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Abstract

What is the relationship between perceptual information processing and subjective perceptual experience? Empirical dis-
sociations between stimulus identification performance and subjective reports of stimulus visibility are crucial for shedding
light on this question. We replicated a finding that metacontrast masking can produce such a dissociation (Lau and
Passingham, 2006), and report a novel finding that this paradigm can also dissociate stimulus identification performance
from the efficacy with which visibility ratings predict task performance. We explored various hypotheses about the relation-
ship between perceptual task performance and visibility rating by implementing them in computational models and using
formal model comparison techniques to assess which ones best captured the unusual patterns in the data. The models fell
into three broad categories: Single Channel models, which hold that task performance and visibility ratings are based on
the same underlying source of information; Dual Channel models, which hold that there are two independent processing
streams that differentially contribute to task performance and visibility rating; and Hierarchical models, which hold that a

late processing stage generates visibility ratings by evaluating the quality of early perceptual processing. Taking into ac-
count the quality of data fitting and model complexity, we found that Hierarchical models perform best at capturing the
observed behavioral dissociations. Because current theories of visual awareness map well onto these different model struc-
tures, a formal comparison between them is a powerful approach for arbitrating between the different theories.
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Introduction

Humans and some nonhuman animals are able to assess the
dependability of evidence associated with perceptual decisions
by giving subjective ratings of confidence or visibility (Metcalfe
and Shimamura, 1996; Kepecs, 2008; Smith, 2009; Fleming et al.,
2010). Conceptually, such subjective ratings are distinct from
the associated perceptual decision; perceptual decisions are
about states of the world, whereas subjective ratings are about
the quality, quantity, or overall dependability of internal evi-
dence associated with perceptual decisions. We can call

perceptual decisions about the stimulus ‘objective’ judgments,
and confidence and visibility ratings about one’s own percep-
tual proccessing ‘subjective’ judgments.

Subjective and objective judgments are empirically dissoci-
able. For instance, blindsight patients can objectively discrimin-
ate visual stimuli in their “blind” fields at above chance levels,
and yet they deny having subjective perceptual experience
(Weiskrantz, 1986; Azzopardi and Cowey, 1998; Davidson et al.,
2010). Under specific experimental manipulations, healthy
human observers (Lau and Passingham, 2006; Wilimzig et al.,
2008; Rounis et al., 2010; Rahnev et al., 2011; Rahnev et al., 2012;
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Figure 1. Schematic diagram for the three categories of models. (Left) According to a Single Channel model, the same process gives rise to both
objective judgments (e.g. perceptual decisions about the identity of a stimulus) and subjective judgments (e.g. confidence ratings or visibility
ratings). The model can still support some independence between task performance and subjective reports by supposing that the sensory evi-
dence is a continuous variable that can be evaluated by setting various decision criteria (Fig. 2; Macmillan and Creelman, 2005). (Middle) An al-
ternative model is that objective and subjective judgments are driven by two parallel processes, each influenced by independent sources of
noise. Differential contribution of the two channels to objective and subjective judgments can lead to dissociations between the two kinds of
responses. Note that the model can allow that each channel can contribute both kinds of judgments to some extent. In particular, one would
expect that the channel which primarily influences one’s subjective ratings would also heavily influence one’s objective task response. For in-
stance, when an observer subjectively reports clearly and vividly seeing squares, this should strongly correlate with objective judgments that
the stimuli on the current trial are squares. (Right) Another alternative is that objective and subjective judgments are driven by different proc-
esses that are organized in a serial hierarchy, such that an early stage of processing generates the objective judgment and a later stage of pro-
cessing generates the subjective judgment, as if the latter evaluates the quality of the former. Note that on this model, the second stage
inherits the noise of the first stage, and thus the two are not entirely independent. However, the influence is one sided; the “subjective” stage

does not influence the “objective” stage of processing

Vlassova et al., 2014) and animals (Komura et al., 2013; Fetsch
et al., 2014; Lak et al., 2014) also exhibit some dissociations be-
tween subjective and objective judgments.

What are the mechanisms that drive subjective and object-
ive judgments, and how are they related? The most parsimoni-
ous account would hold that subjective and objective
judgments, though distinct, are generated from the same
underlying process (Single Channel models, Fig. 1, left panel).
For instance, on a common signal detection theory (SDT) ac-
count, perceptual decisions result from a binary comparison be-
tween an internal signal and a criterion, whereas subjective
judgments of the quality of evidence are made by evaluating
some transformation of the signal, such as its distance from the
criterion (Clarke et al., 1959; Galvin et al., 2003). According to this
kind of model, subjective and objective judgments are just dif-
ferent ways of evaluating the same underlying evidence (Fig. 2).

Alternatively, even if subjective and objective judgments are
based on the same evidence, the ‘quality’ of evidence available
for each kind of judgment might differ. For instance, a
Hierarchical model (Fig. 1, right panel) might suppose that evi-
dence is first used to generate objective perceptual decisions,
and subsequently undergoes further processing to make sub-
jective judgments (Cleermans et al., 2007; Fleming et al., 2010;
Lau and Rosenthal, 2011). On such an account, the evidence
might become degraded by the time it is processed by subjective
judgment mechanisms, due to a decaying signal and/or the ac-
crual of noise (Pleskac and Busemeyer, 2010).

A third possibility is a Dual Channel model (Fig. 1, middle
panel) in which subjective and objective judgments are based
on separate cognitive or neurophysiological processes (Jacoby,
1991, Jolij and Lamme, 2005; Del Cul et al., 2009; Morewedge and
Kahneman, 2010). For instance, perhaps there are two inde-
pendent visual processing routes, one of which supports con-
scious vision and another whose visual processing is entirely

unconscious. On such an account, subjective and objective
judgments access different sources of information (and noise).

In the current work, we capitalize on a psychophysical para-
digm that dissociates changes in objective perceptual decision
performance from changes in subjective visibility ratings (Lau
and Passingham, 2006) to evaluate SDT implementations of the
model categories described above.

Materials and Methods

In the metacontrast masking procedure, stimulus identification
performance varies with stimulus-mask onset asynchrony
(SOA) in a U-shaped fashion (Fig. 3). Visibility judgments follow
a similar U-shape that is asymmetrical with respect to the ob-
jective performance curve, thus yielding similar levels of per-
formance associated with different levels of subjective stimulus
visibility. We compared the ability of various implementations
of the Single Channel, Dual Channel, and Hierarchical models
to capture the relative dissociation between subjective and ob-
jective judgments found in this data set.

Participants

A total of 59 students from the Columbia University under-
graduate population participated in the experiment and were
paid $10 for approximately 1h of participation. All subjects
were naive regarding the purpose of the experiment, had nor-
mal or corrected-to-normal vision, and signed an informed con-
sent statement. The research was approved by the Columbia
University’s Committee for the Protection of Human Subjects.

Experimental procedure

Subjects were seated in a dim room, 60 cm away from the com-
puter monitor. Stimuli were generated using Psychophysics
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Figure 2. The standard SDT model. All models under consideration
are built upon the foundation of the standard SDT model. This
model assumes that stimulus categories S1 and S2 each generate
normal distributions of perceptual evidence along an internal deci-
sion axis. The observer segments the decision axis into discrete re-
gions using a type 1 criterion (for making a stimulus classification
response) and a set of type 2 criteria (for rating subjective levels of
decision confidence or percept visibility). The stimulus classification
and subjective rating reported by the observer on any given trial are
determined by which region of the decision axis contains the per-
ceptual evidence observed on that trial, as illustrated in the figure.
The probability with which the observer produces a given (response,
visibility) pair upon being shown stimulus SN is equal to the area
under the curve f(x|SN) in the region of the decision axis correspond-
ing to that response pair. Note that it need not be the case that the
type 1 criterion is located at the intersection of the distributions, or
that the type 2 criteria are symmetrically distributed around the
type 1 criterion

x = decision axis

Toolbox (45) in MATLAB® (MathWorks, Natick, MA) and were
shown on an iMac monitor (19inch monitor size, 1680 x 1050
pixel resolution, 60 Hz refresh rate).

On each trial, a ring of eight shapes was presented around a
central fixation point (4° radius). (A ring of stimuli was used with
potential extension to fMRI in mind; to facilitate efficient retino-
topic delineation of visual areas it is useful to present stimuli out-
side of the fovea. However, behavioral results similar to those
reported here were also found with foveal presentation of single
stimuli in Lau and Passingham, 2006.) Within each trial, each of
the eight shapes was identical. The shapes could be either
squares or diamonds with sides measuring 1.5° of visual angle.
The shapes were presented for 33ms on a gray background.
Shapes were darker than the background, with the precise dark-
ness determined separately for each subject by a thresholding
procedure described below. A set of metacontrast masks de-
signed to trace the outline of the square and diamond stimuli
without physically overlapping with them (line width 0.025°) was
subsequently displayed for 50ms. Stimulus onset asynchrony
(SOA) between stimulus and mask was determined randomly on
each trial and counterbalanced among eight possible durations,
ranging from Oms to 116.7 ms in increments of 16.7 ms.

