanding of the factors and impacts related to indoor
pollution during the educational process.

2.1. Monitoring Instrumentation

The PM measurements have been performed using a calibrated optical monitoring
system and a particle counter. The TSI DustTrakTM DRX 8533 EP monitor is an optical
instrument that simultaneously measures in real-time the size segregated mass fraction
concentrations i.e., PM1, PM2.5, PM4, PM10, and TPM over 0.001–150 mg/m3 as concen-
tration range [25]. Particle count in the 0.3–20 µm range was achieved using an optical
Lighthouse 3016 IAQ particle counter [26]. An HD32.3 portable datalogger from Delta
OHM equipped with specific sensors for indoor microclimate analysis [27] was deployed
in a corner opposite to the windows and accessing door in the same position as the PM
monitors (Figure A1).

Thermal microclimate was assessed by the following indices: WBGT Index, PMV
Index (Predicted Mean Vote), and PPD (Predicted Percentage of Dissatisfied) provided in the
DeltaLog 10 application (Figures A2 and A3). The Scharlau Index was computed to estimate
the thermal discomfort.
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The monitoring of outdoor concentrations was performed continuously using optical
monitors located at the campus of the university (Figure S3). Concomitantly, outdoor
temperature, relative humidity, and wind characteristics were recorded using a Delta-T
Devices weather station (Figures S4 and S5). Figure S6 shows the time series of the recorded
outdoor concentrations of PM2.5 and PM1 from which data were retrieved to compute
average concentrations for the corresponding periods when the indoor measurements have
been performed.

Furthermore, the reference indoor concentration of PM2.5 in the classroom without
students and with windows and door closed was established for 3 h at approximately
11 µg m−3—coeff. of var. = 11.2% (e.g., Figure S7).

2.2. Physiological Characteristics of the Students and Classroom Description

The interpretation of data required recording the classroom occupation (number of
students, age and gender distribution, and physical activity levels of the occupants) during
measurements (Table 1). In addition, all actions on ventilation and heating were recorded.
Functional probes were retrieved using a questionnaire completed by each student with
his consent to participate in the study.

Indirect estimation of the physiological probes of students has been considered based
on the respiratory characteristics such as minute ventilation (VE) and alveolar minute
ventilation (AVE). Minute ventilation is the amount of air breathed per minute equaling
approximately 6 L (normal rate of minute ventilation is 5 to 8 L/min). For example, tidal
volumes of 500 to 600 mL at 12–14 breaths/min provide VE between 6.0 and 8.4 L. VE
can double with light exercise, and it can exceed 40 L/min with heavy exercise. Around
2 L remain in the physiological dead space (VD) consisting of the upper airway and the
mouth, and 4 L participate in gas exchange in the millions of alveoli constituting the
alveolar ventilation [28]. Two respiratory rates have been taken into account considering
a sedentary activity i.e., f1 = 10–11 breathes/min without a mask in 2019 and f2 = 12–14
breathes/min for the groups wearing a mask in 2021. Equations and used values are
presented in Table 1.

It was considered that air movement at the level of the classroom’s occupants must be
at a temperature and velocity to ensure proper comfort. Likewise, the natural ventilation
should be controllable to allow users to adjust the ventilation rate as required. Adjustments
were achieved by the appropriate use of windows and a door. The classroom has a volume
of 150 m3 and only natural ventilation was used by opening the windows at every 60 min
for 5 min in the interval of three hours of practical works. The volume per person and the
nominal occupancy are presented in Table 1.

Table 1. Setup of the experiment to determine the PM load and thermal microclimate in a university
classroom in the presence of various groups of students without masks (2019) and with disposable
face masks (2021).

Indicator Descriptor

Location Valahia University Campus, Targoviste, Romania—Classroom A227

Study period 3 h monitoring for each group in different days of March 2019 and in March
2021 (with anti-COVID protection measures)

Groups of
students

2019—2 groups
A (n = 17)—age (18–38); 13 females and 4 males.
B (n = 17)—age (19–38); 14 females and 3 males.
2021—2 groups
C (n = 9)—age (19–30); 9 females.
D (n = 9)—age (19–43); 7 females and 2 males.
Total = 52 students + 1 professor which was present in all groups (male)
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Table 1. Cont.

Indicator Descriptor

Fields in the
observation
sheet completed
by each student

age; weight; height; medication during the trial; presence of respiratory
symptoms; physical effort before entering in the classroom; body temperature
before entering the classroom.

