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Prior behavioral work showed that event structure plays a key role
in our ability to mentally search through memories of continuous
naturalistic experience. We hypothesized that, neurally, this mem-
ory search process involves a division of labor between slowly un-
furling neocortical states representing event knowledge and fast
hippocampal-neocortical communication that supports retrieval of
new information at transitions between events. To test this, we
tracked slow neural state-patterns in a sample of ten patients under-
going intracranial electroencephalography as they viewed a movie
and then searched their memories in a structured naturalistic in-
terview. As patients answered questions (“after X, when does Y
happen next?”), state-patterns from movie-viewing were reinstated
in neocortex; during memory-search, states unfurled in a forward di-
rection. Moments of state-transition were marked by low-frequency
power decreases in cortex and preceded by power decreases in hip-
pocampus that correlated with reinstatement. Connectivity-analysis
revealed information-flow from hippocampus to cortex underpinning
state-transitions. Together, these results support our hypothesis
that fast hippocampal processes bridge between slow neocortical
states during memory search.
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Main text
Humans have the ability to relive the past in rich detail (1). As you recall a cherished
memory of a beach day, you can picture yourself building a sand castle during low tide
and then you can picture the waves splashing over it when the tide comes in, washing it
away. Intuitively, there are several similarities between such vivid memories of continuous
experience and a video that we re-watch: Both are records of the past that contain rich
details, span long periods of time, and support sequential replay.

On a neural level, the process of memory retrieval is supported by the hippocampal
formation (2, 3). Furthermore, numerous studies have shown that remembering entails
reinstating neural activity patterns that characterize the original perception in neocortical
regions (4, 5). But what neural mechanisms support the retrieval of memories of tempo-
rally extended events like a day at the beach? A naive hypothesis is that the hippocampus
acts like a neural movie projector that continuously sends information back to the cortex.
In this view, the neocortex assumes a passive role and does not store knowledge that could
contribute to the retrieval process. In contrast, it credits the hippocampus with holding
a frame-by-frame copy of the original experience. Such video-like memories would predict
a steady flow of information from hippocampus to neocortex underpinning continuous
retrieval.

Several lines of evidence suggest that this view is inaccurate and that continuous
memories are, in fact, strikingly different from videos. Memories of long narratives are
organized in memory based on their structure: The continuous beach day can be broken up
into so-called events – meaningful units of activity like ”putting on sunscreen”, or ”going
for a swim” (6–12). Studies that assess the time that it takes to remember an experience
routinely find that (unlike a video) recall is substantially faster than the original experience
and crucially that it is the event structure of the memory trace that modulates the speed at
which it is replayed (13–18). Indeed, recent behavioral data suggests that event structure
allows us to dynamically access our memories throughout a continuous retrieval process,
providing them with an organization akin to chapters, where it is possible to “skip ahead”
to the next event (14). Studies using functional magnetic resonance imaging (fMRI) have
further shown that, during perception, high-level cortical regions break up continuous
sensory input into a sequence of neural event representations. Specifically, the pattern of
neural activity that characterizes a given event remains stable throughout the event and
then shifts abruptly at event boundaries (19–21). Different events of the same kind (e.g.,
two distinct events of swimming in the ocean) are further characterized by similar event
representations in cortical areas (22–24), suggesting that these cortical event patterns
may represent generalized event knowledge – an “event model”; crucially, these event
models are accessed both during perception and also during recall of naturalistic narratives
(19,25). According to theories of event segmentation, event models contain rich knowledge
of what will happen next within an event, based on repeated prior experiences with that
event type (7,26).

