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Sand flies are hematophagous insects responsible for the transmission of vector-borne
diseases to humans. Prominent among these diseases is Leishmaniasis that affects the
skin and mucous surfaces and organs such as liver and spleen. Importantly, the function
of blood-sucking arthropods goes beyond merely transporting pathogens. The saliva of
vectors of disease contains pharmacologically active components that facilitate blood
feeding and often pathogen establishment. Transcriptomic and proteomic studies have
enumerated the repertoire of sand fly salivary proteins and their potential use for the
control of Leishmaniasis, either as biomarkers of vector exposure or as anti-Leishmania
vaccines. However, a group of specific sand fly salivary proteins triggers formation of
cross-reactive antibodies that bind the ectodomain of human desmoglein 1, a member of
the epidermal desmosomal cadherins. These cross-reactive antibodies are associated
with skin autoimmune blistering diseases, such as pemphigus, in certain
immunogenetically predisposed individuals. In this review, we focus on two different
aspects of sand fly salivary proteins in the context of human disease: The good, which
refers to salivary proteins functioning as biomarkers of exposure or as anti-Leishmania
vaccines, and the bad, which refers to salivary proteins as environmental triggers of
autoimmune skin diseases.
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INTRODUCTION

Sand flies are phlebotomine arthropods and the main vectors of Leishmania parasites; sand flies are
also relevant in other vector-borne diseases (VBDs) (Abdeladhim et al., 2014). Sand flies are
distributed worldwide. They comprise six genera, two that are associated with human disease -
Phlebotomus in the Old World (OW) and Lutzomyia in the New World (NW) (Akhoundi
et al., 2016).

When a female sand fly takes a blood meal, it provokes skin damage that activates the hemostatic
system (Ribeiro and Francischetti, 2003). Sand flies counteract host hemostasis system by injecting
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bioactive salivary components. These bioactive entities include
potent vasodilators, e.g., maxadilan in Lutzomiya longipalpis
(Lu. longipalpis), and adenosine in Phlebotomus papatasi
(P. papatasi) sand flies (Lerner et al., 1991; Ribeiro et al.,
1999), apyrases that inhibit platelet aggregation (Valenzuela
et al., 2001; Anderson et al., 2006; Hamasaki et al., 2009), and
inhibitors of the complement and coagulation cascades, e.g.,
lufaxin, a Factor Xa inhibitor, in Lu. longipalpis (Charlab et al.,
1999; Collin et al., 2009; Abdeladhim et al., 2014). These agents
are injected within small amounts of saliva to facilitate blood-
feeding. The sand fly salivary proteome is composed of about 30
secreted proteins (Gomes and Oliveira, 2012) with quite diverse
biological activities. Importantly, humans are constantly exposed
to sand fly bites in disease endemic areas. Consequently, vector
bites also have long-lasting systemic implications once sandfly
salivary proteins become immunogenic.

Systemic immune responses to vector saliva are well
documented. Brummer-Korvenkontio et al. reported antibody
responses (IgG, IgG1, IgM, and IgE) to mosquito saliva in the
NW (Brummer-Korvenkontio et al., 1994). Similarly, sera from
children of endemic areas of Visceral Leishmaniasis (VL) and
adults experimentally subjected to Lu. longipalpis bites
recognized Lu. longipalpis salivary gland sonicate (SGS) with
involvement of IgG (IgG1, and IgG4) and IgE antibodies (Gomes
et al., 2002; Vinhas et al., 2007). Marzouki et al. reported the
same IgG and IgE anti-SGS responses for the saliva of P. papatasi
sand flies in endemic areas of Cutaneous Leishmaniasis (CL)
(Marzouki et al., 2011). Importantly, cellular responses to sandfly
saliva (particularly of pro-inflammatory nature, including IFN-g
recall responses) were equally detected in individuals pre-
exposed to vector bites (Vinhas et al., 2007; Oliveira et al.,
2013). Of note, at least until midlife, these individuals respond
significantly to sand fly bites, which suggests lack of tolerization
(Oliveira et al., 2013).