Following each stimulus presentation, subjects provided
two responses. First, they made a forced choice objective judg-
ment about the shapes of the stimuli (squares or diamonds).
Next, they rated how subjectively visible the shape of the
stimulus appeared using a four-point scale. Specifically, sub-
jects were asked to rate how clearly they had perceived the
stimuli. Subjects were encouraged to use the entire rating
scale while still accurately characterizing what they had visu-
ally experienced. Stimulus presentation for the next trial
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commenced 1050 ms after subjects entered the visibility rat-
ing. However, if subjects failed to enter both the stimulus iden-
tity judgment and the visibility rating within 5s of stimulus
offset, the current trial was aborted and the next trial com-
menced automatically.

After receiving task instructions, subjects completed two
blocks of 28 practice trials. Following practice, subjects com-
pleted a block of 120 trials to determine the Weber contrast of
the stimuli at which threshold performance across all SOAs
could be obtained. Because performance in this task is close to
maximal with an SOA of Oms (Lau and Passingham, 2006), all
trials in the thresholding procedure had the minimum stimu-
lus-mask SOA of Oms. We reasoned that if near maximal per-
formance at 0ms could be controlled to be at threshold levels,
performance at other SOA values would also be near threshold.
Stimuli were initially set to a Weber contrast of —0.15 and were
subsequently adjusted online using a QUEST procedure
(Watson and Pelli, 1983). Three separate QUEST tracks were re-
corded (40 trials each). Each QUEST track provided an independ-
ent estimate of the stimulus contrast needed to produce
threshold performance (84% correct) at the minimum SOA.
Trials for each track were interleaved randomly. Among the
three resulting QUEST estimates, the median stimulus contrast
was selected as the contrast to be used throughout the remain-
der of the experiment.

In the main experimental block, subjects completed 800 tri-
als (100 trials for each of the 8 SOAs). SOAs were distributed
across trials randomly. Every 100 trials, subjects received a self-
terminated break lasting up to 60s.

Subject selection

To maximize the suitability of the data for model fitting, we
omitted from analysis all subjects who performed below
chance levels at any of the SOAs (n=16), any who performed
perfectly at any of the SOAs (n=3), and any whose mean visi-
bility rating was lower than 5% of the maximum possible value
at any SOA (n=1). Most subjects were excluded due to having
at least one SOA with below chance levels of performance,
which is perhaps not surprising given that we performed the
thresholding procedure on only the 0 ms SOA and subjects had
many chances at each of the other SOAs to perform consider-
ably worse, potentially recording average performance below
chance. Nonetheless, we kept strict inclusion criteria to opti-
mize model fitting.

For the remaining 39 subjects, we quantified the extent to
which each subject exhibited a dissociation between objective
task performance and subjective visibility ratings across SOA as
follows. We made the qualitative observation that, when mean
visibility is plotted as a function of mean task performance, the
function is roughly linear, with a single outlying point corres-
ponding to SOA =16.7 ms for which visibility is lower than other
SOAs with similar task performance (Fig. 3). Thus, for each sub-
ject, we ran a least squares regression between task perform-
ance (as assessed by the SDT measure d’; Macmilla and
Creelman, 2005) and mean visibility rating at all but one SOA.
The measured value of mean visibility at the left-out SOA was
then subtracted from the “expected” visibility predicted by the
regression on the other SOAs. We defined the absolute value of
this difference between observed and expected visibility for the
left-out SOA as the “dissociation score” for that SOA. We calcu-
lated the dissociation score for each SOA and defined each sub-
ject’s “dissociation index” as the maximum dissociation score
across all SOA from that subject’s data. Each subject’s
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Figure 3. Experimental design and behavioral results. (A) We used a paradigm based on metacontrast masking, similar to the one used in a pre-
vious study (Lau and Passingham, 2006). In every trial, the subject was presented with a set of squares or diamonds (i.e. tilted squares). After a
varying SOA (the temporal gap between the two sets of stimuli), a metacontrast mask was presented at the location of each shape. The masks
were not drawn “on top of” the targets, but rather only traced the spatial contours where the targets had been presented. Nevertheless, the
masks were successful in impairing target visibility. In each trial, subjects first decided whether the targets were squares or diamonds, and
then gave subjective visibility ratings (four levels) to indicate how clearly they saw the identity of the targets. (B) Replicating previous findings
(Lau and Passingham, 2006), this masking procedure gives rise to a U-shaped masking function when stimulus identification performance is
plotted against SOA. The average level of subjective visibility ratings across SOAs, however, did not take the same shape, and reflected a bias
toward giving lower ratings at lower SOAs. Shown here are data from a group of subjects (n=20) who exhibited this dissociation particularly
strongly. Right panel plots the same data as left panel, now showing visibility as a function of percent correct, to illustrate the dissociation
more clearly. Data points correspond to SOA from the left panel. Visibility is an approximately linear function of percent correct, with the not-
able exception of SOA =16 ms. This SOA had similar percent correct as SOA =100 ms and 116.7 ms, but much lower visibility. (C) Data from all
39 subjects selected for model comparison analysis. (D) Data from the 19 subjects exhibiting a relatively weaker dissociation

dissociation index provides a measure of the extent to which
that subject exhibited a dissociation between task performance
and visibility ratings.

The logic of computing the dissociation index in this way
presumes that visibility is linearly related to d’ at all SOA other
than the “left-out” one. This assumption is qualitatively born
out by visual inspection of the data (Fig. 3). We tested this as-
sumption more rigorously as follows. For each subject, after
excluding the data from the SOA used to compute that sub-
ject’s dissociation index, we performed separate linear and
quadratic regressions of visibility onto d’. We then used a

similar model comparison methodology as is used in the main
data analyses to investigate whether the linear or quadratic re-
gressions provided a better characterization of the data. We
computed

AIC. = nlog MSE + 2K (ﬁ)

where MSE is the mean squared error of the regression, n is
the number of data points, and K is the number of parameters
in the regression model (Burnham and Anderson, 2002).
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The Akaike weights quantify the evidence in favor of each
model by rewarding closer fits to the data and punishing greater
model complexity. The mean Akaike weight for the linear re-
gression model across all 39 subjects was 0.98 (out of a max-
imum possible value of 1), providing strong quantitative
support for the qualitative observation that the relationship be-
tween visibility and task performance is roughly linear, and
thus supporting our method for quantifying the dissociation
index.

We performed a median split on the dissociation index, se-
lecting the 20 subjects who exhibited the highest such value for
further analysis and model fitting (Fig. 3B). All main analyses re-
ported in the manuscript focus on this subset of 20 subjects. For
these 20 subjects, the mean dissociation index was 0.57 and
was greater than zero, P<0.001. For all 39 subjects, the mean
dissociation index was slightly weaker but still evident at 0.39
(P <0.001). Without excluding any subjects at all (n=59), a simi-
lar mean value of 0.41 obtains (P < 0.001).

Note that these procedures were performed to improve the
quality and informativeness of the model comparison analysis.
Omitting subjects with noisy data reduces the noisiness of
model fits. Selecting the subjects who show the strongest dis-
sociations between task performance and stimulus visibility
provides a more stringent test for the models and thus provides
a sharper way to compare their efficacy in characterizing the
dissociation. Importantly, data that do not exhibit a dissociation
between task performance and visibility can be straightfor-
wardly captured by all the SDT models we consider here, and
thus is not informative with respect to model comparison. It is
only by examining the more interesting cases where task per-
formance and visibility dissociate that the models considered
here can be effectively differentiated in their ability to capture
the data parsimoniously. Crucially, all subject selection proced-
ures were performed a priori, prior to any model fitting analysis.

Although we focus on a selected subset of subjects for our
main analysis, in the Supplementary Materials section titled
“Expanded model comparison results” we report model selec-
tion results for different ways of selecting subjects. These sup-
plementary analyses demonstrate that (i) as expected, model
selection results are more equivocal for weak dissociation sub-
jects, supporting our selection of strong dissociation subjects to
more sharply discriminate the models; (ii) the main conclusions
of our analyses remain the same when including all subjects ra-
ther than only strong dissociation subjects, as well as when
analyzing all 59 subjects rather than the subset of 39 selected
for having cleaner data. Thus our main conclusions are robust
against the details of subject selection.

