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Background: The forefront treatment of Parkinson’s disease (PD) is Levodopa.

When patients are treated with Levodopa cerebral blood flow is increased while

cerebral metabolic rate is decreased in key subcortical regions including the putamen.

This phenomenon is especially pronounced in patients with Levodopa-induced

dyskinesia (LID).

Method: To study the effect of clinically-determined anti-parkinsonian medications, 10

PD patients (5 with LID and 5 without LID) have been scanned with FDG-PET (a probe

for glucose metabolism) and perfusion MRI (a probe for cerebral blood flow) both when

they are ON and OFF medications. Patients additionally underwent resting state fMRI to

detect changes in dopamine-mediated cortico-striatal connectivity. The degree of blood

flow-glucose metabolism dissociation was quantified by comparing the FDG-PET and

perfusion MRI data.

Results: A significant interaction effect (imaging modality × medication; blood

flow-glucose metabolism dissociation) has been found in the putamen (p = 0.023).

Post-hoc analysis revealed that anti-parkinsonian medication consistently normalized the

pathologically hyper-metabolic state of the putamen while mixed effects were observed

in cerebral blood flow changes. This dissociation was especially predominant in patients

with LID compared to those without. Unlike the prior study, this differentiation was not

observed when cortico-striatal functional connectivity was assessed.

Conclusion: We confirmed striatal neurovascular dissociation between FDG-PET

and perfusion MRI in response to clinically determined anti-parkinsonian medication.

We further proposed a novel analytical method to quantify the degree of dissociation
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in the putamen using only the ON condition scans, Putamen-to-thalamus

Hyper-perfusion/hypo-metabolism Index (PHI), which may have the potential to be

used as a biomarker for LID (correctly classifying 8 out 10 patients). For wider use of

PHI, a larger validation study is warranted.

Keywords: cerebral blood flow, glucose metabolism, magnetic resonance imaging, neurovascular coupling

hypothesis, positron emission tomography

BACKGROUND

Levodopa (LD) has been the first line of treatment of Parkinson’s
disease (PD) since its introduction. More than 50% of patients
develop Levodopa induced dyskinesia (LID) after 5–10 years of
treatment (1). While the exact cause of LID is still unknown,
epidemiological studies suggest disease duration, symptom
severity, young age at the time of onset, duration of Levodopa
treatment and overall dose are the major risk factors of these
side effects (2). LID can be a very disabling and hard to treat
side effect once it is established. It not only interferes with the
patient’s quality of life but also places a significant burden on the
health care system. Knowledge of how to prevent the onset of
dyskinesia and the optimum way of managing it once it occurs
is an unmet need. Amantadine is, to date, the only US Food and
Drug Administration approved anti-dyskinetic medication that
does not compromise antiparkinsonian medication’s benefit (1),
but it typically loses its efficacy in an average of 8 months (3).

The degree of LID fluctuates throughout the day, so its
documentation is often highly dependent on subjective opinions
of patients, which makes it difficult to conduct a clinical trial
targeting LID. An objective and quantifiable biomarker for LID
is highly desired to monitor the effects of treatment as well as to
identify those individuals at higher risk of developing LID.

In vivo functional brain imaging techniques such as PET
and fMRI have great clinical utility in monitoring disease
progression and response to treatment in patients. Previously,
functional imaging has shown that therapeutic levels of
levodopa normalizes aberrant regional brain metabolism in
Parkinson’s disease patients, in a manner which correlates with
clinical improvement of motor symptoms (4, 5). Radiological
studies in LID patients have revealed that LID is acutely
triggered by large, transient increases in striatal dopamine
release following Levodopa administration (6). Patients who do
not have motor complications show stable levels of synaptic
dopamine concentration after Levodopa administration (7–
9). In comparison, at 4 h post Levodopa administration PD