Sand fly salivary proteins may also act as environmental
triggers of autoimmune diseases. A link between salivary
proteins and autoimmunity is suggested by autoimmune
blistering diseases, especially in endemic forms of pemphigus
foliaceus (PF) (Diaz et al., 1989; Aoki et al., 2004). Pemphigus are
organ-specific autoimmune skin diseases characterized by loss of
epidermal adhesion (acantholysis) and blister formation (Lever,
1953; Amagai and Stanley, 2012). Endemic PF, also known as
Fogo Selvagem (FS) shares with the sporadic nonendemic form
of PF clinical features and pathogenic IgG4 autoantibodies (Rock
et al., 1989) directed against the ectodomains of desmoglein 1
(Dsg1) (Amagai and Stanley, 2012). The IgG4 anti-Dsg1
autoantibody response is restricted to FS patients (Warren
et al., 2003; Qaqish et al., 2009), whereas the non-pathogenic
anti-Dsg1 IgG1 antibodies are detected in disease-free
inhabitants of Brazilian endemic populations in the Limao
Verde (LV) Amerindian reservation (Warren et al., 2000;
Warren et al., 2003; Qaqish et al., 2009). Interestingly, non-
pathogenic anti-Dsg1 antibodies are also detected in the sera of
patients with Leishmaniasis and Chagas disease (Diaz et al.,
2004). An isotype switch from IgG1 to IgG4 pathogenic anti-
Dsg1 response may occur by the epitope spreading mechanism
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
in individuals with the appropriate genetic HLA trait (Li et al.,
2003). Notably, IgE and IgG4 anti-Dsg1 autoantibodies in FS
patients cross-react with sand fly salivary proteins, likely because
of antigenic mimicry (Qian et al., 2015; Qian et al., 2016; Diaz
et al., 2020).

Although authors have systematized the knowledge derived
from sand fly salivary proteins as disease-controlling agents
(Rohousova and Volf, 2006; Andrade and Teixeira, 2012;
Abdeladhim et al., 2014; Kamhawi et al., 2014), thus far, no
review has included discussion of the participation of some of the
sand fly salivary proteins as potential triggers of autoimmune
disease. In this Mini Review, we offer an updated overview of
sand fly salivary proteins in the context of human disease. The
good news is that some proteins are markers of exposure and
potential anti-Leishmania vaccines. The bad news is that some
proteins may elicit autoimmunity.
MARKERS OF EXPOSURE: SAND FLY
SALIVARY PROTEINS AS TOOLS FOR
THE CONTROL OF LEISHMANIASIS

The genomes of humans are remarkably alike; it is estimated that, at
the DNA level, any two individuals share 99.9% identity (Collins
and Mansoura, 2001). However, the 0.1% disparity is enough to
condition significant inter-individual variances, including
differences in immune responses (Kim-Hellmuth et al., 2017).
Indeed, the composition and function of the human immune
system are highly variable between healthy individuals, a
consequence of heritable and non-heritable factors (Brodin and
Davis, 2017). Therefore, it is not surprising that antibody responses
vary immensely among humans, including responses to vaccination
(Zimmermann and Curtis, 2019). Immunological diversity becomes
quite relevant when we consider establishment of “markers of
exposure” – essential tools for the determination of exposure to
vector bites. Individuals exposed to vector bites show different
patterns of antibody binding to salivary proteins (Gomes et al.,
2002; Vinhas et al., 2007; Armiyanti et al., 2016). Some salivary
proteins are recognized only by the sera of a few individuals. Other
proteins are recognized by most sera, which makes these proteins
near-universal markers of exposure. Importantly, such markers
were proposed as strong indicators of the development of
different VBDs (e.g., malaria and Lyme disease), and are
important epidemiological risk-assessment tools (Schwartz et al.,
1991; Remoue et al., 2006).

