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Abstract. [Purpose] This study aimed to develop and validate a method for identifying factors that may cause 
a fall during the pre-impact fall period using wearable sensors. [Participants and Methods] The participants were 
23 young people from the public data set (mean age, 23.4 years). Acceleration and angular velocity information 
obtained from sensors attached to the participant’s waist was used to generate the pre-impact fall. The cause of the 
fall (slip, trip, fainting, get up, sit down) was then classified with and without the addition of activity of daily living 
data using three different support vector machine. In addition, we investigated the influence of lead time (0–2.0s) 
on accuracy. [Results] The quadratic and cubic support vector machine identified the activity of daily living and 
fall patterns more accurately than the linear support vector machine, and the cubic support vector machine was 
better for classification, although the difference was slight. The greatest accuracy for predicting the cause of the fall 
(87.9%) was obtained when the cubic support vector machine was used, activity of daily living was factored into the 
analysis, and the lead time was 0.25 sec. [Conclusion] Support vector machine can identify the cause of the fall dur-
ing the pre-impact fall period. Appropriate individualized interventions may be designed based on the most likely 
cause of fall as identified by this analysis method.
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INTRODUCTION

Because the severity of injuries due to falls increases with age, they pose a major health threat to older individuals and 
can sometimes lead to death1). Thus, it is important to prevent falls because they have a significant effect on an individual’s 
mobility and independence2). Understanding various information related to the risk of falls is necessary to prevent them. 
Previous studies using assessment sheets3) and walking tests4, 5) did not measure the movements involved in a fall and could 
determine only the potential fall risk. A number of studies have measured actual fall situations, and wearable sensors have 
been used to identify the occurrence of a fall6–8). The purpose of those studies was to detect the impact on the floor (i.e., after 
the person had fallen down on the floor) and to inform the caregiver that the individual required help, with the aim of reducing 
the amount of time the person remained lying with loss of unconsciousness. However, those previous studies were unable 
to provide information that could help avoid the injury, because the fall had already occurred. Therefore, to prevent falls, 
research should focus on the detection of factors related to falling in the period before floor impact. Bourke et al.9) defined a 
preimpact fall as the movement that occurs before floor impact and predicted a fall occurrence during a preimpact fall period. 
In addition to detecting the presence of a fall during the preimpact fall period, Wu et al.10) classified the direction of the fall. 
Although there have been studies determining the presence and direction of falls before impact, none of these studies have 
been able to determine the reason for the fall, such as tripping or fainting.
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To take more effective action to prevent falls, it is necessary to determine the detailed factors that cause falls. If these fac-
tors are understood, it might be possible to take appropriate action to reduce fall risk. In research conducted by Robinovitch 
et al.11), 25% of indoor falls due to tripping were caused by the individual’s getting his or her feet caught on a leg of a chair 
or table, and it was concluded that improvements in environmental planning and furniture design were necessary. Thus, 
determining the factors that cause falls is expected to improve the quality of care by providing an appropriate care plan, such 
as improving the living environment.

Therefore, there is a need for a system that can identify the factors contributing to falls during the preimpact fall period 
by measuring body movement in a real-time operation. Generally, wearable sensors or nonwearable devices can be used to 
measure body motion related to fall detection and prevention. Nonwearable devices mostly measure motion using vision-
based techniques, such as video cameras, or ambience-based techniques such as pressure and thermal sensors12). However, 
nonwearable devices have only a limited measurement area and are considered to be difficult to use in daily life. In contrast, 
wearable sensors are often used to measure body motion because of they are smallness, lightweight, and low cost. In addition, 
as long as the sensor is worn, the measured data can be acquired without any restriction of location, which is suitable for this 
research. For this reason, in this study, we selected a wearable sensor that includes an accelerometer and gyroscope, as this is 
the most widely used sensor combination for detecting falls before impact10).

Machine learning has been widely used in research on fall detection systems because of its high accuracy in identifying 
falls as compared with threshold-based algorithms. Among a variety of machine learning techniques, the support vector 
machine (SVM) is the most commonly used13). The SVM can effectively handle high-dimensional data such as fall detection 
without the risk of overtraining. This SVM is better at discriminating distinct matters between falls and activities of daily 
livings, because its principle ensures a wide margin for the class to be classified. The SVM has also good memory efficiency 
and is suitable for wearable usage. Therefore, we decided to use the SVM as the algorithm in this study.