Abbreviations: AIMs, abnormal involuntary movement scale; BDI-II, beck
depression inventory; BBB, blood-brain-barrier; CBF, cerebral blood flow; CMR,
cerebral metabolic rate; FDG, fluorodeoxyglucose; fMRI, functional magnetic
resonance imaging; LID, levodopa induced dyskinesia; MoCA, montreal cognitive
assessment; MDS-UPDRS, movement disorder society—unified Parkinson’s
disease rating scale; PD, Parkinson’s disease; pMRI, perfusion MRI; PET, positron
emission tomography; M1, primary motor cortex; pCASL, pseudo-continuous
arterial spin labeling; PHI, putamen hyper-perfusion/hypo-metabolism index;
ROI, regions of interest; rIFG, right inferior frontal gyrus; STN, subthalamic
nucleus; SMA, supplementary motor area; VEGF, vascular endothelial growth
factor; LD, Levodopa.

patients with motor complications have significant synaptic
dopamine level reduction in the putamen, whereas in the stable
group synaptic dopamine level remains constant (8, 9). These
findings suggest that rapid swing and turnover of Levodopa
levels at striatal synapses may contribute to the development of
Levodopa—induced motor complications (9).

This acute overshoot of dopaminergic input after Levodopa
administration can be partly explained by both the serotonergic
reserve hypothesis and the neurovascular de-coupling hypothesis
(10). The former suggests that Levodopa is converted to
dopamine by reserved serotonergic neurons in the putamen then
released in an uncontrolled manner due to lack of auto-receptors
feedback mechanisms (11). The latter suggests that sustained D1
receptor stimulation resulting from the down-regulated reuptake
(as part of a compensatory mechanism) may induce angiogenesis
in the putamen (12–14). As dopamine also acts as a vasodilator
(15), acute Levodopa challenge can increase cerebral blood flow
while it normalizes pathologically high neuronal activity in the
putamen, resulting in excessive levodopa delivery and dopamine
release (16). This dissociation is a violation of the neurovascular
coupling hypothesis, which is attributed to the potent vasoactive
effects of levodopa on cerebral microvasculature through D1-
like receptors on astrocytes and vascular smooth muscle (17–20).
The neurovascular coupling hypothesis suggests that an increase
neuronal activity is followed by increased cerebral metabolic rate
(CMR) and cerebral blood flow (CBF) (21). The neurovascular
“de-coupling” phenomenon is especially predominant in PD
patients with LID (22, 23), suggesting that chronic Levodopa
exposure induces angiogenesis and that it may be involved with
LID (16). A previous study investigated the effect of constant
Levodopa infusion (intravenous Levodopa infusion titrated to
achieve maximal improvement in PD motor symptoms without
inducing dyskinesia) and its related motor complications in
PD (22). They used [15-O]-H2O PET to measure CBF and
fluorodeoxyglucose (FDG)-PET to measure CMR, finding that
CBF was increased while CMR was decreased by Levodopa in the
putamen, thalamus, pons, and subthalamic nucleus (STN). Based
on the hypothesis that the changes in FDG PET signal represents
synaptic activity (24), the dissociation between CMR and CBF
violates the neurovascular coupling hypothesis. This dissociation
was especially predominant in PD patients with LID compared to
those without.

Previous fMRI studies have indicated that cortical regions
such as the supplementary motor area (SMA), primary motor
cortex (M1), and right inferior frontal gyrus (rIFG) also
play a key role in the development and severity of LID in
PD patients (25–28). Dopaminergic modulation of cortico-
striatal networks could therefore be used to classify LID
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and non-LID patients. A recent analysis using 6 LID and 6
non-LID subjects found that levodopa-induced reduction in
resting state functional connectivity between the putamen and
M1 predicted LID with 91% sensitivity and 100% specificity
(29). Additionally, dopaminergic modulation of putamen-SMA
connectivity was shown to negatively correlate with dyskinesia
severity (30).