Model assumptions

In each model, we made standard SDT assumptions, as sum-
marized in Fig. 2: (i) the two stimuli used in the experiment gave
rise to internal signals normally distributed along some deci-
sion axis; (ii) perceptual decisions were made by comparing the
signal on some decision axis to a criterion; and (iii) visibility
judgments were made by comparing the signal on some
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decision axis to multiple criteria, corresponding to the multiple
visibility ratings available to subjects in this experiment.

To further constrain model fitting, we made one further as-
sumption: (iv) criteria for perceptual decisions and visibility rat-
ings were set in the same way for each stimulus-mask SOA.
That is, we assumed that subjects did not use different stand-
ards for deciding a stimulus’s identity or visibility across the dif-
ferent SOAs. This assumption is justified by previous
psychophysical findings. Gorea and Sagi (2000) found that when
stimuli that are easy and difficult to perceive are interleaved
randomly, subjects do not judge stimulus classes with separate
criteria, but rather use a single, nonoptimal criterion for both. In
our experiment, task difficulty varied across SOA, but SOAs
were presented randomly, and thus task difficulty changed ran-
domly across trials as it did in Gorea and Sagi (2000). If subjects
cannot maintain separate sets of criteria for only two classes of
randomly interleaved stimuli, it is highly unlikely that they
could maintain seven distinct sets of criteria corresponding to
the seven SOAs used in the current experiment.

Furthermore, in a study on the dynamics of criterion shift-
ing, Brown and Steyvers (2005) found that criterion shifting is a
slow process. In their experiment, task difficulty changed every
40 trials, requiring subjects to shift their decision criteria to
maintain optimal task performance. However, even with this
predictable block design, and even when subjects were fore-
warned that task difficulty would change during the experi-
ment, subjects required about 8-22 trials (each trial lasting
about 3.2s) to change their decision criteria. In the current ex-
periment, task difficultly changed randomly and rapidly from
trial to trial. The results of Brown and Steyvers suggest that this
rapid and random shift in stimulus difficulty would far outstrip
subjects’ ability to slowly adjust their decision criteria. Taken
together, these experimental results suggest that it is highly im-
plausible that subjects could have used different sets of decision
criteria for each SOA, thus justifying our fourth modeling
assumption.

An alternative way to implement constant criterion setting
across different task conditions would be to define criteria
based on the likelihood ratio of the evidence distributions rather
than based on values of the decision axis (Rouder et al., 2008).
However, this approach requires assuming a much more cogni-
tively taxing and difficult decision making strategy, as it would
require that subjects (i) accurately estimate the evidence distri-
butions and compute their ratio, and (ii) are able to do so separ-
ately for each SOA. Thus, here we opted to implement a simpler
form of constant criterion setting, one that is more in the spirit
of Gorea and Sagi’s findings and has been successfully imple-
mented in the modeling of other visual psychophysics tasks
(Rahnev et al., 2011, 2012). In future work, it may be fruitful to
explicitly compare these alternative accounts of criterion set-
ting to see which best accounts for a given data set.

Model descriptions

All models conformed to the broad specifications listed above,
but differed from each other in the overall model structure
(Single Channel, Dual Channel, or Hierarchical). Because there
are many ways each model structure can be implemented, we
compared multiple kinds of implementations for each model
type. In total we fit 4 Single Channel models, 10 Dual Channel
models, and 12 Hierarchical models. In the following, we give
brief descriptions of each model tested. The names of the
models in this section correspond to the model names used in
Table 1.
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Table 1. Complete model comparison results

Class Model name logL # param Average Akaike weight
Single channel Single Channel —1243.4519 15 0.0011
Single channel Single Channel CV -1212.9612 23 0.1251
Single channel Decision Noise —1316.5711 23 0
Single channel Decision Noise CV —1322.9558 31 0

Dual channel Independent Dual Channel —1233.6541 23 0

Dual channel Independent Dual Channel CV —1205.8477 31 0

Dual channel Modulated Dual Channel 1 —1242.3511 23 0.0031
Dual channel Modulated Dual Channel 1 CV —1213.0657 31 0

Dual channel Modulated Dual Channel 2 —1271.9686 23 0

Dual channel Modulated Dual Channel 2 CV —1242.3228 31 0

Dual channel Modulated Dual Channel 3 —1299.1715 23 0

Dual channel Modulated Dual Channel 3 CV —1267.1083 31 0
Dual channel Weighted Dual Channel —1222.6293 23 0.1445
Dual channel Weighted Dual Channel CV —1201.961 31 0.0364
Hierarchical Decay Only —1216.9266 23 0.0037
Hierarchical Decay Only CV —1209.4122 31 0.0006
Hierarchical Noise Only —1222.1802 23 0.0002
Hierarchical Noise Only CV —1202.6069 31 0.0156
Hierarchical Noise + Decay —1242.2019 31 0
Hierarchical Noise + Decay CV —1197.3804 39 0
Hierarchical Noise + Constant Decay —1222.4464 24 0.0004
Hierarchical Noise + Constant Decay CV —1197.189 32 0.2023
Hierarchical Constant Noise + Decay -1211.1514 24 0.2619
Hierarchical Constant Noise + Decay CV —1201.5188 32 0.0199
Hierarchical Constant Noise + Constant Decay —1233.1541 17 0.0458
Hierarchical Constant Noise + Constant Decay CV —1204.0798 25 0.1391

“Class” denotes model category (see Fig. 1). Descriptions of each model listed under “Model name” are available in “Materials and Methods” section, Model descriptions.
“log L” is the quantitative measure of goodness of fit for each model, the log of the likelihood of the observed empirical data given the model structure and optimal par-
ameter values. Larger values indicate better fit. “# param” lists the number of parameters for each model, a measure of model complexity. “Akaike weight” is a measure
of overall model quality, taking into account goodness of fit and model complexity. Larger values indicate better models, and the weights are scaled such that they
sum to 1. For more details on these measures see “Materials and Methods” section, Formal model comparison. The best models in each model class are highlighted in

boldface.

Single Channel models
Single Channel. parameters: pqis (8), ¢ (7).

The simplest model we tested was this basic SDT model. We
suppose that the distance between the evidence distributions,
uaifr, changes for each of the eight stimulus-mask SOAs. The ob-
server must set seven decision criteria to partition the decision
axis into eight regions, which correspond to the eight kinds of
responses the observer can give on a given trial (2 stimulus clas-
sifications x 4 levels of subjective visibility). For all models, we
suppose that the decision criteria are constant across SOA.

Single channel CV (“changing variance”). parameters: pgisr (8), o (8),
c (7).

This is a modification of the Single Channel model which
supposes that SOA affects not only the absolute distance be-
tween the stimulus distributions p, but also their common
standard deviation c.

Note that the SDT measure of task performance, d’, is simply
the ratio of pgi/c. Thus, one might worry that paier and o are re-
dundant here and could instead be captured by a single param-
eter, d’. However, recall that our SDT model for the
metacontrast masking task also supposes a single set of deci-
sion criteria which is held constant across SOA. pgif and o pair-
ings at different SOAs that have the same ratio (i.e. yield the
same value of d’) will nonetheless have different relationships
to these constant criteria, and thus such pairings are not redun-
dant in the behavioral data they generate. For instance, suppose
that at SOA 1, pgirr=2 and o =1, whereas at SOA 2, pgirr=4 and

o =2. In this scenario, d’ will be the same for SOA 1 and SOA 2,
but average visibility will not; SOA 2 will have higher visibility
since the stimulus distributions are farther apart and are more
variable, and thus more probability mass in the distributions
will exceed the decision criteria, resulting in higher visibility
ratings.

Other CV models. For every model described below, we analyzed
versions which did and did not allow the standard deviation of
the stimulus distributions ¢ to vary across SOA. Every model
following the naming format “Model X CV” is identical to the
simpler model “Model X” with the exception that it has eight
added parameters to allow o to vary with SOA.

Decision noise. parameters: pq;s (8), oc (8), ¢ (7).

This model supposes that the type 2 criteria (the six decision
criteria used to evaluate subjective visibility) are not constant
from trial to trial, but in fact are drawn from a normal distribu-
tion with some standard deviation o., where o, can vary with
SOA. This model is based on Mueller and Weidemann (2008).

Dual Channel models

Dual Channel models suppose that two separate information
processing streams accruing noise from independent sources
contribute to the perceptual decision-making process. In SDT
terms, these models posit the existence of two decision axes,
one of which corresponds to conscious processing and the
other, unconscious processing. The versions of these models



considered here differ on how they suppose information from
the conscious and unconscious processing channels are
combined.