Classroom Surface (m2) = 50; Height (m) = 3; Volume (m3) = 150;
Volume per person (m3/person)
A-8.33
B-8.33
C-15
D-15
Nominal occupancy (person/m2)
A-0.36
B-0.36
C-0.2
D-0.2

Respiratory
characteristics

VE—minute ventilation (the total volume of gas entering or leaving the lungs
per minute-L/min).
VE = VT × f (where VT—tidal volume; f—respiratory rate).
AVE—alveolar minute ventilation (L/min);
AVE = VE − VD (where VD—physiological dead space);
VD = 1 mL/pound IBW (where 1 pound = 0.45359237 kg; IBW—ideal
body weight)
IBW estimated using the formula of Devine (1974)
https://www.calculator.net/ideal-weight-calculator.html, accessed on
5 June 2021
VT = 5–7 mL/kg
f1 = 10–11 breathes/min considering a sedentary activity without mask
f2 = 12–14 breathes/min considering a sedentary activity wearing mask

2.3. Analysis, Modeling, and Statistics

To obtain insights into the exchange rate of the air and other exogenous parameters
that are influencing the indoor levels of PM2.5, a mass balance equation was considered
using the parameters provided in [29], which monitored outdoor average concentrations
of PM2.5 during indoor measurements and no filtration conditions:

Ci = Co
P·λV

λV + λD + λF
+

E
(λV + λD + λF)V

where:

Ci—concentration of PM2.5 (µg m−3);
Co—ambient air concentration of PM2.5 (µg m−3) (according to the recorded average for
each group: 69, 40, 25, and 32 µg m−3);
P—penetration factor (unitless) = 0.97;
λV—infiltration ventilation rate (h−1) = 0.53;
λD—particle removal rate by deposition (h−1) = 0.39;
λF—particle removal rate by filtration (h−1) = 0—no filtration;
E—PM2.5 total emissions from indoor sources (µg h−1) = 2.62;
V—room volume (m3) = 150.

Variations of this model were successfully used to assess the potential inhaled dose
rate of particles [30] including SARS-CoV-2 virus [31], and the parametric analysis to
examine indoor PM2.5 concentrations according to flow rates and filter efficiency under
various outdoor concentrations and indoor levels [32].

https://www.calculator.net/ideal-weight-calculator.html
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In the current work, ExpoFIRST version 2.0, which is a standalone tool available
for download from the Exposure Factors module of the EPA-Expo-Box website (https:
//cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=322489, accessed on 5 June 2021), was
considered for performing an exposure assessment by entering data in five tabs to estimate
inhalation ADD (Figure A4). In Scenario Description tab, the route of exposure, dose
metric, and exposure descriptor were described, and then, in tab 2: Media & Receptors, the
inhalation rate type (e.g., long-term (daily), short-term (activity-specific); intensity level
when short-term is selected), location/activity, and receptor characteristics (gender and
age bins), respectively. The next tabs are tab 3: Contaminants for entering chemical-specific
information, and tab 4: Exposure Factors that lists each receptor group based on age.

Descriptive statistics (average, coefficient of variation, skewness, and kurtosis) pro-
vided the main features of the dataset variability. Normal distribution was tested based on
Sig. value results from two tests of normality (Kolmogorov–Smirnov and Shapiro–Wilk
tests). A non-parametric Mann–Whitney U test was used to compare the differences be-
tween two independent groups of unequal size [33] to test whether two samples (without
disposable masks and with masks) are likely to derive from the same population (H0: the
populations are equal versus H1: the populations are not equal). The test ranks all of the
dependent values and then uses the sum of the ranks for each group in the calculation of
the test statistic. Linear trendlines of PM time series were compared based on R2.

3. Results

The main results of this screening study were the characterization of PM load in
the classroom together with the thermal comfort and the estimation of the ventilation
parameters of the participating groups of students. These indicators will establish the
framework for a modeling approach for simulating the exposure of students and academic
personnel in the University’s classrooms.

3.1. Particulate Matter Load

The measurements performed in the classroom provided an overview of the PM load
in the presence of various groups of students. Table 2 presents the statistics of the PM
concentrations for various size fractions. PM1 ranged between 29 and 41 µg m−3 and
PM10 between 30 and 42 µg m−3. It was observed that the particles belonged mostly to
fine and submicrometric fractions, reaching a maximum value of 51 µg m−3 in Group D.
While analyzing the corresponding time series, a decrease of the PM concentration towards
the end of the lectures occurred both in A and B groups. PM levels remained constant in
Group C and D in which students wore disposable face masks (Figure 1).