The purpose of this study was to develop and validate a method for identifying factors during the preimpact fall period 
using wearable sensors. Specifically, we set the period of preimpact fall to allow adequate time to distinguish falls/ADLs 
based on motion data. Here, we define the impact point as the time at which the body contacts the floor, and the preimpact 
fall period does not include the impact point. Based on the features extracted from the motion data during the preimpact fall 
period, we used the SVM to correctly classify ADLs and patterns of fall and estimate the fall factors. Furthermore, the change 
in the discrimination rate of fall factors according to the length of the preimpact fall period will clarify the necessary time 
before the impact point.

PARTICIPANTS AND METHODS

The proposed method classifies fall situations by machine learning using acceleration and angular velocity obtained from 
an inertial sensor (Fig. 1). In this study, we analyzed the open data set from Sucerquia et al. (SisFall Dataset)14) to investigate 
whether falls/ADLs could be classified by using inertial sensor data of body motion before the impact point. The experiment 
for this dataset was approved by the Bioethics Committee of the Faculty of Medicine of the University of Antioquia UDEA 
(Medellin, Colombia), approval number 005 April 9, 2015. We chose this data set for the following reasons:

Fig. 1.  Overview of the classification of fall causes.
ADL: activity of daily living.
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• This data set was cited in a recent review article on the comprehensive analysis of open data sets used for wearable fall 
detection systems15).

• The data were obtained from a sensor mounted on the waist, which was considered to be the optimal sensor position16).
• This data set included the most variety of fall patterns in the review article.
• This data set also included information on fall factors.
The data set consisted of 15 fall patterns and 19 patterns of ADLs collected from a waist-mounted accelerometer (Analog 

Devices, Norwood, MA, USA) and gyroscope (Texas Instruments, Dallas, TX, USA). Data were collected from 23 young 
people and 15 older people. In this data set, fall data were obtained by emulating young people, and older individuals did not 
emulate a fall. Therefore, in this study, we did not use the data from the older participants but only data from the younger 
individuals (11 males, 12 females, age 23.4 ± 3.3 years, height 165.4 ± 10.0 cm, weight 59.5 ± 11.4 kg). A total of 1,723 falls 
and 1,809 ADLs were included. Table 1 presents the details of the included falls and ADLs. The sampling rate was 200 Hz, 
and both acceleration and angular velocity data were used as the input for machine learning. Table 2 shows the two patterns 
of falls to be classified: 15 defined in the data sets and 5 defined in this study according to the cause of the fall.

Because the raw data from the data set contained the impact point, we needed to segment the data to obtain preimpact 
information. The raw data consisted of temporal data on three axes on acceleration/angular velocity. After calculating the 

Table 1.  Types of falls and activities of daily living (ADLs) in SisFall dataset14)

Code Activity of fall
F01 Fall forward while walking caused by a slip
F02 Fall backward while walking caused by a slip
F03 Lateral fall while walking caused by a slip
F04 Fall forward while walking caused by a trip
F05 Fall forward while jogging caused by a trip
F06 Vertical fall while walking caused by fainting
F07 Fall while walking, with use of hands in a table to dampen fall, caused by fainting
F08 Fall forward when trying to get up
F09 Lateral fall when trying to get up
F10 Fall forward when trying to sit down
F11 Fall backward when trying to sit down
F12 Lateral fall when trying to sit down
F13 Fall forward while sitting, caused by fainting or falling asleep
F14 Fall backward while sitting, caused by fainting or falling asleep
F15 Lateral fall while sitting, caused by fainting or falling asleep
Code Activity of ADL
DO01 Walking slowly
DO02 Walking quickly
DO03 Jogging slowly
DO04 Jogging quickly
DO05 Walking upstairs and downstairs slowly
DO06 Walking upstairs and downstairs quickly
DO07 Slowly sit in a half height chair, wait a moment, and up slowly
DO08 Quickly sit in a half height chair, wait a moment, and up quickly
DO09 Slowly sit in a low height chair, wait a moment, and up slowly
DO10 Quickly sit in a low height chair, wait a moment, and up quickly
DO11 Sitting a moment, trying to get up, and collapse into a chair
DO12 Sitting a moment, lying slowly, wait a moment, and sit again
DO13 Sitting a moment, lying quickly, wait a moment, and sit again
DO14 Being on one’s back change to lateral position, wait a moment, and change to one’s back
DO15 Standing, slowly bending at knees, and getting up
DO16 Standing, slowly bending without bending knees, and getting up
DO17 Standing, get into a car, remain seated and get out of the car
DO18 Stumble while walking
DO19 Gently jump without falling (trying to reach a high object)
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norm of the acceleration in the three axes, the maximum norm value was set to be the impact point. A point before the impact 
point was defined as the cut point, and the time window containing the data before the cut point was defined as W1 (Fig. 2). 
The interval between the cut point and the impact point (hereafter called the lead time) was varied in 0.25-sec steps between 
0.0 sec and 2.0 sec to compare the accuracy of the classification. W1 was set to a fixed length of 1.5 sec, which was the 
suitable window size for fall detection17). When segmenting, if there were no data and the window size was not adequate, the 
data were excluded. There was no impact point for ADLs. ADL data were segmented into fixed lengths of 1.5 seconds, similar 
to falls, at random locations. The purpose of feature extraction was to collect information that could correctly classify falls 
and ADLs. Thirteen types of features were extracted17): mean, variance, standard deviation, maximum, minimum, median 
absolute deviation, range, median, number of local maximum values, number of local minimum values, skewness, kurtosis, 
and sum. The features were extracted from the acceleration and angular velocity of the three axes. Subsequently, 78 features 
were used in total. The SVM was used as a machine learning model, and its accuracy was compared with that of the linear, 
quadratic, and cubic SVMs. These models differ in the way of drawing boundaries for classification. They use a kernel func-
tion18) to set the boundary, and the order of the function is first, second, and third order, respectively. Since it is impossible to 
find out which of these bounds is suitable without training, we compared the accuracy of the three models.