Independent Dual Channel. parameters: paisr ¢ (8), Haier u (8), cc (6),
cy (1).

The distance between stimulus distributions is modulated
by SOA for both the conscious (ng) and unconscious (uy) deci-
sion axes. The conscious decision axis is only used to categorize
stimuli that have a visibility of at least 2 or higher, i.e. it is not
used to classify stimuli with visibility = 1. For this reason, only
six decision criteria cc are set on the conscious decision axis.
For stimuli whose visibility is only rated as 1, the stimulus clas-
sification is made by doing signal detection on the unconscious
decision axis using the criterion cy. This model is based on Del
Cul et al. (2009).

See Supplementary Material section titled “Comparison of
Dual Channel SDT models in present paper and Del Cul et al
(2009)” for an explicit comparison between our Independent
Dual Channel model and the model used in Del Cul et al. See
Supplementary Material section titled “Model comparison re-
sults using median split on visibility ratings” for a demonstra-
tion that model comparison results are not appreciably affected
if we use a median split on each subject’s visibility ratings to de-
fine conscious and unconscious trials, rather than defining un-
conscious trials as trials where visibility =1.

Modulated Dual Channel N (N =1, 2, 3). parameters: pais ¢ (8), Mair
u (8), cc (6), cu (1).

These models are identical to the Independent Dual Channel
model, with one exception. Modulated Dual Channel N has a
provision for altering subjective reports of visibility made from
the conscious decision axis when its stimulus classification
conflicts with the stimulus classification provided by the un-
conscious channel. Specifically, if visibility>1 and
visibility <N+ 1, and if the stimulus classification of the con-
scious and unconscious channels disagree, then the classifica-
tion from the conscious channel is used but the report of
subjective visibility is reduced to 1.

Weighted Dual Channel. parameters: pgier ¢ (8), Haier u (8), cc (6),
cror (1).

Rather than treat information from the conscious and un-
conscious channels separately, the observer combines them
into a new decision axis by computing a weighted average. The
weight given to evidence arising from the conscious channel is
we=d'c/ (d’c+d’y), where d’ = pais/c and o =1 for the non-CV
models. This formula can give results outside of [0, 1] if negative
d’ values are entered. As a correction for this possibility, if the
computation yields wc <0 then wg is set to 0, and if it yields
wc > 1then weis set to 1.

If visibility =1, the stimulus is classified using the combined
channel. If visibility >1 and the conscious channel and com-
bined channel agree on stimulus classification, then stimulus
classification is given with the level of visibility dictated by the
conscious channel. But if visibility > 1 and the conscious chan-
nel and combined channel disagree on stimulus classification,
then the classification from the conscious channel is used but
the report of subjective visibility is reduced to 1.

(Although it would be optimal to always use the stimulus
classification provided by the combined channel, implementing
this in the model would allow the nonsensical result that re-
ports of stimulus classification could conflict with reports of
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subjective visibility, e.g. “the stimuli were squares, and I very
clearly saw that the stimuli were diamonds.”)

Hierarchical models

Hierarchical models suppose that stimulus classification occurs
according to Single Channel SDT principles, but that the percep-
tual evidence used to do stimulus classification changes before
it is used to report subjective visibility, becoming weaker and/or
noisier.

Decay only. parameters: pq;s (8), k (8), ¢ (7).

The perceptual evidence used for performing stimulus clas-
sification is multiplied by a factor of k before it is used for re-
porting subjective visibility, where 0 <k <1. k varies across SOA.
We constrained k to be less than or equal to 1 to be in line with
previous empirical and theoretical SDT demonstrations that in
visual psychophysics tasks like the one used here, the informa-
tion content of subjective ratings is constrained by task per-
formance (Galvin et al, 2003; Maniscalco and Lau, 2012;
Maniscalco and Lau, 2015).

Noise only. parameters: pqist (8), on (8), ¢ (7).

The perceptual evidence used for performing stimulus clas-
sification accrues noise before it is used for reporting subjective
visibility. The noise is sampled from a normal distribution with
mean 0 and standard deviation oy. o}, varies across SOA.

Noise + Decay. parameters: pai (8), on (8), k (8), ¢ (7).
A combination of the Decay Only and Noise Only models.

Noise + Constant Decay. parameters: paisr (8), on (8), k (1), ¢ (7).
Same as Noise +Decay, but the signal decay parameter k is
constrained to be constant across SOA.

Constant Noise + Decay. parameters: pais (8), on (1), k (8), ¢ (7).
Same as Noise + Decay, but the hierarchical noise parameter
op is constrained to be constant across SOA.

Constant Noise + Constant Decay. parameters: pair (8), on (1), k (1),
c (7).

Same as Noise + Decay, but the hierarchical noise parameter
on and signal decay parameter k are constrained to be constant
across SOA.

Model fitting

Past efforts to fit SDT parameters to rating data have used the
following approach (Dorfman and Alf, 1969). First, we make two
simplifying assumptions: (i) responses on each trial are inde-
pendent from one another; (ii) the probability of each response
type associated with each stimulus class is constant across tri-
als. When these assumptions are met, the likelihood of a set of
signal detection model parameters given the observed data can
be calculated using the multinomial model. Formally,

L(6|data) HProbe(Respl-|Stim)-)"d““(RESp"Stimﬁ) ,
i

where each Resp; is a behavioral response (stimulus classifica-
tion and visibility rating) a subject may produce on a given trial,
and each Stim; is a type of stimulus that may be shown on a
given trial. Proby(Resp;|Stim;) denotes the probability with
which the subject produces the response Resp; after being pre-
sented with Stimj, according to the signal detection model
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Figure 4. Model fits for task performance and reported visibility. Three categories of models (Single Channel, Dual Channel, and Hierarchical)
were fitted to the behavioral data from the metacontrast masking paradigm. We tested multiple versions of each category of model (see
“Materials and Methods” section for details). Shown here are the best-fitting models from each category, selected according to formal model
comparison techniques (Fig. 6). The Hierarchical model performed best at capturing the dissociation between task performance and reported
levels of stimulus visibility. This dissociation is made readily apparent by plotting visibility reports against task performance, as depicted in
the bottom row of figures; the relationship is not monotonic, but exhibits a sharp spike at around 80-85% correct, reflecting that short SOAs
had lower visibility than long SOAs in spite of having similar task performance

specified with parameters 6. ngai, (Resp;|Stim;) is a count of how
many times a subject actually produced Resp; after being shown
Stim}-.

In the current study, the subject has 8 possible responses
from which to select (2 stimulus classification options x 4 levels
of visibility rating), and there are 16 stimulus types (2 stimulus
shapes x 8 levels of stimulus-mask SOA). The set of parameters
0 for each model is listed above in the section titled “Model
descriptions.”

The set of parameters 6 that is most likely given the
observed data is the maximum likelihood parameter estimate.
The signal detection models under consideration in this study
differ in the distributions of Proby(Resp;|Stim;) values they can
produce, which in turn determines the extent to which they can
fit the data well and achieve a high maximum likelihood in the
multinomial model.

Note that models were not fit to summary statistics of per-
formance such as percent correct or average visibility. Rather,
models were fit to the full distribution of probabilities of each
response type contingent on each stimulus type. From this full

behavioral profile of stimulus-contingent response probabil-
ities, we can derive various summary statistics such as percent
correct and average visibility (Fig. 4), as well as type 2 perform-
ance (Fig. 5). Thus, the behavioral data shown in these figures
are not the data upon which the models were explicitly fit, but
rather different ways of highlighting aspects of the model fit to
the full set of response counts for every stimulus type.

We fit all models under consideration to the observed data
by finding the maximum likelihood parameter values 0.
Maximum likelihood fits were found using a simulated anneal-
ing procedure (Kirkpatrick et al., 1983). Model fitting was con-
ducted separately for each subject’s data.