Sand flies are widely distributed; in the OW and NW, the genera
Phlebotomus and Lutzomyia are responsible, respectively, for the
transmission of Leishmania parasites (Akhoundi et al., 2016). In
these regions there is an overlap of the (muco)cutaneous and
visceral forms of Leishmaniasis, usually associated with different
sandfly vectors, with significant disease burden (Akhoundi et al.,
2016). Therefore, the development of markers that distinguish
individuals exposed to different sand fly vectors is quite important
from the epidemiological standpoint.

In the NW, particularly in Brazil, Lu. intermedia, and Lu.
longipalpis, are the vectors for cutaneous and visceral
February 2022 | Volume 12 | Article 839932
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Leishmaniasis, respectively (Bezerra et al., 2018). Two studies
focused on this dichotomy in the search for markers of exposure.
Teixeira et al. mined the salivary proteome of Lu. longipalpis in
the quest for specific markers of exposure in the context of
different hosts, including humans and dogs (Teixeira et al., 2010).
Conversely, Carvalho et al. sought markers of exposure,
particularly in humans, among the salivary proteome of Lu.
intermedia (Carvalho et al., 2017). Teixeira et al. proposed
LJM17, LJM11, and LJM111 (all yellow-related proteins; 45, 43,
and 43 kDa, respectively) as potential markers of exposure to Lu.
Longipalpis sand flies (Teixeira et al., 2010), whereas Carvalho
et al. suggested LinB-13 (antigen 5-related protein; 28.4 kDa) as a
potential marker of exposure to Lu. intermedia sand flies
(Carvalho et al., 2017). LinB-13 was also deemed a potentially
good disease biomarker (Carvalho et al., 2017). Of note, there
was no cross-reactivity, which suggested that these proteins
discriminate individuals exposed to each of these sand fly
species, either alone, or in combination (LJM-17 + LJM-11),
for better performance as markers (Souza et al., 2010; Teixeira
et al., 2010; Carvalho et al., 2017).

In the OW a similar overlap is observed. P. papatasi sand flies,
the main vectors of cutaneous Leishmaniasis are widely distributed
around the Mediterranean basin, North Africa, throughout the
Middle East and across the entire Indian subcontinent. In some foci,
P. papatasi co-exists with P. perniciosus and P. orientalis sand flies,
vectors of the causative agents of visceral Leishmaniasis, Leishmania
infantum and Leishmania donovani, respectively (Akhoundi et al.,
2016). Different studies have focused on the development of
markers of exposure to help navigate such a complex
epidemiological situation. In the context of CL, PpSP32, a silk-
related protein was identified as the best marker of human exposure
to the bites of P. papatasi sand flies. Cross-reactivity with salivary
antigens from other co-endemic sand fly species was minimal, as
demonstrated using the sera of dogs and humans exposed to P.
perniciosus and P. sergenti, respectively (Marzouki et al., 2012;
Marzouki et al., 2015; Mondragon-Shem et al., 2015).
Importantly, a biomarker of exposure for dogs to the bites of P.
perniciosus sand flies was also developed. PpeSP03B, a yellow-
related protein was validated for the screening of dogs in foci of
visceral Leishmaniasis caused by L. infantum parasites (Drahota
et al., 2014; Kostalova et al., 2015; Kostalova et al., 2017;Willen et al.,
2018; Willen et al., 2019). Additionally, two P. orientalis salivary
proteins were identified as markers of exposure in humans - mAG5
(antigen 5-related protein) and mYEL1 (yellow-related protein)
regarding visceral Leishmaniasis caused by L. donovani parasites
(Sumova et al., 2018). Sima et al. proposed the same yellow-related
protein (PorSP24 = mYEL1) as a suitable marker of exposure of
domestic animals to the bites of P. orientalis sand flies (Sima
et al., 2016).
SAND FLY SALIVARY PROTEINS AS ANTI-
LEISHMANIA VACCINES