The idea that cortex contains knowledge of the structure within events suggests that
there is relatively less need to retrieve information from the hippocampus during an event
(since cortex can support much of this retrieval on its own), and more need for hip-
pocampal retrieval at the boundaries between events, where there is more uncertainty
about what will happen next (27–29); at these moments, hippocampus can provide previ-
ously stored information to neocortex that is no longer available within the current event
model (30). In support of this view, a recent study of patients undergoing intracranial
electroencephalography (iEEG) recording for clinical purposes found that when patients
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listened to a story for the second time, enhanced hippocampo-cortical information flow
supported the recall of upcoming information around the time of event boundaries (31).
This account of recall contrasts sharply with the view that neocortex is serving as a pas-
sive projection screen; rather, it posits that cortical event models contribute actively to
the recapitulation of a continuous narrative while the hippocampus stores representations
that are not captured by the generalized knowledge representations of event models (32).
That is, continuous memories may be unfurled through a complex division of labor be-
tween hippocampus – holding information about the sequence of events and unique details
within those events – and neocortex – contributing its generalized event knowledge to the
retrieval process (33). The signature prediction of this view is that hippocampal contribu-
tions to a continuous retrieval process should not be uniform in time; rather, they should
be especially strong at transition points between events (i.e., event boundaries), where
hippocampal retrieval “feeds” neocortex information about the properties of the upcom-
ing event. According to this view, the strength of hippocampal activation at an event
transition should predict the fidelity of cortical pattern reinstatement in the subsequent
event, and information transfer from hippocampus to neocortex should be a hallmark of
event transitions in memory.

To test these predictions, we relied on concurrent recordings from hippocampal and
neocortical channels in a sample of ten iEEG patients with well-preserved episodic mem-
ory function; this allowed us to measure neural activity with high spatial and temporal
precision. In our study, patients watched a shortened movie (Gravity, Cuaron 2013) in
two parts. After each half, they engaged in a naturalistic interview with the experimenter
(Figure 1). The experimenter first described a scene in the movie (e.g., “remember the
flames flying into the hallway”), confirming with the patient that they remembered that
scene. Subsequently, the patient was asked about a later scene in the movie (e.g., “. . .
when is the next time we see fire?”). The time between the end of the question and the
beginning of the patient’s answer marked a memory-scanning period, during which the
patient searched their memory for an answer without any external constraints. Impor-
tantly, the wording of the questions in the interview (“when is the next time...”) was
carefully chosen to induce forward scanning through the event, and prior behavioral work
using this paradigm indicates that this was the case (14).

A key challenge in studying the role of events in this type of unconstrained memory-
scanning was to identify when transitions between idiosyncratic event patterns occur.
Unlike the annotations that can be derived from story stimuli during story-listening or
from the transcripts of free recall (25, 31, 34, 35), there is no external behavior to mark
event transitions during memory-scanning. We addressed this challenge by identifying
event boundaries in a data-driven way during movie-viewing as the moments of transition
between slowly-changing neural states (19, 20). Electrophysiology is typically character-
ized by fast timescale dynamics, but we were able to identify slowly-changing compo-
nents of the iEEG data by first taking a spatiotemporal embedding of the data from a
local neighborhood of 5 channels (36), and then applying a novel transformation that
maximizes the stability of the resulting components over long periods of time (multi-
ple seconds; see Methods). This transformation was applied in a cross-validated way.
Slow components were subsequently segmented into discrete chunks at time-points de-
tected via Greedy-State-Boundary-Search (20), which maximizes the difference between
within-segment and between-segment similarity. Based on prior work with fMRI (19), we
expected that this data-driven neural segmentation would align with behavioral event seg-
mentation judgments. To test this, behavioral data from 203 participants were collected
via Amazon’s Mechanical Turk. In brief, participants in this norming-sample pressed a
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Figure 1: Experimental paradigm. Patients watched the two movie parts on a laptop in the
hospital while undergoing intracranial electroencephalography recording for clinical purposes.
After each movie, the experimenter asked naturalistic interview questions that consisted of a
setup and a target. The setup described a scene in the video, the target asked about a later
scene. The wording of the questions was crafted to induce forward memory scanning (see (14)
for behavioral evidence that this was indeed the case). Patients then searched their memory
and answered by describing the correct scene verbally. The time between the description of the
target and the first word in the patient’s answer marks the memory-scanning period.