Formal model comparison

The maximum likelihood associated with each model charac-
terizes how well that model captures patterns in the empirical
data. However, comparing models directly in terms of likelihood
can be misleading; greater model complexity can allow for
tighter fits to the data but can also lead to undesirable levels of
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Figure 5. Model fits for type 2 data. In addition to the distinctive dissociation between task performance and visibility (Fig. 4), the behavioral
data also included a set of type 2 data that provided a challenge for model fitting. By “type 2 data,” we refer to the probability of giving different
levels of visibility ratings conditional upon task performance. (Top panel) Type 2 hit rate (HR; probability of high visibility for correct responses)
and type 2 false alarm rate (FAR; probability of high visibility for incorrect responses) as a function of SOA. Note that for ease of visualization,
here we plot only a single (type 2 HR, type 2 FAR) pair based on a median split of the visibility rating scale, although in principle a four-point
rating scale yields three such pairs, since there are three ways to collapse the four-point scale into a binary distinction between “high” and
“low” visibility. (Bottom panel) meta-d’ as a function of d’, where each data point corresponds to one SOA. SDT models predict that meta-
d’'=d’, i.e. that increases in task performance manifest as increases in the discriminability of correct and incorrect trials by subjective ratings
of confidence or awareness. This improved discriminability of task performance manifests as a divergence of type 2 hit rate and type 2 false
alarm rate. Although meta-d’ was lower than d’ at all SOA in this dataset, the Single Channel model could not reproduce this pattern as it is
constrained such that it can only yield values of meta-d’ equal to d’ (Maniscalco and Lau, 2012; Maniscalco and Lau, 2014). The best performing
Dual Channel model is not rigidly constrained in this way, but still produced meta-d’ values close to d’. In contrast, the Hierarchical model pro-
duced a meta-d’ vs d’ curve that lies well below the line of unity, providing a closer fit to the data. Note that meta-d’ was computed using all
three available (type 2 HR, type 2 FAR) pairs for each SOA, i.e. it was not computed based on a median split of visibility

overfitting, i.e. the erroneous modeling of random variation in We use the likelihood of each model, given the data, as a
the data. The Akaike Information Criterion (AIC), motivated by basis for model comparison:

considerations from information theory, provides a means for

comparing models on the basis of their maximum likelihood L(model,|data) o o H(AIC ~AIC ;)

fits to the data while correcting for model complexity (Burnham
and Anderson, 2002). We used AIC,, a variant of AIC which cor- AICq; is the AIC, for model i and AICc,, is the lowest AIC, ex-

rects for finite sample sizes: hibited by all models under consideration. These model likeli-

hoods can be scaled to sum to 1, and the resulting “Akaike

AIC. = —2logL(6|data) + 2K< )’ weights” reveal the relative weight of evidence for each model
(n-K-1) as evaluated by its fit to the data, correcting for model
complexity.
where K is the number of parameters in the model and n is the
number of observations being fit (i.e. n=_800 trials). Lower val- ed(AlC, —ALC, )
ues of AIC. are desirable because they indicate a higher model Wi = ZM o (AICe, -AIC. )
m=1

likelihood and/or a lower model complexity (lower number of
parameters).
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The Bayesian Information Criterion (BIC) is one alternative
measure to AIC that can be used for model selection (Burnham
and Anderson, 2002). To assess the relative merits of AIC. and
BIC for the present data, we simulated data for the best-per-
forming models in each model class (see “Results” section) and
then fit these models to the simulated data to compare how
well AIC. and BIC could accurately detect the model that had
generated the simulated data (Supplementary Materials, “Model
comparison analysis recovery of model-generated data”). This
analysis suggested that AIC. is the more suitable measure of the
two for the present data, as it exhibited less bias in its model re-
covery than BIC, and BIC exhibited a particular weakness for ac-
curately classifying Hierarchical models (Supplementary Fig.
S1). We also present full model comparison results using both
AIC. and BIC in the Supplementary Materials (“Expanded model
comparison results”).

Results

We replicated previous findings that objective task performance
and subjective ratings of stimulus visibility can dissociate in the
metacontrast masking paradigm (Lau & Passingham, 2006; Fig.
3). Both task performance and visibility follow U-shaped func-
tions of SOA between stimulus and mask. The dissociation
manifests as an asymmetry in the two curves, such that there
exist SOAs where task performance is similar and yet stimulus
visibility differs. The dissociation is made more plainly visible
by plotting visibility ratings as a function of task performance,
as in the right panel of Fig. 3B. Although visibility is a roughly
linear function of task performance across most SOAs, visibility
at the SOA of 16.7 ms is markedly lower than would be expected
from the other SOAs exhibiting similar levels of task
performance.

This dissociation is precisely the feature of the data from the
metacontrast masking paradigm that we hoped to use to lever-
age a decisive model comparison analysis for the SDT models
under consideration. Thus, we selected a subset of subjects who
most markedly exhibited the dissociation (n=20; Fig. 3B) and
used this group of subjects for all model comparison analyses
reported below. The remaining subjects did not exhibit a strong
dissociation (Fig. 3D) and thus did not provide suitable inform-
ative data for model comparison. In the “Expanded model com-
parison results” section of the Supplementary Material, we
show that our main conclusions are robust against particular
choices for subject selection.

Complete model comparison results are listed in Table 1. To
simplify analysis, we focus on comparing the best-performing
models in each model class (i.e. the models with the highest
average Akaike weight within each model class). These are the
models titled “Single Channel CV,” “Weighted Dual Channel,”
and “Constant Noise + Decay.” Details of model specifications
can be found in Materials and Methods section under the head-
ing “Model Descriptions.”

Figure 4 displays the fits of these models to stimulus classifi-
cation accuracy and mean visibility ratings at each SOA. In the
top panel, we plot average percent correct and visibility across
subjects at each SOA, as well as the average model fit for these
same data across subjects. The same data are replotted in the
bottom panel to show mean visibility as a function of accuracy,
so as to emphasize the strong dissociation between the two
found in the behavioral data. Visual inspection suggests that
the best Single Channel model qualitatively captures the per-
formance/visibility dissociation, yet systematically underesti-
mates task performance at all SOAs. The best Dual Channel

model is not successful at capturing the dissociation. In con-
trast, the Hierarchical model provides a close fit to both the task
performance and visibility curves.

Another way of probing the relationship between objective
task performance and subjective visibility rating is to analyze
the behavior of subjective ratings conditioned on stimulus clas-
sification accuracy, what has been called “type 2” analysis to
distinguish it from the “type 1” analysis of basic stimulus identi-
fication performance (Clarke et al., 1959; Galvin et al., 2003). In
the top panel of Fig. 5, we show model fits to type 2 hit rate [HR;
p(high visibility | correct)] and type 2 false alarm rate [FAR;
p(high visibility | incorrect)], where “high visibility” is defined
for each subject as a visibility rating greater than that subject’s
median visibility rating across all trials. In the bottom panel we
plot meta-d’, a measure of how well subjective rating discrimin-
ate between correct and incorrect trials (Maniscalco and Lau,
2012; Maniscalco and Lau, 2014), as a function of d’. Each point
in the curve corresponds to the meta-d’ and d’ values from one
of the eight SOA conditions. Meta-d’ is defined such that it
equals d’ for an observer whose behavior conforms perfectly to
traditional SDT predictions. Thus, the line meta-d’=d’ dis-
played in these plots depicts the SDT prediction, and indeed the
Single Channel model produces a meta-d’ curve lying exactly
along this line, thus systematically overestimating subjects’ ac-
tual meta-d’. The Dual Channel model allows for some devi-
ation from the Single Channel prediction, yet not in such a way
that captures the patterns in the data; the Dual Channel model
also systematically overestimates meta-d’. The Hierarchical
model is unique among the models considered here in its ability
to capture the fact that meta-d’ in this data set is systematically
below traditional SDT prediction.

The results reported in Fig. 5 are easy to intuit. For the Single
Channel model, the strong relationship between type 1 per-
formance (d’) and type 2 performance (meta-d’) is due to the
fact that they are based on the same underlying information;
there is no additional process by means of which the quality of
information available to type 1 and type 2 mechanisms could
differ. Thus, this fundamental assumption of the Single
Channel models makes them somewhat inflexible in capturing
variation in the relationship between type 1 and type 2 perform-
ance. In principle, Single Channel models can reduce type 2 per-
formance without affecting stimulus classification accuracy by
supposing that type 2 criterion setting is a noisy process, such
that the placement of the criteria varies randomly from trial to
trial (Mueller and Weidemann, 2008), but this class of models
gave poor overall fits to the current data set (Table 1).