Sand fly saliva exacerbates the development of Leishmaniasis
(Drahota et al., 2014; Marzouki et al., 2015; Mondragon-Shem
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
et al., 2015; Kostalova et al., 2017). This aggravating effect is due to a
combination of factors such as the bioactivity of the sand fly salivary
proteins. Apart from preventing hemostasis, sand fly saliva/salivary
proteins are immunomodulators. As reviewed elsewhere, sand fly
salivary components can promote the generation of an anti-
inflammatory milieu via different mechanisms. This anti-
inflammatory condition is favorable for the persistence of
Leishmania, and it modulates/impacts the recruitment/function of
phagocytes essential for the survival of Leishmania in the host
phagolysosome compartment (Collin et al., 2009; Abdeladhim et al.,
2014). Therefore, immunization approaches based on sand fly
salivary proteins have the potential to promote antibody-
mediated inactivation of sand fly immunomodulatory
components, thereby inhibiting establishment of infection. This
immunization approach is exactly what was described in the
context of two Lu. longipalpis salivary proteins, the hyaluronidase
LuloHya (Charlab et al., 1999) and the endonuclease LJL138 (best
known as Lundep) (Valenzuela et al., 2004). Immunization with
each of these two proteins led to decreased pathology and parasite
burden in mice infected with L. major parasites together with
sandfly saliva; importantly, this phenotype was dependent of
antibody responses because it was not observed in B-cell-deficient
mice (Martin-Martin et al., 2018). Of note, Chagas et al. reported
disease exacerbation mediated by LJL138 (Chagas et al., 2014),
which suggested that the protective phenotype was a result of
antibody-mediated protein inactivation (Martin-Martin et al.,
2018). The same antibody-mediated blockage of activity can also
explain the protection obtained against L. major infection in
animals immunized with the Lu. longipalpis salivary protein
LJL08 (maxadilan), although not exclusively because Th1 CD4+
T-cell-mediated responses seem also to have a function (Morris
et al., 2001; Wheat et al., 2017). Still in this category, the blockage of
the neutrophil chemoattractant activity of the yellow-related
proteins PduM10 and PduM35 (Kato et al., 2006) also prevented
the exacerbation effect of the saliva of Phlebotomus duboscqi sand
flies in the context of a mouse model L. major infection
(Guimaraes-Costa et al., 2021).

The antibody-mediated blockage of salivary protein activity
may explain that naïve individuals, not previously exposed to
sand fly bites or Leishmania parasites, display a higher risk of
developing severe clinical forms of Leishmaniasis than non-naïve
persons (Andrade et al., 2007). However, cell-mediated
responses are probably the main contributors to such an
epidemiological observation. Kamhawi et al. were first to show
that pre-exposure to bites from noninfected sand flies induce
protection against CL. This finding highlighted the crucial
function of CD4+ T cell-dependent Th1 delayed-type
hypersensitivity (DTH) responses (Kamhawi et al., 2000),
which shaped the field of sand fly saliva-based anti-Leishmania
vaccines. In most cases in which sand fly salivary proteins were
proposed as anti-Leishmania vaccines, the choice was based on
their potential to elicit DTH responses. Different animals were
either pre-exposed to sand fly saliva followed by challenge with
individual sandfly salivary proteins (via DNA vaccination)
(Collin et al., 2009; Oliveira et al., 2015), or pre-immunized
with DNA encoding individual sandfly salivary proteins and
February 2022 | Volume 12 | Article 839932
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then challenged with sandfly saliva (Gomes et al., 2008; Oliveira
et al., 2008; Xu et al., 2011; de Moura et al., 2013; Gholami et al.,
2019). Only the proteins that induced significant DTH responses
48 h after challenge were deemed as potential vaccine candidates
worthy of pre-clinical evaluation. This approach consistently led
to the discovery of vaccines effective against different forms of
Leishmaniasis in the context of vector transmission.