The R2 of linear trendlines confirmed the decrease in A (R2 = 0.86) and B (R2 = 0.69)
groups and the constancy in C (R2 = 0.00) and D (R2 = 0.06) groups. Table 3 shows the
data collected by the particle counter, which correlates with the results regarding the mass
concentrations provided by the PM optical monitor. Most of the particles corresponded to
the 0.3, 0.5, and 1.0 micron classes. Groups C and D recorded preponderantly 0.3 micron
particles (7,006,334 and 5,097,065), while A and B in 0.5 microns category (6,183,560 and
6,013,148), respectively.

The mass balance approach provided approximations of the PM2.5 indoor concen-
tration based on outdoor levels and other factors. Table 4 presents a comparison between
modeled concentrations and the averaged values resulting from monitoring. While for
Group A there is an agreement between both values and partially for Group B, the concen-
trations recorded during pandemics showed higher indoor concentrations suggesting that
probably the rate of emissions from indoor sources could be higher. One potential cause
could be the use of disinfectants and hand sanitizers, but this assumption must be checked
through detailed experiments involving chemical speciation determination.

https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=322489
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=322489
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Table 2. Concentration of the size segregated mass fractions of particulate matter (µg m−3) recorded
in a classroom using a TSI DustTrakTM DRX 8533 EP monitor during 3 h of lecture in the presence of
students (Group A and B—without wearing masks; Group C and D—wearing disposal face masks).

PM Group A Group B Group C Group D

PM1 Average 36 30 29 41
PM1 Minimum 32 27 24 31
PM1 Maximum 45 33 34 51

Coeff. of var. 9.0 6.0 10.3 10.9
PM2.5 Average 37 30 29 41

PM2.5 Minimum 33 27 24 32
PM2.5 Maximum 45 33 34 52

Coeff. of var. 9.1 6.0 10.1 11.0
PM4 Average 37 31 30 41

PM4 Minimum 33 28 24 32
PM4 Maximum 45 34 35 52

Coeff. of var. 8.9 5.8 10.0 11.0
PM10 Average 38 31 30 42

PM10 Minimum 33 28 25 32
PM10 Maximum 46 35 36 53

Coeff. of var. 9.1 5.9 9.6 10.8
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−0.0002x + 30.3994 (R2 = 0.00); (d) Group D: y = 0.0214x + 39.407 (R2 = 0.06).
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Table 3. Particle counts and indoor microclimate recorded using the Lighthouse HH 3016 IAQ.

Size Fraction Units Group A Group B Group C Group D

0.3 micron (Counts) 3,453,673 3,584,492 7,006,334 5,097,065
0.5 micron (Counts) 6,183,560 6,013,148 676,944 4,368,051
1.0 micron (Counts) 349,388 371,017 240,909 416,673
2.5 micron (Counts) 10,564 23,055 88,378 75,916
5.0 micron (Counts) 2409 7736 30,054 38,044

10.0 micron (Counts) 405 551 1280 4250
Sample Time (s) 10,800 10,800 10,800 10,800

Sample Volume (m3) 0.510 0.510 0.510 0.510
Temperature (◦C) 26.0 25.7 22.4 24.2

Relative Humidity (%) 25.2 24.4 42.4 20.4

Table 4. Results of the mass balance approach to estimate the indoor concentrations of PM2.5 (µg m−3).

Group Monitored PM2.5
Outdoor Range

Average Outdoor
PM2.5 Concentration

(Co)

Indoor Modeled
Concentration (C)

Indoor Measured
Concentration

Required Outdoor
Concentration to Reach

Indoor Values

A 62–71 69 38.5 37 66
B 31–47 40 22.2 30 54
C 22–28 25 14.2 29 52
D 26–34 32 17.9 41 73

3.2. Thermal Comfort

The thermal comfort was estimated using a series of indices from which the most
precise one reflects the influence of the physical and physiological variables on the thermal
comfort i.e., PMV and PPD in relation to precise microclimatic conditions. Figure 2 shows
the monitoring of various temperature types required for the computation of thermal
comfort indices.
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Figure 2. Example of the raw time series recorded by the DeltaOHM indoor microclimate system
during the practical works of Group D (Tw—wet bulb temperature with natural ventilation; Tg—
globe thermometer temperature; Ta—ambient temperature; Pr—vapor pressure).