The accuracy was evaluated using a k-fold cross-validation approach, where k=10. This approach uses one of the 10 
randomly divided groups for test data and the rest for training. The analysis was evaluated in two types of models: one model 
included only falls in the training and test data, and the other model included falls and ADLs. All work was conducted in 
MATLAB2018 (MathWorks, Natick, MA, USA).

RESULTS

In this study, we evaluated the performance of 23 young participants in terms of the accuracy in the patterns using only 
falls data (Table 3), adding ADL data to those patterns (Table 4), and accuracy focusing only on falls when ADL was added 
(Table 5). With or without ADL data, the quadratic and cubic SVMs gave better results than the linear SVM did. They also 
showed similar results when ADL data were added. These results suggest that quadratic and cubic SVMs were suitable for 
detecting the risk of falling in the preimpact period. In the case of the five types of classification without ADL, the best 
performance was 83.0% for the cubic SVM with a lead time of 0.50 sec and 87.9% with 0.25 sec when ADL was added. 
Regardless of the models, the accuracy of the classification tended to decrease as the lead time increased. The cubic SVM 
achieved approximately 80% classification accuracy when dealing only with falls in the range of 0.25 to 0.50 sec, except for 
0.0 sec, which included the impact point. When the lead time was less than 0.50 sec, the addition of ADL resulted in a small 
number of the misclassification of fall causes, and the proposed method was able to reliably discriminate between falls and 
ADL.

DISCUSSION

In this study, data regarding falls were cut before the impact point to create a simulated preimpact fall period. We inves-
tigated whether the preimpact fall period could be classified according to the cause of the fall and whether the period could 
also be classified when ADLs were added. From the experimental results, it was possible to identify each fall factor during 

Fig. 2.  Segment of the window in the preimpact fall state.

Table 2.  Types of causes of falls defined in this study14)

Type of fall Code
Slip F01–F03
Trip F04, F05
Faiting F06, F07, F13–F15
Get up F08, F09
Sit down F10–F12
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the preimpact fall period, with an accuracy of approximately 80% between 0.25 and 0.50 sec of lead time. The fact that the 
quadratic and cubic SVMs performed better than the linear SVM suggests that it was difficult to classify fall factors using 
a simple linear approach. The reason for this was that it was not possible to distinguish falls from ADL in a linear fashion, 
and it was desirable to set the boundaries of the classification in a higher dimension using a second- or third-order kernel 
function. Although the difference between the quadratic and cubic SVM was only a few percentage points, it could be said 
that the cubic SVM was a more suitable model for classification with the addition of ADL. Performance identifying only the 
fall data with a lead time of 0.25–1.0 sec was generally the same or better than performance with data including the impact 

Table 3.  The accuracy using only falls data (unit: %)

Lead time (sec)
5 type 15 type

Linear Quadratic Cubic Linear Quadratic Cubic
0 71.8 78.9 79.2 68.9 75.2 76.7
0.25 73.2 80.3 82.9 66.6 74.5 76.1
0.5 75.6 82.8 83.0 64.8 73.3 74.3
0.75 74.8 80.4 82.6 59.2 67.9 67.9
1 74.1 79.9 81.0 56.2 61.1 63.1
1.25 73.8 77.5 79.0 52.0 58.9 61.1
1.5 72.2 77.4 78.7 50.0 56.0 58.4
1.75 68.1 75.5 77.0 46.8 52.8 54.9
2 64.3 71.3 74.0 41.3 48.5 50.4
Linear, Quadratic, and Cubic are the kernel type of support vector machine (SVM).