From the saliva of Lu. longipalpis, LJM-19 protected hamsters
from fatal VL caused by L. infantum (Gomes et al., 2008) as well
as in the context of cutaneous disease caused by Leishmania
braziliensis (Tavares et al., 2011). The LJM-11 protein (from
Lu.longipalpis) attenuated CL caused by L. major (and L.
braziliensis) in mice (Xu et al., 2011) (Abi Abdallah et al.,
2014; Cunha et al., 2018), as did LJL-14 (Cecilio et al., 2020).
Notably, LJL-143 and LJM-17 were proposed as good vaccine
candidates against canine Leishmaniasis caused by L. infantum,
although an in vivo protective phenotype is yet to be
demonstrated (Collin et al., 2009; Abbehusen et al., 2018).
Additionally, from the saliva of the closely related P. duboscqui
and P. papatasi sand flies, the homologous salivary proteins
PpSP15 and PdSP15 (also known as PduM02) protected mice
and non-human primates effectively from L. major-induced CL
(Oliveira et al., 2008; Oliveira et al., 2015; Davarpanah et al.,
2020). Three other proteins from the saliva of P. papatasi,
PpSP36 (apyrase), PpSP42, and PpSP44 (both yellow-related
proteins) were also proposed as good vaccine candidates for
human CL (Tlili et al., 2018); however, efficacy results are either
still missing, or contrary to this hypothesis in the case of PpSP44
in mice (Oliveira et al., 2008). Interestingly, another protein of
the SP15 family, PsSP9 from the saliva of P. sergenti sand flies
also protected mice from the development of CL caused by L.
tropica (Gholami et al., 2019). Finally, from the saliva of Lu.
intermedia, LinB-11 (SP13 family) conferred protection against
cutaneous disease in a mouse model of L. braziliensis infection
(de Moura et al., 2013). It is important to state that protection in
the context of the aforesaid sand fly salivary antigens was
associated with dominant pro-inflammatory (e.g. interferon-g,
and IL-12)/low anti-inflammatory (e.g. IL-4, IL-10, TGF-) CD4+
T cell-induced cytokine responses (Valenzuela et al., 2001;
Gomes et al., 2008; Oliveira et al., 2008; Collin et al., 2009;
Tavares et al., 2011; Xu et al., 2011; de Moura et al., 2013; Abi
Abdallah et al., 2014; Oliveira et al., 2015; Abbehusen et al., 2018;
Cunha et al., 2018; Tlili et al., 2018; Gholami et al., 2019; Cecilio
et al., 2020; Davarpanah et al., 2020).

Detailed information of what is known and what is still
missing on immune responses to sand fly salivary proteins
including in the context of anti-Leishmania vaccines can be
found in a few comprehensive reviews (Rohousova and Volf,
2006; Gomes and Oliveira, 2012). Of note, although these vector-
derived antigens are effective individually as anti-Leishmania
vaccines, their combination with Leishmania-derived antigens in
several studies resulted in even more promising vaccine
candidates (Zahedifard et al., 2014; Fiuza et al., 2016; Cecilio
et al., 2017; Duthie et al., 2017; Fernandez et al., 2021).
Considering that the natural infection caused by Leishmania is
enhanced by some sand fly salivary proteins, the protective
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
immune response would benefit from the combination of anti-
Leishmania and anti-sand fly saliva responses.
THE OTHER FACE OF THE COIN:
SANDFLY SALIVARY PROTEINS AND
AUTOIMMUNITY

Sand fly saliva is composed of a panoply of proteins with diverse
functions. Some of these proteins are vaccine candidates or
markers of disease exposure, whereas others can be pleiotropic
and identified in both categories. Nevertheless, some markers of
disease exposure are also identified as triggers of human
autoimmunity, as observed in Fogo Selvagem, a blistering
disease that targets Dsg1. Many studies on the etiology of FS
were conducted in the Terena reservation of LV, ~1,600
individuals and a 3% prevalence for FS (Hans-Filho et al.,
1996). FS patients produce IgG, IgM and IgE autoantibodies
directed against Dsg1. IgG4 and IgG1 are the main IgG isotypes
(Rock et al., 1989; Warren et al., 2003); IgG4 is pathogenic, as
demonstrated in passive transfer mouse models (Rock et al.,
1989; Evangelista et al., 2018) and the serum titers of IgG4 in
patients correlate with disease activity (Warren et al., 2003; Li
et al., 2003). In endemic areas, anti-Dsg1 IgG4 has a positive
predictive value of 50% in identifying inhabitants with pre-
clinical stages of FS (Qaqish et al., 2009). The IgG4 anti-Dsg1-
restricted disease is strongly associated with HLADRB1*0102,
0404 and 1402 alleles, conferring a relative risk of 14 (Moraes
et al., 1997).