One may expect the Dual Channel model to fare better be-
cause it postulates two different processes. However, this was
not the case. The reason is that the “conscious” channel essen-
tially acts like a Single Channel model, supposing a tight rela-
tionship between task performance and subjective visibility,
and the “unconscious” channel is limited in the extent to which
it can interfere with fully “conscious” processing. In the original
implementation of the Dual Channel model (Del Cul et al., 2009),
the processing of the “unconscious” channel only manifests in
behavior on trials where the subject reports not seeing the
stimulus, whereas trials where the subject does report seeing
the stimulus are only affected by the “conscious” channel.
Thus, the unconscious channel can only alter the relationship
between type 1 and type 2 performances by allowing for extra
degrees of freedom in type 1 performance for “unconscious” tri-
als. For “conscious” trials, task performance and visibility rating
are still controlled by the same underlying source of informa-
tion and thus are still constrained in how they may covary,
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similar to Single Channel models. Thus, in many instances Dual
Channel models may be limited in their ability to produce type
2 Receiver Operating Characteristic (ROC) curves that deviate
strongly from Single Channel predictions. This constraint can
be seen in Fig. 5, in which the Dual Channel model produces
meta-d’ values that are close to the Single Channel expectation
of meta-d’=d’.

It is possible that Dual Channel models featuring more ex-
tensive and complicated interactions between the two channels
could fare better, but such models would potentially constitute
a departure from the fundamental dichotomy between “con-
scious” and “unconscious” processing streams that arguably is
the main conceptual motivation for proposing the Dual
Channel class of models. As it stands, the best Dual Channel
model we tested already posits that in cases of high conflict, the
“unconscious” channel can modulate visibility ratings made by
the “conscious” channel; simpler Dual Channel models that bet-
ter respected the distinction between “conscious” and “uncon-
scious” processing performed worse (Table 1).

In contrast, the dissociation between type 1 and type 2 per-
formance is more naturally captured by Hierarchical models, as
they stipulate a less restrictive relationship between the quality
of information available for type 1 and type 2 decision making.
Changing the degree to which the evidence becomes degraded
at the second stage of processing provides a means of changing
the patterns of subjective rating without affecting basic task
performance, which is determined by the first stage of process-
ing. Degradation of signal quality at the second stage of process-
ing also provides a natural mechanism for degradation of type 2
performance, as manifested in levels of meta-d’ below the trad-
itional SDT expectation (Fig. 5).

One feature of the average Hierarchical model fit to the meta-
d’ and d’ data that may appear puzzling at first is that it seems
to overestimate d’ for certain SOA (Fig. 5) while not overestimat-
ing percent correct at any SOA (Fig. 4). This is likely due to the
fact that for some subjects at certain SOAs, the Hierarchical
model fit produced very high d’ values (>6). At near-ceiling levels
of task performance, large changes in d’ correspond to small
changes in percent correct. For instance, for a subject with un-
biased responding, d’=4 corresponds to 97.7% correct, whereas
d’ =6 corresponds to 99.9% correct. Thus it is likely that for sub-
jects at SOAs with near-ceiling task performance, the best over-
all fit to the data was one that slightly overestimated percent
correct (and thus largely overestimated d’) to capture other fea-
tures of the overall data set, such as mean visibility rating.

As models become more complex, in general they become
better able to capture real patterns in data, but also become
more prone to erroneously capture noise in the data (overfit-
ting). Thus, we conducted formal model analysis using the AIC,
which rewards models for closeness of fit to observed data
while punishing them for complexity (number of parameters).
In Fig. 6, we present model comparison results based on a fi-
nite-sample correction of AIC, AIC. (Burnham and Anderson,
2002). Overall, the hierarchical category of models collectively
outperformed the Single Channel and Dual Channel models
(top panel), and this pattern held up when comparing only the
best models in each category (bottom panel). Thus, the superior
goodness of fit for the Hierarchical model evident in Figs 4 and 5
cannot be attributed to overfitting. In fact, the three best models
in each model category, though visibly differing in quality of
data fitting, had essentially the same number of parameters
(Single Channel and Dual Channel, 23; Hierarchical, 24).

One caveat for this model comparison analysis is that our
three model classes had unequal numbers of models. We tested
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Figure 6. Model selection results. Formal model comparison was con-
ducted using a finite sample size correction of the Akaike
Information Criterion (AIC.), which rewards models for closely fit-
ting observed data while punishing models for the degree of com-
plexity (i.e. number of free parameters; for list of free parameters for
all models please see “Materials and Methods” section). For ease of
interpretation, we display a transformation of AIC. values into
Akaike weights, which quantify the information theoretic evidence
in favor of each model such that the weights sum to 1 (Burnham and
Anderson, 2002). (Top panel) Model selection on all 26 models. Black
bars plot the across-subject average of the Akaike weights that were
maximal in each model class for each subject. White bars plot the
probability that the maximum Akaike weight across all 26 models
belonged to a given model class. For both measures, the value for
the Hierarchical model class was roughly three times higher than
that of the Dual Channel model class and roughly four times higher
than that of the Single Channel model class. (Bottom panel) Similar
results were found when restricting the analysis to the best models
in each model class. Best models were defined by computing the
average Akaike weight for all 26 models, and then selecting the mod-
els in each model class with the maximum average Akaike weight.
Full model comparison results can be found in Table 1

4 Single Channel models, 10 Dual Channel models, and 12
Hierarchical models. All else being equal, the model class con-
taining the greater number of models will tend to be favored.
We attempted to mitigate the impact of this caveat in two ways.
First, we found the maximum Akaike weight within each class
for each subject and compared the model classes in their aver-
age maximum weight (Fig. 6, top panel). Second, we selected
the one model from each class that had the largest average
Akaike weight across subjects, and performed a new model
comparison analysis on this restricted subset of models (Fig. 6,
bottom panel). Future work may incorporate alternative strat-
egies, such as weighting each model class by a prior probability
based on the number of models being considered for each
model class (Donkin et al., 2015).

We can derive further insight into the way the best models
in each category captured the data by investigating their param-
eter values (Fig. 7).

The fit for the best-performing Single Channel model indi-
cates a U-shaped curve for o, the standard deviation of the per-
ceptual evidence distributions, such that ¢ takes on higher
values at longer SOAs. When criteria are held constant across
SOA (a stipulation for all models, see “Materials and Methods”
section), larger values of ¢ entail higher levels of mean visibility
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Figure 7. Parameter values from model fits. Parameters for the best fitting models from each model class—“Single Channel CV,” “Weighted Dual
Channel,” and “Constant Noise + Decay”’—are plotted. In addition to the depicted parameters, each model fit also specified values for seven de-
cision criteria (data not shown). For descriptions of model structure and parameters, see “Materials and Methods” section

rating (see e.g. Fig. 2), and yet the model can predict similar lev-
els of task performance at short and long SOAs since task accur-
acy depends on d’=pgi/c. In this way, provided that the
standard deviations of the evidence distributions can vary inde-
pendently from their distance, the Single Channel model can
capture the accuracy/visibility dissociation in the behavioral
data (Fig. 4). Thus, in order for the Single Channel model to cap-
ture this data, it must assume that the variance of the internal
signal is highest at long SOAs where task performance and visi-
bility are maximal. Although such a Poisson-like correlation of
signal and noise is not in itself implausible, the specific patterns
predicted are some causes for doubt. For instance, the model
predicts that on average, the signal pgir at SOAs Oms and
100ms is roughly equal, and yet the simultaneous presentation
of stimulus and mask gives rise to perceptual evidence that is
less noisy than when their presentation is separated by a full
100 ms. It seems more likely that, controlling for the magnitude
of the absolute signal, stimulus representations should be nois-
ier when the mask is presented simultaneously than when the
mask is presented 100 ms later.

The best-performing Dual Channel model predicts that per-
ceptual sensitivity is greater in the “unconscious” channel than
in the “conscious” channel for several short SOAs. Because this
model resets visibility ratings to 1 when the two channels dis-
agree on stimulus classification, setting the sensitivity of the
“unconscious” channel higher at the short SOAs has the effect
of increasing the frequency of disagreements between the two
channels, thus reducing visibility at those SOAs without having
a drastic effect on task performance. This allows visibility to be
lower at shorter SOAs than at longer ones even though task per-
formance at those SOAs is similar. However, the model only
manages to produce a somewhat weak dissociation between
task performance and stimulus visibility (Fig. 4). Furthermore, it

seems unlikely that processing in an unconscious channel
could be so robustly high and consistently superior than con-
scious processing across several SOAs.

The best-performing Hierarchical model predicts that per-
ceptual evidence decays in the second stage of “subjective” pro-
cessing more readily at short than at long SOAs, thus leading to
lower overall levels of visibility at the short SOAs in spite of
similar stimulus discrimination sensitivity. In contrast, the
model supposes that noise at the late processing stage is inde-
pendent of SOA. This seems plausible if we imagine that signal
transmission depends in part on the processing that occurs in
early sensory areas, whereas the noise intrinsic to later process-
ing stages is independent of the noise in earlier stages.