In the current study, we investigate if clinically determined
anti-parkinsonian medications also dissociate the CBF and
glucose metabolic activity using perfusion MRI (pMRI) and
FDG-PET, respectively. Additionally, we investigate the proposed
effect of anti-parkinsonian medications on cortico-striatal
functional connectivity in LID and non-LID patients. We further
propose an analytic method to quantify the degree of dissociation
in the putamen which may have the potential to be used as a
biomarker for LID.

MATERIALS AND METHODS

Subjects
In order to investigate the potential effects of anti-parkinsonian
medications, 10 PD patients (age: 67± 7.71, 8 males, 5 with LID,
disease duration: 9.22 ± 4.54 years) have been recruited from a
local movement disorder clinic in Winnipeg, Manitoba, Canada.
All patients were on clinically determined anti-parkinsonian
medications. Only patients who had been taking Levodopa for
the last 3 months without any changes in dosage were recruited.
Each patient was scanned by FDG-PET and functionalMRI when
she/he was on anti-parkinsonian medications (ON) vs. while all
anti-parkinsonianmedications were withdrawn for>12 h (OFF).
For PET scans in the ON condition, patients took their regular
morning dose of anti-parkinsonian medications before FDG
injection, which was followed by PET scans 30–45min later. For
MRI, patients took their medications 30–45min before the scan.
The severity of clinical symptoms was evaluated immediately

after the FDG-PET scans by the Movement Disorder Society—
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (31)
and LID severity was evaluated with the Abnormal Involuntary
Movement Scale (AIMs) (32). Patients were also assessed using
the Beck Depression Inventory (BDI-II) (33) and Montreal
Cognitive Assessment (MoCA) (34). The study was approved
by the Biomedical Research Ethics Board at the University of
Manitoba, and written informed consent was obtained from
each subject. Summary of demographic information of the study
group is presented in Table 1.

Image Acquisition
Magnetic Resonance Imaging

All patients underwent MRI using a 3T Siemens/IMRIS MR
System equipped with an 18 channel head coil located at the
Kleysen Institute for Advanced Medicine at the Bannatyne
campus of the University of Manitoba. The structural T1-
weighted image utilized the MP-RAGE pulse sequence with
an acquisition time of 8min. The CBF acquisition utilized
the pseudo-continuous arterial spin labeling (pCASL) pulse
sequence with an acquisition time of 5min (35). Acquisition
parameters were TR = 4.0 s, TE = 12ms, FOV = 240 ×

240 mm2, matrix = 64 × 64 × 20, slice thickness = 5mm,
inter-slice space = 1mm, labeling time = 2 s, post label delay
time = 1.2 s, bandwidth = 3 kHz/pixel, flip angle = 90◦. Forty
five label/control image pairs were acquired for each subject.

Each fMRI session was comprised of 300 T2∗ weighted
echo planar images (FOV 220mm, slice thickness 4.0mm, TR
2,000ms, TE 28ms, Flip Angle 77◦, with 37 total slices covering
the whole brain volume). All subjects underwent metabolic
imaging with FDG PET after fasting for at least 6 h before
scanning. Patients were injected i.v. with 185 MBq of FDG and a
15min static image was acquired starting 40min post-injection.
A head CT scan was acquired for attenuation correction
purposes. All PET imaging data for this project were acquired

TABLE 1 | Summary of PD patients’ demographic information in the current study.

Group ID Age Sex PD duration

(years)

MoCA LID duration

(years)

BDI MDS-UPDRS-III AIMS Anti-PD

medications

OFF ON

LID PD02 76 M 6 22 2.5 12 31 19 2 LD. Amantadine

PD03 66 M 11 23 1.25 6 20 10 1 LD. DA

PD05 73 M 18 21 6 9 52 43 3 LD. Amantadine

PD09 55 M 5 24 1.5 6 37 30 2 LD.

PD10 65 F 14 29 8 10 37 21 3 LD. Amantadine

Non-LID PD01 55 M 5 30 0 19 9 0 LD. Amantadine

PD04 71 M 7 29 4 31 30 0 LD. DA.MOA-B.

PD06 64 M 4 23 5 53 14 0 LD.