Table 5 summarizes the results for each group showing a better thermal environment
for groups C and D compared to the other two groups. PMV varied between 0.4 and
0.8, while PPD was between 9.2% and 16.4%. The A and B groups were characterized by
acceptable thermal environment, while C and D reached the thermal well-being status.

Table 5. Thermal indicators estimated using the DeltaOHM HD32.3 during the practical works of
students (3 h).

Indicator Group A Group B Group C Group D

PMV 0.8 0.7 0.5 0.4
PPD (%) 16.4 15.7 11.1 9.2
WBGT 22.4 20.3 16.5 16.1

Scharlau Index 13.9 ◦C 15.8 ◦C 6.5 ◦C 19.5 ◦C
Critical temperature 39.9 ◦C 41.8 ◦C 30.9 ◦C 43.7 ◦C

Thermal environment evaluation: PMV = +0.85; PPD =20%—acceptable thermal environment; −0.5 < PMV <
+0.5 and PPD < 10%—thermal well-being.
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3.3. Variability of Respiratory Characteristics between the Groups of Students

The results regarding the respiratory characteristics were retrieved indirectly based on
the estimations using functional probes declared by the students. Table 6 shows the main
statistics including the minute ventilation (VE) and alveolar minute ventilation (AVE) for
each group. During three hours in the closed environment of the classroom, the alveolar
minute ventilation of the groups including the participating students and the same lecturer
were as follows Group A 11,884.3 L, Group B 11,123.9 L, Group C 8138.88 L, and Group
D 8382.93 L. The latest two groups had higher ventilation rates due to the mask wearing.
The means of alveolar minute ventilation rates ranged between 3.3 and 4.5 L/min with
coefficients of variations between 13.3% and 24.5% depending on the structure of the group
(age, sex, height, and weight). Mann–Whitney U tests showed significant differences
(p < 0.05) between Group A and Group C (U-value = 34.5; U critical value of at p < 0.05 = 39;
p = 0.025), respectively Group A and Group D (U-value = 36; U critical value of at p < 0.05
= 39; p = 0.030). The differences between B and C (U-value = 21; U critical value at p < 0.01
= 29; p = 0.003), and B and D (U-value = 12; U critical value at p < 0.01 = 29; p = 0.0005)
groups had significant results at p < 0.01.

Table 6. Variability of functional probes and respiratory characteristics between the groups of students.

Students Statistical Indicator Age Weight Height VT VE IBW VD AVE Total AVE in 3 h

Units - years kg m mL/kg L/min kg L L/min L/min

Group A
(n = 17)

Average 24.1 59.8 1.7 351.1 3.5 60 0.1 3.4 645.7
Min. 18 35.4 1.5 212.4 2.1 41.5 0.1 2 382.3
Max. 38 92 1.8 552 5.5 76 0.2 5.4 993.6

Coeff. of var. (%) 29 24 5 24.5 24.5 15.2 15.1 24.5 24
Skewness 1.3 0.6 −0.6 0.6 0.6 −0.3 −0.3 0.7 0.6
Kurtosis 0.1 0.3 0.4 0.3 0.3 −0.3 −0.3 0.3 0.3

Group B
(n = 17)

Average 22.8 58 1.7 345.4 3.4 59.7 0.1 3.3 597.9
Min. 19 48 1.6 288 2.9 52.4 0.1 2.8 496.5
Max. 38 80 1.8 480 4.8 75.1 0.2 4.7 839.6

Coeff. of var. (%) 23.8 14.4 4.0 14.5 14.5 12.0 12.0 14.9 14.9
Skewness 1.7 1.1 0.8 1.1 1.1 0.9 0.9 1.1 1.1
Kurtosis 2.7 1.5 −0.5 1.5 1.5 −0.2 −0.2 1.7 1.7

Group C
(n = 9)

Average 21.6 60.4 1.63 362.7 4.3 54.8 0.1 4.2 783.3
Min. 19 49 1.5 294 3.5 45.1 0.1 3.4 635
Max. 30 70 1.7 420 5 59.7 0.1 4.9 907.2