The structure and parameter values of the Hierarchical
model are also consistent with previous empirical findings from
experiments focusing on the dissociation between objective
task performance and subjective ratings of visibility. For in-
stance, Lau and Passingham (2006) used a similar metacontrast
masking paradigm as in the present study, and in the fMRI
scanner they focused on a short and a long SOA where task per-
formance was matched, and yet the subjective ratings of visual
awareness differed. Higher subjective ratings of visibility at the
long SOA were associated with higher level of activity in the
dorsolateral prefrontal cortex. Interestingly, no significant dif-
ference in level of fMRI activity was found in the posterior sen-
sory areas. This is compatible with the Hierarchical model if we
assume that the prefrontal activity reflects the late stage pro-
cess. Indeed, according to the parameter values of the best
Hierarchical model (Fig. 7), reported visibility was higher at the
long SOAs than it was at the earlier, performance-matched
SOAs due to a superior transmission of perceptual evidence to
the late processing stage (i.e. higher values for the parameter k).
This corroborates well with the fMRI result.



In another study, Rounis et al. (2010) found that transcranial
magnetic stimulation (TMS) to the prefrontal cortex selectively
reduced the type 2 performance of participants’ visibility ratings
without affecting stimulus classification accuracy. Similar find-
ings have been observed in neuropsychological patients with le-
sions to the prefrontal cortex (Fleming et al., 2014). These results
are compatible with the view that objective task performance is
largely driven by sensory signals in posterior regions, which
may reflect the early stage process in the Hierarchical model,
whereas subjective ratings of stimulus visibility may depend on
downstream mechanisms located in the prefrontal cortex.

One might worry that the design of the current experiment
is biased in favor of the Hierarchical model. We required sub-
jects to report stimulus visibility after they reported stimulus
identity, with a second key press. Perhaps signal degradation
did occur between the “objective” and “subjective” decisions, in
a fashion predicted by the Hierarchical model, but only because
the design forced subjects to report visibility after reporting
their perceptual decisions. This timing difference between the
two key presses could trivialize our findings.

However, the implicit reasoning behind this argument is
that signal degradation could be artificially introduced by
increasing response time. The longer the subject takes to re-
spond, the more degraded a signal presumably becomes. If this
deflationary account of the modeling results were true, we
might expect that the Hierarchical model’s estimated values of
signal decay and late processing noise should correlate with the
time separating the stimulus classification key press from the
subjective rating key press (henceforth, “rating RT”). However,
the across-SOA correlation between estimated signal decay and
rating RT was not significant for any subject (ps >0.15), and the
average correlation did not differ from zero (Fisher's r-to-z
transform, P=0.4). We plot rating RT and the k parameter of the
Hierarchical model as a function of SOA in Supplementary Fig.
S5. This figure suggests that, if anything, the direction of the re-
lationship between rating RT and signal decay is in the direction
opposite to that posited by the trivializing account. The model
fits predict the highest degrees of signal degradation when rat-
ing RT is smallest, rather than when it is largest. Since the par-
ameter for late processing noise was constant across SOA for
the best Hierarchical model, we cannot compute within-subject
correlations of this parameter with rating RT. We did find that
across subjects, the estimated amount of late noise correlated
with average rating RT, r=—-0.48, P=0.03. However, this result
is in the opposite direction of that proposed by the trivializing
critique regarding two separate key presses. That is, longer rat-
ing RTs were associated with lower estimates of type 2 noise, ra-
ther than greater estimates.

Finally, we note that rating RT was not modulated by SOA
(P=0.4) and that the average rating RT was relatively small
(426 ms). This suggests that the time between the first and the
second key presses was mainly for motor preparation and exe-
cution, i.e. it is unlikely that subjects’ decision making follows a
linear process in which the decision about what visibility rating
to produce is forestalled until after the button indicating the
stimulus identity is pressed. Rather, the decision process for
what visibility rating to produce is likely well underway even
before the initial key press indicating stimulus identity. In our
subjective experience, this is how one would perform the task
as well. Taken together, these results suggest that the success
of the Hierarchical model in fitting the data cannot be trivially
attributed to the two key press design of the task. However, fur-
ther experimental work is needed to shed more light on these
issues.
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Discussion

To compare models of how subjective reports of visibility relate
to objective perceptual processing, we collected data from a
metacontrast masking paradigm that has been shown to induce
dissociations between stimulus classification accuracy and re-
ported levels of visibility across different levels of stimulus-
mask onset asynchroncy (SOA) (Lau and Passingham, 2006; for
further discussion on using this paradigm to dissociate task per-
formance and visual awareness, see Supplementary Materials,
“Viability of the metacontrast masking paradigm for dissociat-
ing objective and subjective processing”). We reasoned that the
dissociation between accuracy and visibility across SOA (Figs 3
and 4) would pose a challenge to models of perceptual decision
making, and thus prove useful for distinguishing among them.
The data contained another feature that also proved difficult for
the models to capture: visibility ratings were not as predictive of
task performance as would be expected under the traditional
SDT model (Fig. 5). Overall, the Hierarchical model provided the
best and most parsimonious fit to the data. The model param-
eters it used to fit the data also seem plausible (Fig. 7), and over-
all the model seems compatible with the previous empirical
findings (Lau and Passingham, 2006; Rounis et al., 2010; Fleming
et al., 2014; Maniscalco and Lau, 2015).

Why was the Hierarchical model successful where the Single
Channel and Dual Channel models were not? The best-perform-
ing Hierarchical model (Constant Noise + Decay) was able to ac-
commodate the relative dissociation between task performance
and visibility ratings by supposing that early-stage perceptual
processing is better transmitted to late-stage processing at long
than at short SOAs. Because the early stage governs task per-
formance and the late stage governs subjective reports, this
allows for long SOAs to have higher subjective visibility than
short SOAs in spite of having similar task performance. The
best-performing Single Channel model (Changing Variance) was
able to accommodate this pattern to some extent by supposing
that perceptual processing becomes more variable at long SOAs,
thus producing sensory signals that more frequently exceed the
observer’s criteria for producing high visibility ratings. However,
although this model captured the gist of the performance-
visibility ~dissociation, it sometimes produced too-high
estimates of visibility ratings or too-low estimates of task per-
formance (Fig. 4, lower left panel).

By comparison, none of the Dual Channel models we con-
sidered appeared to capture the performance-visibility dissoci-
ation particularly well. Our SDT implementation of the
Independent Dual Channel model [which most closely followed
the model of Del Cul et al. (2009); see Supplementary Material]
essentially acts like a Single Channel model with added flexibil-
ity for adjusting task performance at the lowest level of subject-
ive visibility. This provides only a relatively limited mechanism
for adjusting the relationship between task performance and
visibility; holding the parameters of the “conscious” channel
constant, changes in the “unconscious” channel can only influ-
ence task performance to the extent that subjects report the
lowest level of subjective visibility. Thus, this model can accom-
modate only relatively small differences in task performance
for conditions with similar mean levels of reported visibility.
Additionally, because task performance at higher (presumably
conscious) visibility levels cannot be affected by changing par-
ameters of the “unconscious” channel, this model makes the
relatively strong prediction that whatever differences in task
performance do occur for visibility-matched conditions, they
should arise purely from differences in task performance for
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trials with the lowest visibility rating. The best-performing Dual
Channel model (Weighted Dual Channel) was somewhat more
flexible, but still did not adequately capture the dissociation
(Fig. 4, bottom center panel).

In addition to the performance-visibility dissociation across
SOA, we also found that the models differed in their ability to
capture the degree to which visibility ratings were diagnostic of
accuracy on a trial to trial basis. Visibility ratings for incorrect
responses at short and long SOAs were generally higher than
the model fits (Fig. 5, top row), and visibility ratings’ ability to
predict accuracy was generally lower than the model fits (Fig. 5,
bottom row). The Hierarchical model performed best at captur-
ing these data because it posits that the sensory signal accrues
additional noise at late processing stages. This reduces the in-
formation that such sensory signals carry regarding task per-
formance on the trial level, which manifests as higher visibility
for incorrect trials (type 2 FAR, Fig. 5, top row) and lower values
for meta-d’, an index of metacognitive performance (Fig. 5, bot-
tom row). In contrast, the Single Channel model posits that the
same sensory evidence is used to make both the objective re-
sponse and the visibility rating, and thus is considerably less
flexible in the relationships it allows between task performance
and type 2 accuracy (Maniscalco and Lau, 2012; Maniscalco and
Lau, 2014). Dual Channel models behaved similarly to Single
Channel models in this respect, as they primarily differed with
respect to processing at low levels of visibility.