PD07 68 M 8 27 8 22 16 0 LD.

PD08 77 F 10 29 4 24 23 0 LD.MOA-B

P-value 1.0 0.22 0.07 0.13 0.32 0.49 0.004

PD, Parkinson’s disease; MoCA, Montreal cognitive assessment test; MDS-UPDRS, movement disorder society—unified Parkinson’s disease rating scale; AIMS, abnormal involuntary

movement scale; LD, Levodopa; DA, dopamine agonist; MOA-B, Monoamine oxidase B inhibitors; M, male; F, female.
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on a Siemens Biograph 16 HiRez PET/CT (Siemens Medical
Solutions, Knoxville, TN) scanner located in the John Buhler
Research Centre at the Bannatyne campus of the University
of Manitoba.

Image Pre-processing
Resting-state fMRI images were realigned to the first image
in the set and head movement parameters were extracted and
used as regressors of no interest in first level analysis. CBF
images were derived from the pCASL images using the Arterial
Spin Labeled Perfusion MRI data processing toolbox (35), then
pre-processed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). For both resting-state fMRI and CBF, the
standard procedures, i.e., co-registration with structural T1-MRI,
normalization to ICBM template, segmentation, and smoothing
with 8 × 8 × 8mm Gaussian kernel were performed with the
default parameters. The same SPM pre-processing steps were
performed on all FDG PET images with their corresponding
structural T1-MRI using SPM12. Voxel values were divided by
the mean value of white matter to account for non-specific
inter-individual differences (36, 37).

Neurovascular Uncoupling Analysis
Based on the previous study that demonstrated dissociation
between CBF and CMR (22), multiple key subcortical brain
regions of interest (ROI) were defined including: putamen,
caudate, thalamus, M1, and STN as delineated in automated
anatomical labeling (38). The mean CBF and FDG uptake values
were extracted for each region under different conditions (ON
and OFF scans).

Putamen
Hyper-Perfusion/Hypo-Metabolism Index
(PHI)
While the medication-induced flow-metabolism dissociation can
be readily estimated by comparing the two conditions (ON vs.
OFF), it may not be a practically desirable method that can
be easily implemented in clinical or research trial settings. We
developed a novel brain imaging-based method that quantifies
the spatial extent of putamen hyper-perfusion/hypo-metabolism
in which only the ON condition scans are used. The thalamus was
selected as a reference region for following the reasons: (1) the
neurovascular coupling hypothesis is not violated in the thalamus
when estimated with FDG PET and pCASL MRI (Figure 2B);

FIGURE 1 | A novel method for quantifying dissociation of metabolic-blood flow with only ON-scans. A representative subject’s (A) FDG-PET, (B) CBF-MRI, and (C)

mask labeling are displayed. (D) Regression between FDG-PET and CBF-MRI was performed for the voxels in the thalamus (green dots). A voxel-to-voxel plot of

FDG-PET (x-axis) and CBF-MRI (y-axis) and regression line (black solid line) and 95% confidence interval (CI; dotted line) for the thalamus are displayed for a sample

patient without LID (left) and a patient with LID (right). The proportion of voxels in the putamen (red dots) falling above the 95% CI estimated from the thalamus was

quantified and named the Putamen Hyper-perfusion/hypo-metabolism Index (PHI). The PHI score represents the spatial extent of voxels that are hyper-perfused

compared to the thalamus.
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(2) the D1 receptor, i.e., the main pathway of Levodopa-induced
vasodilation, is reported to be the least available in the thalamus
(39), and (3) it is located in close proximity and has a similar
size to the putamen, thus the image quality and spatial resolution
is similar for the thalamus and the putamen. The Putamen
Hyper-perfusion/Hypo-metabolism Index (PHI) was defined as
the proportion of voxels in the putamen that lie above 95% CI
of the regression line of the thalamus between FDG uptake vs.
pCASL perfusion (Figure 1). Therefore, the null hypothesis is
that the relationship between perfusion and glucose metabolism
is linear and it should be identical between the putamen and
the thalamus in the “normal” condition. If the degree of relative
hyper-perfusion and hypo-metabolism in the putamen is beyond
the 95% CI of the thalamus, it may be pathological. Thus, the PHI
score represents the spatial extent of abnormally hyper-perfused
and/or hypo-metabolic voxels in the putamen.