Coeff. of var. (%) 19.8 13 2.9 13 13 7.8 7.8 13.3 13
Skewness 1.6 −0.5 −1.6 −0.5 −0.5 −1.6 −1.6 −0.5 −0.5
Kurtosis 1.0 −1.4 3.2 −1.4 −1.4 3.2 3.2 −1.4 −1.4

Group D
(n = 9)

Average 24.8 64.7 1.7 388 4.7 62.5 0.1 4.5 813.3
Min. 19 45 1.6 270 3.2 52.4 0.1 3.1 562.4
Max. 43 80 1.9 480 5.8 75.2 0.2 5.6 1012.4

Coeff. of var. (%) 40.6 21.7 5.1 21.7 21.7 12.8 12.8 22.1 22.1
Skewness 1.6 −0.1 0.2 −0.1 −0.1 0.2 0.2 −0.1 −0.1
Kurtosis 0.7 −2.0 −1.0 −2.0 −2.0 −1.0 −1.0 −2.0 −2.0

The central tendency parameters such as age, body weight, and inhalation rates were
used as inputs in the ExpoFIRST tool to assess ADR values for each group of students.
Figure 3 shows the results for the age range and various age bins (20–30 years and 31–
40 years). The average ADR for all groups was estimated as 6.58 × 10−4 mg/kg-day
(CV = 14.3%) for 20–40 years range, while for 20–30 years bin the average was 7.38 × 10−4

mg/kg-day (CV = 18.9%) and 5.74 × 10−4 mg/kg-day (CV = 9.2%) for 31–40 years bin,
respectively.
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4. Discussion

In a room, the assessment of air exchange rate requires longer-term measurements
to determine the prevailing conditions influenced by several exogenous parameters. The
pollutants’ load in the air within a classroom has similarities with the outdoor air from
surrounding sources coming in through infiltration and airing. An increase in ventilation
rate facilitates the admission of outdoor pollutants and implicitly the removing and diluting
effect of pollutants from indoor sources is counterbalanced by an increasing amount of
pollutants originating from outdoor surroundings [34]. Indoor PM is considered to have
preponderantly outdoor origins in schools [35]. In our study, the classroom is located in a
building that is close to a major traffic road and some industrial sources [36]. However, due
to the fact that the measurements were performed in a relatively colder period of time, the
ventilation using windows was limited. Consequently, the density of human occupancy
played an important role in the dynamics of indoor PM together with the inner sources. In
the D group, which reached the highest PM concentration (41 µg m−3 PM1), the increase
of PM concentrations could be attributed to the use of hand sanitizers and disinfecting
solutions used to fulfill the anti-COVID epidemiological regulations (Figure 1d). The
concentrations recorded during the lectures of the other three groups (29–36 µg m−3 PM1)
may be considered as a benchmark for the classroom considered in this study regardless of
the use of masks by the occupants. Other studies showed that the highest indoor PM10
levels were recorded in schools (33.0–97.2 µg m−3) compared to homes (10.8–37.7 µg m−3)
and in schools, PM2.5 concentrations were considerably higher indoors (9.4–56.1 µg m−3)
than outdoors (8.6–15.8 µg m−3) [37]. Our PM2.5 results (37, 30, 29, and 41 µg m−3

corresponding for each group) are consistent with the concentrations reported in the
literature by [38], such as: indoor levels measured in Paris between 24.7 µg m−3 in homes
and 34.5 µg m−3 in offices versus 24.3 µg m−3 and 28.3 µg m−3, respectively, for adults
and children in Amsterdam, 21.6 µg m−3 in Boston, 24 µg m−3 in Zurich, and 21.9 and
36.7 µg m−3 in Grenoble (for summer and winter, respectively). The reports regarding the
submicrometric particles still needs to be further addressed and this study can contribute
to the completion of the indoor air quality characterization. In the current study, particle
counting data correlated with the results regarding the mass concentrations and most of
the particles belonged to the 0.3, 0.5, and 1.0 micron classes. Because the normal activity
in a classroom during the practical works is frontal lesson with students sitting at the
desks, it is a sedentary activity only interrupted by intervals and lesson changes can cause
resuspension of the particles [24]. Even a reduced activity can have a remarkable impact on
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airborne particles with diameters higher than 5 µm [39]. Figure 1 shows that resuspension
of these particles and coarse fraction were occurring more often in groups A and C, while
the lowest was in Group D. The importance of occupants’ movement and of reduced
ventilation in the indoor particulate level was underlined in [40]. On the other hand,
indoor submicron particulate concentration can be rather correlated to the variability of
the ventilation rate [24]. An increasing of air change per hour can involve an increment of
indoor submicron particulate concentration especially in the moments when the external
pollution reaches the top [34].