Some rural populations in Brazil chronically exposed to insect
bites, such as blackflies and reduviid (vector of Chagas disease)
exhibit an autoantibody response against Dsg1 (Diaz et al.,
2004).Interestingly, approximately 50% of the normal
population possess nonpathogenic anti-Dsg1 autoantibodies
(Warren et al., 2000; Qaqish et al., 2009). Epidemiological
studies on the LV reservation strongly suggest that blood-
feeding insects are risk factors for FS (Eaton et al., 1998; Aoki
et al., 2004). Healthy individuals living in endemic areas of FS
have higher frequency of IgM autoantibodies, compared with
individuals from nonendemic FS regions, such as Japan and US.
These IgM autoantibodies, although absent from the cord sera of
mothers from LV (Hilario-Vargas et al., 2014), can be detected as
early as five year of age (Diaz et al., 2008); the autoantibodies
decrease as the inhabitants depart from endemic areas to urban
sites, which suggests the influence of an environmental factor in
autoantibody production (Diaz et al., 2008). Moreover, antigen
selection is antigen driven even in pre-clinical stages, as
demonstrated by our analysis of H and L chains of V genes of
anti-Dsg1 IgM, reinforcing the idea of environmental triggers
(Qian et al., 2009).

Recent advances in the characterization of Dsg1 epitopes show
that 95% of IgG4 antibodies of FS sera recognize a 16-residue
peptide (A129LNSMGQDLERPLELR144) located in the
extracellular domain 1 of Dsg1 (Evangelista et al., 2018). This
sequence overlaps the arginine-alanine-leucine (RAL) adhesive
February 2022 | Volume 12 | Article 839932
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site of Dsg1, into which tryptophan residue 2 (Trp2) of
desmocollin 1 (Dsc1) is inserted to bring desmosomal adhesion.
The antigen-binding site of the FS IgG4 autoantibody binds a
conformational epitope in the Dsg1 pocket. Mutation of M133,
Q135, Q82 and V83 residues of the Dsg1 pocket abolish binding of
FS IgG4 autoantibodies. Additionally, the Fab fragments of FS
IgG4 autoantibodies inhibit the heterophilic aggregation of Dsg1/
Dsc1 in a dose dependent manner (Evangelista et al., 2018). These
studies strongly suggest that pathogenic FS IgG4 autoantibodies
induce cell detachment and blisters in the epidermis by inhibiting
the interaction of Dsg1 and Dsc1 desmosomal cadherins of FS
patients. Steric hindrance and/or intracellular signaling or
apoptosis are possible mechanisms under investigation.

In Brazil, FS endemic sites overlap with areas of high
prevalence of VBDs, especially Leishmaniasis (Diaz et al.,
1989). Circulating anti-Dsg1 autoantibodies are detected in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
patients with insect-borne diseases such as Leishmaniasis and
Chagas disease (Diaz et al., 2004; Walsh et al., 2017) and also in
dogs and cats (Ginel et al., 1993). We then hypothesized that
chronic exposure to insect bites and the salivary antigens therein
could be a relevant trigger to FS. To understand whether the
chronic exposure to insect bites (or insect salivary antigens) is a
relevant trigger to FS, we collected serum samples from FS
patients and investigated their reactivity toward Lu. longipalpis
SGH (Valenzuela et al., 2004; Xu et al., 2011; Abdeladhim et al.,
2014). We found significant correlation between levels of IgG4
and anti-IgE antibodies directed against Lu. longipalpis LJM 17
and 11 with anti-Dsg1 autoantibodies due to possible cross-
reactivity (Qian et al., 2012; Qian et al., 2015). Further studies
showed that sera from healthy controls and FS patients from
endemic sites exhibited significant higher levels of IgG4 anti-
LJM17 antibodies compared to nonendemic controls. Moreover,
A