Functional Connectivity Analysis
The first eigenvariate of all voxels for the left and right putamen
for the timeseries of each subject was extracted and used
as a regressor for a general linear model for each subject.
This produced a statistical parametric map for each subject in
which the beta weights represent the coefficient of covariance
between that particular voxel and the putamen in that subject,
representing a measure of functional connectivity. The regional
coefficient of covariance was extracted from each ROI using the
unthresholded first eigenvariate of that anatomical region. From
this we generated the coefficient of connectivity between the seed
region (bilateral putamen) and each ROI in our analysis in both
the OFF state and ON state from each patient. The measures
for each region were converted to z-scores by subtracting each
connectivity coefficient from the group mean (including both
LID and non-LID patients in the OFF state) and dividing by

FIGURE 2 | Cerebral blood flow-metabolism dissociation in different brain regions. (A) A significant Cerebral Blood Flow-Metabolism dissociation in the putamen

using FDG-PET and pCASL-MRI [Interaction effects, F (1,8) = 7.491, p = 0.023]. In the putamen, the FDG uptake was consistently decreased by anti-parkinsonian

medication (p = 0.001, post-hoc Bonferroni) while mixed effects were observed in CBF changes (p = 0.214, post-hoc Bonferroni). When different groups are

separately analyzed, trend-level of interaction effects were only observed in LID group [medication × modality: F (1,4) = 5.648, p = 0.076] but not in non-LID group

[medication × modality: F (1,4) = 2.334, p = 0.201]. However, no significant dissociation was observed in other regions including (B) thalamus [F (1,8) = 0.678,

p = 0.432], (C) primary motor area (M1) [F (1,8) = 0.618, p = 0.452], (D) caudate [F (1,8) = 0.033, p = 0.86], and (E) subthalamic nucleus (STN) [F (1,8) = 0.002,

p = 0.962].
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the standard deviation. Dopaminergicmodulation of resting state
connectivity was calculated as the difference in z-scores between
the OFF and ON state for each patient.

Statistical Analysis
The Student t-test was performed to investigate group differences
in age, disease duration, PD motor symptoms severity, cognition
impairment, and depression between LID vs. non-LID subjects.
The neurovascular uncoupling results were analyzed by the 2
× 2 repeated measures ANOVA to investigate the main effect
of imaging modality (PET vs. MRI) and medication (ON vs.
OFF) and their interaction effects. When applicable, a post-
hoc Bonferroni test was performed. The functional connectivity
results (comparing LID vs. non-LID) were assessed via t-test. The
applicability of PHI (ON) score for differentiating LID vs. non-
LID was examined by observing how many patients were above
the “normal” level of PHI score determined in the OFF condition
(mean+ 2SD).

RESULTS

Clinical Effects of Anti-parkinsonian
Treatment
Patients were not significantly different between the groups
(LID vs. non-LID) in overall motor symptoms [MDS-UPDRS-
III: (ON) t(8) = 0.755, p = 0.492, (OFF) t(8) = 1.116,
p = 0.327], age [t(8) = 0, p = 1.0], cognitive symptom severity
[MoCA: t(8) = 2.031, p = 0.077], depression level [BDI-II:
t(8) = 1.901, p = 0.130], and disease duration since the first
diagnosis [t(8) = 1.423, p = 0.228]. In 2 × 2 repeated measures
ANOVA, all patient’s motor symptoms were ameliorated by anti-
parkinsonian medication [Effect of medication: F(1,8) = 9.334,
p = 0.016] and no significant group difference was noted in
changes in MDS-UPDRS-III (interaction effect of medication
× group: F(1,8) = 0.007, p = 0.936]. As expected, non-LID
patients do not show any signs of dyskinesia when assessed by
AIMs. In LID patients, the severity of dyskinesia varied across
patients (Table 1).