A decrease in the concentration of all the PM fractions was observed towards the
end of the lectures, both in A and B groups with students that did not wear masks being
before the COVID-19 pandemic. This could be attributed to the PM inhalation, filtering,
and retaining capacity of respiratory mechanisms. PM concentration remained constant
in groups C and D in which students wore disposable face masks. In [41], the protective
effect of masks for everyday use made from different materials was tested against 20–
1.000 nm particles with different velocities founding that 40–90% of aerosols were able
to penetrate through these masks depending on the material and dampness. This might
explain the massive presence of 0.3 micron particles during the lectures of groups C and D
that wore masks. From a medical standpoint, there is a theoretical possibility of an airflow
obstruction when wearing a mask [42]. Such effect should be further studied using proper
instrumentation and protocols in conjunction with microclimate characterization [43]. Since
the humans’ thermal sensation is connected to the thermal energy balance of the whole
human body, such balance is related to physical activity and clothing. In this study, the
feeling of heat in the body as a whole was predicted by calculating PMV and PPD. PPD
predicted the percentage of people who would feel too hot or too cold in the classroom
environment. PPD varied being higher in larger groups (n = 18) i.e., 15.7% and 16.4%
and lower in smaller ones (n =10), 9.2% and 11.1%, respectively. Thermal comfort can
influence the ventilation rates [44]. In this study, we estimated the ventilation rates using
well-established equations that use the functional probes of the classroom’s occupants.
Significant differences regarding the minute ventilation and alveolar minute ventilation
were noticed between the groups that did not wear masks and the ones that did.

High levels of PM have been recorded in four different periods with different groups
of students and the submicrometric fraction was the most present. The groups of students
that did not wear masks (before COVID-19 pandemic) were exposed to PM and there exists
the possibility that the decrease of the PM concentrations could be related to the inhaling
and retaining of the PM in the students’ lungs. The groups that wore masks have been
better protected against PM and the PM remained constant during the 3 h of lecture taking
into account the trendlines of the time series. In [45], the mean percent penetration of PM
for each mask material ranged from 0.26% to 29%, depending on the flow rate and mask
material. It is clear that the mask efficiency in PM filtering should be considered to avoid
empirical assessments.

The health effects of nanoparticles, which seem to be predominant in indoor environ-
ments, are better correlated to the surface area of the particles. More research should be
performed involving personal monitoring of the respiratory functions of the participants
by using spirometry and monitors that measure the dose of inhaled nanoparticles in the
lungs (e.g., TSI NSAM 3550). Dynamic modeling should be also involved considering an
indoor air mass balance with Monte Carlo simulations [29] involving also the complex
effects of furniture/indoor thermal mass on building systems [46]. The goal is to achieve
realistic models and aggregation methodologies for indoor mass elements [47].

On the other hand, another important issue in characterizing the indoor environments
is the presence of mycotoxins that contributes to the ‘Sick Building Syndrome’ [48] caused
by the biochemical manifestations of various micro-organisms [49].

There is a stringent need for low-cost portable tools for assessing the individual
exposure to particulate matter (PM) and other air pollutants and mycotoxins of concerns in
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real-time [50]. The precision and reliability of the low-cost sensors for PM monitoring has
increased in the last period having promising results [51,52].

Based on the study results, it is important to develop complex indoor surveys in-
volving monitoring of air quality, thermal microclimate, and particularly the respiratory
functions [53]. There are several useful insights that can be used in further experiments
applying indoor air modeling [30,31], but more attention should be also given to mold and
dampness, ventilation (determined from CO2 concentrations), and exposure to selected
indoor air pollutants that are specific in the facilities of a university.