B

FIGURE 1 | The potential association between the exposure to sandfly bites and the development of Fogo Selvagem (FS), in Limao Verde, Brazil. (A) In endemic
areas of FS in Brazil, patients (Fogo Selvagem, orange) and healthy controls who are chronically exposed to the bites of Lu. longipalpis sandflies (Co-endemic healthy
individuals, yellow) produce high and comparable levels of IgG4 antibodies against the sand fly salivary protein LJM17. This humoral immune response is not
observed in normal individuals living in non-endemic areas, both in Brazil (Non-endemic healthy individuals, green), and in the USA (Non-endemic healthy individuals,
blue). The relative levels of IGg4 antibodies anti- LJM17, are shown in the form of box-and-whiskers plots. (B) Mice immunized with recombinant LJM17 developed
IgG1 antibodies (murine homologue of human IgG4) that cross-reacted with recombinant human Dsg1 (yellow). Mice in the positive and negative control groups,
immunized with rDsg1 (orange) and saline (blue), respectively, showed the expected antibody responses against recombinant human Dsg1 (high, and very low,
respectively. Additionally, mice immunized with LJM11 (purple) generated low titers of anti-Dsg1 antibodies. The levels of anti- Dsg1 antibodies are shown in the form
bar graphs. This Figure is an adaptation of the data published by Diaz et al. (2020). ***(p< 0.001), n.s., normal human sera.
February 2022 | Volume 12 | Article 839932
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IgG anti-Dsg1 and IgG4 anti-LJM17 and anti-LJM11 antibodies
positively correlated in normal settlers and FS patients (Diaz
et al., 2020) (Figure 1A). Mice immunized with recombinant
LJM17 developed nonpathogenic IgG1 antibodies (murine
homologous of human IgG4) that cross-reacted with
recombinant human Dsg1 (Figure 1B). We also identified
short-sequence homologies of surface-exposed residues within
the human DSG1 ectodomain and LJM17 (Diaz et al., 2020).

In the OW, Tunisians with endemic PF (Bastuji-Garin et al.,
1995; Zaraa et al., 2012) have an increased IgG4 antibody
response to P. papatasi salivary proteins, particularly SP32
(Marzouki et al., 2011; Marzouki et al., 2015; Marzouki et al.,
2020). Marzouki et al. showed that PpSP32 bound directly to
Dsg1 and Dsg3 forming immunogenic complexes; however, mice
immunized with PpSP32 developed non-cross-reactive
antibodies that recognized Dsg1 and Dsg3 (Marzouki et al.,
2020). Marzouki et al. (2020) suggested that the PpSP32/Dsg1
and PpSP32/Dsg3 complexes induce loss of tolerance to
these autoantigens and trigger pemphigus in genetically
predisposed individuals.
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Altogether, studies in different geographical settings suggest
an association between the exposure of pre-disposed individuals
to sand fly bites, and the development of autoimmune blistering
diseases. The potential cross-reactivity of some sand fly salivary
gland proteins (LJM 17 and 11 in the NW and PpSP32 in the
OW) with Dsg1, the autoantigen of endemic pemphigus
foliaceus, indicates the need for a careful choice when selecting
such proteins as candidates for anti-Leishmania vaccines.
CONCLUDING REMARKS