Cerebral Blood Flow—FDG Uptake
Dissociation Response to
Anti-parkinsonian Treatment in Parkinson
Patients
In the 2× 2 repeatedmeasures ANOVA, there were no significant
main effects of different imagingmodality (FDG-PET vs. pCASL-
MRI: p > 0.075) or anti-parkinsonian medications (OFF vs. ON:
p > 0.099) in any regions investigated. Significant interaction
effect (medication × modality) has been only found in the
putamen [F(1, 8) = 7.491, p = 0.023], but not in the thalamus
[F(1, 8) = 0.678, p = 0.432], caudate [F(1, 8) = 0.033, p = 0.860],
STN [F(1,8) = 0.002, p = 0.962], nor M1 [F(1, 8) = 0.618,
p = 0.452] (Figure 2). In the putamen, the FDG uptake
was consistently decreased by anti-parkinsonian medication
(p = 0.001, post-hoc Bonferroni) while mixed effects were
observed in CBF changes (p = 0.214, post-hoc Bonferroni).
Interestingly, when different groups are separately analyzed, a
trend-level of interaction effect was observed in the LID group
[medication × modality: F(1, 4) = 5.648, p = 0.076] but not
in the non-LID group [medication × modality: F(1, 4) = 2.334,
p= 0.201].

Dopaminergic Modulation of Resting State
Connectivity
No significant interaction effects of resting-state connectivity
(group vs. medication) were noted in any of the ROIs examined,
including between the bilateral putamen and M1 (p = 0.2831)
or between bilateral putamen and SMA (p = 0.8210; Figure 3).
Importantly, these results did not change when using ROIs from
only the most affected hemisphere (ipsilateral to the side with
greatest symptoms measured with UPRDS-III).

Putamen-to-Thalamus
Hyper-Perfusion/Hypo-Metabolism Index
(PHI)
The PHI was introduced to estimate the spatial extent of
relative hyper-perfusion and hypo-metabolism of the putamen
compared to the thalamus, which has similar features (see section

FIGURE 3 | Dopaminergic modulation of resting-state connectivity in LID and non-LID patients. (A) Change in connectivity between bilateral putamen and M1. (B)

Change in connectivity coefficient between putamen and SMA. Dopaminergic modulation was calculated as the difference in z-transformed connectivity coefficients

between all voxels in the seed region (putamen) with the region of interest from the OFF condition to the ON condition.
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FIGURE 4 | PHI comparison between LID and non-LID. The “normal” level of

PHI was determined based on the scores of all patients (n = 10) estimated at

the OFF condition assuming that no dissociation occurs in the OFF condition.

Any PHI scores above mean + 2 × SD (dashed lines) were considered

“abnormal.” In the ON condition, 4 out of 5 LID patients’ PHI scores were

abnormally high, while only 1 out of 5 non-LID patients’ PHI score was higher

than the normal range.

Materials and Methods). Anti-parkinsonian treatment increased
PHI above themean+ 2SD (determined in the OFF condition) in
4 of 5 LID patients and 1 of 5 non-LID patients (Sensitivity= 0.8,
Specificity= 0.8; Figure 4).

DISCUSSION

As expected based on prior studies (22, 23), putamen FDG
uptake was reduced by clinically-determined anti-parkinsonian
medications in all patients, suggesting that the therapy
normalized the pathologically hyper-metabolic state of the
putamen (16). However, its effect on CBF was not uniform,
resulting in significant dissociation between CBF and FDG
uptake. The separate group analysis suggests that the significant
dissociation mainly originated from LID patients rather than
non-LID patients, which is in line with the previous studies
(22, 23).