One recent study (Scott et al., 2014) suggests that in artificial
grammar learning tasks subjects can even exhibit above-chance
metacognitive accuracy when task performance is at chance, a
phenomenon the authors named “blind insight.” This suggests
an added degree of freedom in the relationship between task
performance and metacognition that is challenging for any SDT
model to capture, including the Hierarchical model structure, as
typical SDT formulations entail that metacognitive performance
is constrained by task performance (Galvin et al., 2003;
Maniscalco and Lau, 2012, 2014). However, it should be noted
that blind insight has thus far only been observed in AGL and
not in perceptual tasks of the sort investigated here. In previous
investigations of the relationship between metacognitive sensi-
tivity and task performance in visual psychophysics tasks like
the one used here, the information content of subjective ratings
has been shown to be constrained by task performance in the
sense that meta-d’ <d’(Maniscalco and Lau, 2012; Maniscalco
and Lau, 2015), consistent with the findings of the present study
(Fig. 5).

All models we tested were constructed using SDT as a basis
(Fig. 2; Macmillan and Creelman, 2005). In this work, SDT pro-
vided an ideal basis to compare overall model architectures in a
simple but powerful framework. SDT is sufficiently powerful to
be able to dissociate perceptual sensitivity from response bias—
essential for the study of perceptual decision making and sub-
jective reports of visibility—while also being sufficiently general
as to be readily adapted to different model architectures. Using
the same SDT framework for all models also facilitated direct
model comparison by minimizing idiosyncratic computational
differences between the models. Because our SDT models cap-
tured the core computational principles lying behind broadly di-
vergent theories of how perceptual decision making and
subjective visibility are related, the model comparison analysis
sheds light on these broad conceptual issues.

One limitation to this approach is that the conclusions we
have drawn may be somewhat specific to the particular SDT im-
plementations we have used. [However, see the Supplementary
Material for evidence that our SDT implementation of the

Independent Dual Channel model behaves similarly to the Dual
Channel accumulation model in Del Cul et al. (2009).]
Nonetheless, the relative simplicity of the SDT models we have
chosen, in conjunction with the broad differences in the model
classes being compared (Fig. 1), would seem to mitigate such
concerns. We have also endeavored to perform an unusually
comprehensive analysis that directly compares a wide range of
models’ ability to account for the data, rather than simply dem-
onstrating that a single model can produce reasonable fits to
the data.

We also acknowledge that this analysis is driven by the cur-
rent data set and is thus limited by its generalizability. For in-
stance, it is possible that a Dual Channel model may perform
better for other kinds of phenomena (Del Cul et al., 2009; Charles
et al., 2013; Charles et al., 2014). Though the important moral is,
in order to make claims that a certain empirical finding support
a particular model, we need to compare the fit against alterna-
tive models. Future work employing similar formal comparison
strategies needs to be performed in these cases.

Are the models biologically realistic?

On the face of it, the models we considered depict a purely feed-
forward style of information processing. What of the fact that
anatomically, the most related brain regions are linked by both
feedforward and feedback connections? For instance, for the
Hierarchical model it is perhaps natural to think of the first
stage as representing processing in the early sensory regions in
the brain, and the second stage as representing processing in
higher regions such as the prefrontal cortex. In this sense, the
model ignores the presence of top-down modulations from pre-
frontal cortex to early sensory areas. However, formally the
model does not necessarily commit to such anatomical identifi-
cations. Strictly speaking, the model is agnostic as to whether
the late stage is mediated by a feedforward or feedback process;
late stage simply means it is late in the stream of information
processing and thereby inherits the noise of earlier stages.

Even on the plausible and intuitive interpretation that in the
Hierarchical model the first stage reflects early sensory proc-
esses and the second stage fronto-parietal processes, the model
does not deny the existence of feedback connections. Nor does
it deny the existence of parallel pathways as intuitively de-
picted by the Dual Channel model. The Hierarchical model sug-
gests that “with respect to explaining” the relationships and
potential dissociations of objective stimulus responses and sub-
jective visibility ratings, the essential relevant structure of pro-
cessing is hierarchical. This does not mean that the Hierarchical
model explains all facts regarding brain processes or subjective
experience. It is for the same reasons that the Single Channel
model cannot be rejected on the grounds that the brain is
clearly more complex than a single-stage processor.

Implications for theories of visual awareness

One currently popular theory suggests that feedback, and spe-
cifically feedback from extrastriate to primary visual cortex, is
essential for visual awareness (Lamme, 2006; Block, 2007). One
might take the point of view that the feedforward wave of pro-
cessing from primary visual cortex to extrastriate areas repre-
sents an early stage of processing, and that feedback represents
a second stage of processing, such that together they form a
hierarchy.

Another dominant theory of visual awareness is the global
workspace theory (Dehaene et al.,, 2003; Dehaene et al., 2006),
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according to which early sensory processing itself does not sup-
port conscious experience. To enter consciousness, the early
perceptual signal must propagate into a second stage of pro-
cessing mediated by a global workspace structure located in
prefrontal and parietal cortices. Considerations like these may
give the impression that both theories of visual awareness dis-
cussed above are compatible with the Hierarchical model.

However, it is important to emphasize that the present work
focuses on the dissociation between objective task performance
and subjective reports. According to the Hierarchical model,
manipulation of the second stage of processing changes sub-
jective reports but not task performance. But the feedback
model and the global workspace model would not make such
predictions. In these models, the supposed second stage of pro-
cessing supports both subjective experience as well as amplifi-
cation of the perceptual signal itself, which is essential for
objective task performance. Thus, according to these theories, if
the second stage of processing (feedback to striate cortex, or glo-
bal workspace activity) is disrupted, both objective task per-
formance and subjective reports will be affected. Therefore,
these models bear more functional resemblance to the Single
Channel models than the Hierarchical models. In order for such
theories to obtain a reduction in subjectively reported level of
awareness while keeping task performance constant, one nat-
ural solution would be that the perceptual signal from a separ-
ate, unconscious channel (e.g. a subcortical route) would need
to be increased to compensate for the signal loss in the “con-
scious” channel. In other words, a Dual Channel model would
need to be stipulated.

Therefore, as far as dissociations between task performance
and subjective reports are concerned (e.g. when we are specific-
ally trying to explain the kind of performance-matched differ-
ence in subjective rating and type 2 performance depicted in
Figs 4 and 5), both aforementioned theories are more congenial
with Single Channel and Dual Channel models than with
Hierarchical models (Del Cul et al., 2009; Lau, 2011). The present
results are thus surprising, or maybe even problematic, for
these theories.

Potential relations to the memory literature

It has been proposed that there are two distinct and dissociable
memory systems, one supporting explicit, “conscious” recollec-
tion, and the other more relevant for vaguer judgments of famil-
iarity or feelings of knowing, or unconscious priming behavior
(e.g. Jacoby, 1991; Hintzman and Curran, 1994). However, it has
also been argued that a single system view is more parsimoni-
ous (Squire et al., 2007; Wixted, 2007; Berry et al., 2008), and that
the apparent dissociation between conscious recollection and
unconscious memory is due to different levels of activation
within the same system. Our study may contribute to this con-
troversy, because the paradigms used in some of these memory
studies are conceptually very similar to the paradigm used here:
subjects make an objective judgment about the state of the
world (identity of visual stimulus, or whether an item has been
presented previously or not), and then make a subjective judg-
ment about how they subjectively feel about the first-order pro-
cess (high versus low visibility, or “Remember” vs “Know” in
some memory studies). Here we offer a third alternative to this
debate between a single system versus two dissociated systems:
it could be that there are two processes that work in hierarchy.
Future studies may employ the same model comparison
method to arbitrate which is the best model for memory func-
tion by fitting the models to experimental data where the
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objective memory performance and the subjective reports of
recollection experience dissociate.

Conclusion

Here we introduce a distinction between different signal pro-
cessing architectures supporting the generation of subjective re-
ports of visual awareness. Above we discussed some limitations
of this approach, such as that it depends on the specific fitted
dataset. Regardless of whether these results hold true, one im-
portant message is that we can go beyond the traditional as-
sumption that perception depends on a single decision-making
process (Macmillan and Creelman, 2002). These simple single
process models have enjoyed great success in explaining many
aspects of perception, and remain powerful contenders because
of their simplicity, as shown in our model comparison analysis
(which punishes complex models). But in cases where objective
task performance and subjective reports dissociate, it may be
important to consider perceptual decision models that postu-
late more than a single process, at least as possibilities. Our in-
vestigation suggests that, of the two models which postulate
two processes, the Hierarchical model is superior to the Dual
Channel model.

Supplementary data

Supplementary data is available at

Consciousness Journal online.
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