Indoor air modeling supports the understanding of viruses’ inhalation transmission
including SARS-CoV-2 in indoor environments by approximating how the inhaled amount
of viruses is affected by factors such as room ventilation, breathing flow rate, gender,
room size, aerosol size distribution, exposure time, level of exercise, and the type of vocal
activity [31]. The lifelong sum of all the environmental contributions to human physiology
and pathophysiology forms the exposome, which is a relatively new developed paradigm
for studying the health consequences of the environment [32]. In addition to external
environmental stressors, also lifestyle, socioeconomic status, and climate variations define
the individual exposome [54]. In the current pandemic situation, there is also growing
evidence that air pollution triggers comorbidities and increases the case fatality rate in
patients with COVID-19 infection [55], whereas such epidemiological correlations are
mostly missing for the characterization of various microenvironments including the indoor
ones [56]. There is a need for developing multi-exposure concepts that include the most
part of harmful environmental pollutants [54] besides PM.

Minimizing indoor air pollutants is important for a productive learning environment
in universities because of the potentially negative effects determined by VOCs, PM includ-
ing allergens and molds, and combustion gases on the health and wellbeing of students [57].
Some of these pollutants are known for causing flu-like symptoms, headaches, nausea,
and irritation of the eyes, nose, and throat along with their capacity to trigger asthma or
allergy attacks [57]. Air pollutants have been found to negatively influence academic perfor-
mance [58]. Moreover, the combined effects of pollutants on the risk of COVID-19 infection
and the severity of respiratory or cardiovascular complications are not well understood so
far. On this basis, the current study aimed to characterize the indoor microenvironment
for a typical classroom in which students and academic personnel spend a lot of time
during the educational process (approximately 728 h/academic year—2 semesters), both
for PM levels and microclimate in the presence of various groups of students. The resulted
data can be used to establish efficient ways to diminish the exposure of students to PM
providing better conditions for learning. Knowing that the exposure to environmental
risk factors, which is the external exposome, leads to changes of central biochemical path-
ways (stress response, oxidative stress, and inflammation) with associated health impact,
it is important to have reliable instrumentation for estimating the exposure to harmful
pollutants. Since classical health risk factors share similar pathomechanisms, students’ or
professors’ pre-existing chronic diseases (e.g., diabetes or hypertension) may experience
additive adverse health effects upon exposure to environmental stressors especially in
indoor microenvironments with high levels of air pollutants [54]. It is expected that precise
monitoring will provide supporting data for a reliable epidemiological assessment and
this study employed robust monitors for evaluating the exposure to PM. Additionally, the
microclimate can contribute to the aggravation of health effects. Consequently, maintaining
adequate air exchange rates do not replace or reduce the need to control indoor sources
of emission of harmful chemicals [15]. Ventilation and filtration control play certainly a
critical role in the variability of indoor PM2.5 concentrations of indoor or outdoor origin
in different residential environments including educational facilities [59]. In the current
work, the experiments relied on ‘no filtration’ conditions because the building in which the
room is located still does not have a ventilation/filtration unit. However, it is previewed
that such a unit will be added in the near future providing safer levels of PM during the
learning process.
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5. Conclusions

The instrumentation used in this study showed promising results for the characteriza-
tion of the indoor microenvironments including university buildings. PM load should be
estimated together with the thermal microclimate, and the physiological indicators, clothes,
and metabolic characteristics of the classroom’s occupants. Such contextual data can pro-
vide useful insights on the indoor microclimate modifications, and give perspectives for
the future of sensors that can support medical and occupational health and safety research
in indoor environments.

We found that PM1 was the preponderant fraction ranging between 29 and 41 µg m−3

depending on the group of students in acceptable thermal environments according to
the PPD and PMV indices. The particle counter recorded predominantly 0.3, 0.5, and
1.0 micron categories in the university classroom.

COVID-19 impacts on indoor air quality were determined especially by the use of
various disinfectant products in the presence of a lower number of students due to the
epidemiological restrictions. Outdoor monitoring showed a clear reduction of exterior PM
concentrations during March 2021 compared to the same month in 2019 also due to the
imposed measures for mobility restraints to control the spread of the virus.

The current approach has some limitations because individual testing of the students
was not performed (spirometry, inhalation particularities, mask performance on filtering,
and indoor microclimate influence) and some results have a broader context. Source
apportionment, CO2 monitoring, and dynamic modeling should be also considered for
a comprehensive characterization of the indoor exposure to PM. Due to epidemiological
constraints, it was impossible to test the influence on mask wearing in the same group
of students.

Future work will take into account more experimental setups considering the aspects
mentioned before.
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in March 2019 and 2021, Figure S6: Outdoor concentrations of PM2.5 and PM1 (g m−3) recorded at
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