Unlike in previous studies, dissociation in other brain regions
(i.e., thalamus, STN, caudate, and M1) was not observed (22, 23).
This discrepancy may have originated from the previous studies
only investigating the effects of Levodopa while other anti-
parkinsonian medications (e.g., dopamine agonist, monoamine
oxidase B inhibitor) were also withheld for the OFF condition
in our study. In addition, four patients were on amantadine
[half-life: 9.7–14.5 h (40)] which has been shown to have anti-
dyskinetic and vasoconstrictive effects (41). It should be noted
that the LID patients’ dyskinesia was not completely controlled by
their current anti-parkinsonian/anti-dyskinetic treatment while
in contrast, the previous studies used Levodopa infusion with
dose titrated not to induce dyskinesia during scanning (22, 23).
This signifies the relevance of the putamen’s dissociation with
LID over other brain regions that have been tested, which was
most prominent among the regions that previously showed
dissociation (23).

Different hypotheses lie behind CBF and FDG uptake
dissociation. Experiments with 6-OHDA-lesioned rats have
demonstrated Levodopa-mediated blood flow-metabolism
dissociation in the striatum after both acute and chronic
injection of Levodopa (42, 43). The acute rise in CBF is mediated
by increases in the blood-brain-barrier (BBB) permeability
as well as vasodilation controlled by smooth muscle cells and
endothelium changes in the striatum (16). This dissociation
is specific to the regions of dopaminergic degeneration and
was not reported in the contralateral intact hemisphere of
the 6-OHDA lesioned PD animals (12). Chronic exposure to
Levodopa induced significant growth of immature endothelial
cells, stimulated micro-vessel proliferation and increased
synthesis and expression of vascular endothelial growth factor
(VEGF) in the basal ganglia (14). The degree of VEGF expression
was positively correlated with the total dose of Levodopa
(14). A post-mortem study with PD patients also revealed
significant VEGF transcriptions and subsequent expression
of VEGF mRNA and an increase in nestin stain (a marker of
immature endothelial cells) (43). Interestingly, in rat models
following chronic exposure with Levodopa, VEGF expression,
angiogenesis, and proliferating micro vessels stained by nestin
were more prominent in animals with dyskinesia (14). These
findings were reversed by a VEGF signaling inhibitor, which
reduced dyskinesia in PD-LID model animals (43).

At therapeutic doses of Levodopa, dopamine has a
vasodilation effect and increases regional CBF, which facilitates
the transport of the drug across the BBB (15). The increased
microvasculature discussed above may prime the regional
neurovascular unit to have an exaggerated response to
Levodopa-supplied dopamine transmission and further
stimulate angiogenesis, forming a vicious cycle to further
increase dopamine transmission beyond the optimal level (16).

As an alternative brain-imaging biomarker for LID, we
investigated dopaminergic modulation of resting-state
connectivity in the cortico-striatal axis using M1 and SMA
as our primary ROI. This is based on the theory that abnormal
dopaminergic modulation of the cortico-basal ganglia motor
loops preconfigure the emergence of LID (44). We have not
found a significant difference in dopaminergic modulation of
resting state connectivity between LID and non-LID patients
in either of these ROIs either bilaterally or using the most
affected hemisphere. In a previously reported study dopamine
treatment was shown to significantly decrease connectivity
between putamen and M1 in LID patients compared to non-LID
patients with a very high sensitivity (91%) and specificity (100%)
(30). It is important to note that low sample size or differences
in scanning protocol may have reduced the sensitivity of this
technique in our subjects.

The Use of PET+MRI as a LID Biomarker
Dopamine has a vasodilating effect in the putamen through
stimulation of D1 receptors (17). It has been reported previously
that D1 receptors are found with high density in the striatum,
nucleus accumbens, and substantia nigra pars reticulata (18).
However, the D1 receptor, i.e., the main pathway of Levodopa-
induced vasodilation and angiogenesis (43), is reported to be the
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least available in the thalamus (39). This makes the thalamus
the optimal reference region to estimate the CBF-FDG uptake
dissociation (see section Materials and Methods).