button whenever they found that one natural and meaningful unit in the movie ended
and another began (7). Observers agreed substantially on these moments (Figure 2a)
and local peaks in agreement were considered behavioral event boundaries (see (14) for
a detailed description of the norming study). To measure the association between neu-
ral state-boundaries and behavior, we treated the perception of event boundaries in the
behavioral norming study as a continuous variable: the ratio of participants who pressed
a button within each second of the movie was taken as the strength of agreement on an
event boundary (see, however, Figure 2b for depictions of discretized behavioral event
boundaries together with examples of neural state boundaries). We next computed the
average agreement relative to each channel’s neural state-boundaries (i.e., we locked the
behavioral time-course of agreement to the time-points of state-boundaries in the neural
data). We then z-scored the time-locked agreement per channel based on time-locked
averages under permuted event order (see Methods) and averaged across all channels for
each patient. Note that under the null hypothesis, these time-courses of z-scores will
average to zero; however, we observed a significant increase in agreement across patients
that appeared after neural state-boundaries and peaked at 1261 ms after transitions (i.e.,
button presses in the norming-sample tended to follow neural state-boundaries derived
from the patient data set by approximately 1.3 seconds). Agreement was significantly
increased at many time-points between 446 ms and 6023 ms, ps <0.0108, controlling the
false discovery rate at q = 0.025; cluster permutation revealed one significant cluster of
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increased agreement between 155ms and 8343 ms after neural state-boundaries, p <0.001
(Figure 2c). To interpret the strength of this effect at each channel, we computed a noise
ceiling from the behavioral data only. Specifically, we repeated the above analysis locking
agreement to the behavioral event boundaries derived from the same data (local peaks
marked by dashed lines in Figure 2a), obtaining the maximum possible z-score for an
ideal state segmentation. We then expressed each channel’s maximum z-score within the
time-window of the significant cluster as a percentage of that noise ceiling (Figure 2d,
maximum value: 27.72%).