The birth of transcriptomics and proteomics allowed the detailed
analysis of the salivary proteins of different sand fly species,
especially in the field of infectious diseases. Some molecules were
proposed as markers of exposure in endemic areas of
Leishmaniasis, whilst others were defined as promising anti-
Leishmania vaccine candidates; however, some are potential
environmental triggers of autoimmune skin diseases
(Figure 2). Table 1 depicts a summary of sand fly salivary
FIGURE 2 | Sand fly salivary proteins in the control of Leishmaniasis and in autoimmunity. The saliva of blood-sucking arthropods, including sandflies, here
represented as flying needles, contains components with immunomodulatory and anti-hemostatic properties. However, these proteins are also immunogenic, and,
thus able to induce systemic immune responses. Therefore, some proteins may be used as markers of exposure of sandfly bites, with epidemiological value, or as
components of anti-Leishmania vaccines. However, certain sand fly salivary proteins can sensitize the host and potentially trigger the formation of cross-reactive
antibodies that may lead to the development of autoimmune blistering diseases, such as pemphigus foliaceus.
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proteins and their potential role as markers of exposure, vaccine
components or triggers in autoimmunity. Importantly, this tool
or trigger duality must be patent in the development of sand fly
saliva based anti-Leishmania vaccines, and only those molecules
which are not inducers of autoimmunity responses (auspiciously
most of the salivary gland proteins) should be applied for clinical
development studies.
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TABLE 1 | Sand fly salivary proteins as markers of exposure, anti-Leishmania vaccines, and potential triggers of autoimmunity.

Sand fly
species

Salivary
Protein

Salivary
Protein family

Species tested Ref.

Markers of exposure Lu. longipalpis LJM11 Yellow-related
protein

Humans, dogs,
chicken

(Teixeira et al., 2010)

LJM17 Yellow-related
protein

Humans, dogs,
chicken, foxes

(Teixeira et al., 2010)

LJM111 Yellow-related
protein

Humans (Teixeira et al., 2010)

Lu. intermedia Linb-13 Antigen-5-
related protein

Humans (Carvalho et al., 2017)

P. papatasi PpSP32 Silk-related
protein

Humans (Marzouki et al., 2012; Marzouki et al., 2015; Mondragon-Shem
et al., 2015)

P. perniciosus PpeP03B Yellow-related
protein

Dogs (Drahota et al., 2014; Kostalova et al., 2015; Kostalova et al., 2017;
Willen et al., 2018; Willen et al., 2019)

P. orientalis mAG5 Antigen-5-
related protein

Humans (Sumova et al., 2018)

mYEL1 or
PorSP24

Yellow-related
protein

Humans, domestic
animals

(Sima et al., 2016; Sumova et al., 2018)

Anti-Leishmania
vaccines

Lu. Longipalpis LJM-19 SALO Hamsters (Gomes et al., 2008; Tavares et al., 2011)
LJM11 Yellow-related

protein
Mice (Xu et al., 2011; Abi Abdallah et al., 2014; Cunha et al., 2018)

LJM17 Yellow-related
protein

Dogs (Collin et al., 2009; Abbehusen et al., 2018)

LJL143 Lufaxin Dogs (Collin et al., 2009; Abbehusen et al., 2018)
Lu. Intermedia Linb-11 SP13 family Mice (de Moura et al., 2013)
P. papatasi PpSP15 OBP-related

protein
Mice (Oliveira et al., 2008; Davarpanah et al., 2020)

PpSP36 Apyrase Humans (Tlili et al., 2018)
PpSP42 Yellow-related

protein
Humans (Tlili et al., 2018)

PpSP44 Yellow-related
protein

Humans (Tlili et al., 2018)

P. duboscqi PdSP15
(PduM02)

OBP-related
protein

Non-Human
primates

(Oliveira et al., 2015)

P. sergenti PsSP9 OBP-related
protein

Mice (Gholami et al., 2019)

Potential triggers of
autoimmunity

Lu. longipalpis LJM11 Yellow-related
protein

/ (Diaz et al., 2020)

LJM17 Yellow-related
protein

/ (Diaz et al., 2020)

P. papatasi PpSP32 Silk-related
protein

/ (Zaraa et al., 2012)
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