We found that in 4 out of 5 LID patients the PHI score
in the ON condition is above the normal level (mean + 2SD
of the OFF condition), suggesting that it may be used as a
sensitive biomarker for LID (80% sensitivity, albeit with a small
sample size). Patient PD010 is the only LID patient whose PHI is
below the abnormality threshold. It should be noted that multiple
hypotheses exist surrounding the pathophysiology of LID (10,
45). Indeed, this patient’s LID may not be related to Levodopa-
induced angiogenesis/vasodilation but may exclusively involve
other pathways such as serotonergic reserve (46, 47). This finding
can be interpreted as suggesting that those patients who have
low PHI score may not benefit from anti-angiogenic treatment,
a potential preventive medicine against LID (48). Also, this
type of patient (who shows low PHI score) may need to be
precluded from future clinical trials and subsequent clinical
practice targeting angiogenesis.

Interestingly, patient PD010 is also the only patient in the
LID group who had depression and is treated with an atypical
antidepressant, Bupropion, which is a dopamine norepinephrine
reuptake inhibitor. This could interfere with neurotransmitter
balance and inhibit regional CBF. Norepinephrine acts on alpha
1 and alpha 2 receptors in most systemic arteries and veins and
induces vasoconstriction, which eventually raises the systemic
vascular resistance and reduces blood flow (49, 50).

Among non-LID patients, only one patient (PD004) out of
five lies above the abnormality threshold (mean + 2SD of the
OFF condition). The adjusted R2 of the thalamic linear regression
model of FDG uptake vs. CBF can serve as an indicator for
nonspecific noise (e.g., motion artifacts andmis-registration) and
it was the lowest in the PD004 (Adj. R2 = 0.0062; other image
pairs’ Adj. R2 > 0.14), suggesting a possibility of false positive due
to technical issues rather than a physiological outlier. Potential
implications for future research trials include that the patients in
which the brain imaging pairs’ Adj. R2 yields <0.1 may need to
be re-scanned.

Limitations
The power of statistical analysis is mainly defined by the sample
size and noise level of the data. In this regard, the low sample
size is the main limiting factor for this present study, which
warrants a larger-scale longitudinal study to confirm the usability
of the proposed method. Nevertheless, by utilizing the expected
“normal” level of neurovascular coupling from the thalamus
within each patient, the threshold for “abnormality” could be
reliably estimated from the OFF condition, which reduced the
non-specific noise associated with the image quality. PD is a
movement disorder that affects non-medicated patients with
tremor and medicated ones with potential dyskinesia, therefore
it is typically very troublesome to ensure high quality imaging
studies. Since the thalamus is located in a close proximity and has
similar volume and spatial resolution as the putamen, it receives
the same level of non-specific noise effects as the putamen,
e.g., motion artifacts. The thalamic confidence level of the PET-
MRI correspondence serves as an optimal indicator for defining

“abnormality” in the putamen in the given imaging quality, which
enhanced the statistical power of the proposed method.

The most interesting potential implication is whether the
proposed PHI method can predict future emergence of LID from
non-LID state, which can be only addressed with a longitudinal
dataset. Our current study identified a non-LID patient (PD004)
with a high PHI score, which warrants an on-going follow-up
on dyskinesia state of this patient. Anecdotally, this patient has
not developed LID in the 1 year since the PET+MRI scans.
Moreover, we postulated that the high PHI score of this patient
is likely due to a technical origin (Adj. R2 < 0.1), rather than a
pathological origin.

CONCLUSION

The exact pathology of LID in PD is not known. Using
the flow-metabolism dissociation that is specific to LID, we
proposed a novel PET+MRI-based biomarker for LID (i.e., PHI).
Conditional on a larger-scale longitudinal study confirmation,
the proposed method may be useful in identifying patients who
are at risk of developing LID and who will most likely benefit
from anti-angiogenic treatment, and in determining the outcome
responses of a preventive medicine trial for LID.
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