Table 4.  The accuracy with activity of daily living (ADL) added (unit: %)

Lead time (sec)
5 type+ADL 15 type+ADL

Linear Quadratic Cubic Linear Quadratic Cubic
0 85.4 89.5 90.0 84.3 87.5 88.4
0.25 77.9 87.4 87.9 77.8 84.3 85.4
0.5 74.7 83.7 84.8 72.2 79.7 80.0
0.75 74.0 80.3 81.9 68.9 76.3 76.8
1 72.0 79.4 79.9 65.9 71.7 72.7
1.25 71.6 77.2 78.2 63.2 70.0 71.3
1.5 70.6 75.6 76.8 61.2 68.8 70.1
1.75 68.3 73.9 75.3 59.5 65.7 67.0
2 66.8 71.3 72.7 57.8 64.2 65.2
Linear, Quadratic, and Cubic are the kernel type of support vector machine (SVM).

Table 5.  The accuracy focusing only on falls (unit: %)

Lead time (sec)
5 type+ADL 15 type+ADL

Linear Quadratic Cubic Linear Quadratic Cubic
0 71.3 78.7 80.0 68.6 74.9 76.8
0.25 62.5 78.3 79.6 59.3 70.7 73.6
0.5 60.0 74.9 79.5 49.6 64.3 66.2
0.75 58.1 71.1 74.3 43.3 58.9 60.7
1 53.8 69.0 70.7 36.1 50.5 53.6
1.25 53.0 64.7 68.2 30.2 46.4 50.1
1.5 52.2 61.6 65.8 25.3 44.0 48.5
1.75 48.3 59.3 63.6 20.6 37.4 41.9
2 44.1 54.1 59.4 15.0 32.7 37.7
Linear, Quadratic, and Cubic are the kernel type of support vector machine (SVM).
ADL: activity of daily living.
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point (lead time=0 sec). The classification was possible only in the window of the preimpact state (the impact point was not 
included). We believe there were differences in each factor, such as tripping or slipping, in that state. Therefore, even if an 
older person loses his or her balance and does not impact against the floor because of recovery actions, our method can detect 
and identify the cause of the preimpact fall.

In a previous study of preimpact detection, Wu et al.10) proposed a system consisting of two sensors on the waist and 
thigh to classify three categories: nonfall, backward fall, and forward fall. In addition, using the Kinect, the preimpact fall 
detection system proposed by Xu et al. achieved 75% accuracy with a lead time of 333 msec19). Because these methods 
have limitations such as uncomfortableness and coverage area resulting from the use of multiple sensors, we believe that the 
proposed method has an advantage of having fewer limitations. The proposed method is more practical because it takes more 
fall patterns into account. However, because falls can lead to death, we believe that effective prevention requires a system 
with a reliability of 90% or greater17), and the performance in this study was not enough for actual use in the care field. By 
detecting the differences in each factor leading to a fall and improving the accuracy of the classification, a care plan that suits 
the patient can be provided. In this study, we used the raw data of angular velocity and acceleration in each of the three axes 
as inputs. To discriminate the classification of falls with higher accuracy, it is necessary to increase the number of inputs. For 
example, inputs such as derivatives and norms, as well as additional features, are necessary. As the lead time became larger, 
the performance decreased when ADL was added. This result was similar to a previous study that compared the accuracy of 
preimpact falls10). This was due to the fact that as the cut point moved away from the impact point, the motion of the body 
became closer to ADL rather than a dangerous motion that caused a fall.

One limitation of this study is that we conducted the analysis using emulated falls, not actual falls. Therefore, the data 
might be different from that of an actual state of the preimpact fall. However, it has been shown that sensor data from real-life 
falls have similar characteristics to those from intentional falls20), and these data are important for training machine learning 
models. Another limitation is that the participants in the data set used in this study were young. However, it is ethically dif-
ficult to conduct an experiment using actual falls in people who need care or in older adults. A model trained on healthy young 
people may not be suitable for them. Therefore, there remains a need for future investigations on the effect on classification 
accuracy using real-life data.

Our study showed that it is possible to classify falls by cause in preimpact falls. By improving the accuracy of the data, 
we believe that a monitoring system could be developed for individuals who require long-term care. By using the research 
results, the system identifies the causes of falls. Then, it will be possible to provide appropriate interventions to help those 
who need nursing care in order to avoid falls. For example, when the monitoring system based on our results notices a person 
is tripping frequently, a medical staff can instruct the person to improve foot clearance21) or can suggest to change living 
environment and furniture design11) such as no doorsill. We expect that, in the future, the risk of falls in a patient’s life will 
be monitored, and from this information, appropriate care strategies will be provided to each individual.
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