We next tested whether neural states defined on the segmentation during movie-
viewing were reinstated during the parts of the naturalistic interview when the exper-
imenter or patient was talking (i.e., excluding the memory search period). We analyzed
those questions that were unambiguously answered correctly by the patients (mean per-
formance = 57.78%, median = 55.56%, SD = 20.49%, min = 27.78%, max = 88.89%;
other answers were either unclear, not provided, or described the wrong scene): For each
question we identified the time points in the movie that corresponded to the scenes de-
scribed by the experimenter (in the setup to the question) and patient (when giving a
correct answer to the question), then we took the neural state patterns that were active
during those movie-viewing time points and correlated them with neural patterns from the
corresponding parts of the interview. For descriptions made by the interviewer, we added
an additional 4 seconds of padding in the neural data after the end of the description;
this was done to account for delays in processing and understanding on the side of the
patient. For the patient’s answers, we considered neural data from the first 10 seconds
of the patient’s speech. We then derived a null distribution from the correlation with
different scenes in the movie to obtain a z-score and p-value for each channel (see Meth-
ods). Controlling the false discovery rate at q = 0.05, we observed significant evidence for
reinstatement of the corresponding state-patterns during the interview on 53 channels ps
<= 0.0017 (Figure 2b, smallest z-score: z = 2.930, significant channels per patient: mean
= 5.3, S.D. = 7.513, range = 0–25, median = 3). For further analysis, we fit a Gaussian
Mixture Model with 2 normal distributions to the z-scores to separate the data into chan-
nels with and without reinstatement effects. The distribution with the lower mean serves
as an empirical estimate of the null distribution (31). We then selected channels if their
z-score was at least two standard deviations above the mean of the empirically derived
null distribution. With those parameters, we obtained a conservative threshold of z =
2.3274 (i.e., a stricter threshold than z = 1.96), resulting in 84 channels that were selected
for further analysis (Figure 3a), henceforth referred to as cortical reinstatement channels
(CR-channels). These channels were located in brain regions that overlap substantially
with the DMN (37); 42 of CR-channels were located closest to the DMN defined in the 7
Network solution defined by Yeo and colleagues (38), 16 further CR-channels were closest
to the somatomotor network, 11 to the frontoparietal network, 6 to the dorsal attention
network, 4 to the visual network, 3 to the ventral attention network, and 2 to were closest
to the limbic network.
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Figure 2: Neural state segmentation tracks shared event perception. (a) Agreement on event
boundaries in the norming sample for the first (top; blue) and second (bottom; red) half of the
movie. Lines are the ratio of participants that pressed the response button within each second,
dashed vertical lines mark local peaks in agreement. (b) Examples of state segmentation on
three channels. White lines are overlaid on time by time correlation matrices of slow components;
these lines delineate neural state boundaries. Overlaid colored lines delineate event boundaries
defined by the behavioral norming sample on corresponding parts of the movie (blue = first, red
= second; based on dashed lines). (c) Grand average z-score (± SEM) of agreement from (a,
continuous measure) locked to neural state boundaries (average of averages across channels and
patients; SEM across patients). Colored dots indicate points of significant increase controlling
the false discovery rate (purple) and derived from a cluster permutation (green). Agreement
peaks 1261 ms after neural state-boundaries (d) Peak association of neural state-boundaries with
behavior expressed as percentage of the noise ceiling. Plotted are channels where the maximum
z-score exceeded Z0.95 = 1.645 within the cluster that confirmed a significant difference (compare:
c)
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Figure 3: Neural states are reinstated during the naturalistic interview and unfurl in a forward
direction during memory-scanning. (a) Cortical reinstatement channels (CR-channels) where
evidence for state-patterns exceeded the mean of the null distribution by 2 standard deviations.
State-pattern reinstatement was observed in regions that overlap substantially with the default
mode network (DMN); specifically, 42 of CR-channels were located closest to the DMN defined
in the 7 Network solution defined by Yeo et al. (38) (16 were closest to the somatomotor,
11 to the frontoparietal, 6 to the dorsal attention, 4 to the visual network 3 to the ventral
attention, and 2 to the limbic network). (b) Z-score of evidence for reinstatement on all channels.
Boxplot represents 25th and 75th percentile around the median, whiskers represent minimum
and maximum excluding outliers. Black dots are z-scores on individual channels, red dots are
z-scores where the corresponding p-value exceeds the threshold of significance from controlling
the false discovery rate at q = 0.05. (c) Average state-pattern by memory-scanning correlation
matrix that has been scaled to 10 state-patterns and 40 time-points. The inset represents the
same correlation matrix scaled to 2 state-patterns and 2 time-points. Statistical significance
and direction of memory-scanning was assessed based on the 2 by 2 scaling. The correlation
matrix illustrates that early state-patterns from the scanned segment correlate highly with early
memory-scanning times while later state-patterns correlate highly with late memory-scanning
times.

We now tested if there was also significant evidence for reinstatement of state-patterns
on CR-channels during the memory search period (when patients were not speaking). Note
that neighboring state-patterns can be uncorrelated or even negatively correlated. Con-
sequently, the average correlation with all state-patterns within a scanned segment may
average to zero or even to a negative correlation as many states are traversed. Nonethe-
less, when subjecting the average correlation with scanned state-patterns from the movie
to a permutation test (randomly flipping the sign of correlations for each patient), we
observed significant evidence for reinstatement during the scanning period (p = 0.0136).
Next, we analyzed the order in which neural state-patterns unfurled by subjecting the
average correlation between the first and second half of scanned state-patterns and the
first and second half of memory-scanning to an ANOVA across 81 memory-scanning trials
(Supplementary Table 2, compare also: Figure 3c). We found a significant main effect
indicating unequal correlations (p <0.0022).

We then averaged Fisher-Z transformed correlations to compare the matching times
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(first half and first half, second half and second half) to the average of non-matching
times (first half and second half, second half and first half); effectively testing forward vs.
backward scanning. A positive difference supported by a significant post-hoc t-test (t(80)
= 2.268, p = 0.013) confirmed that memory-scanning proceeded in a forward direction
(compare figure 3c, inset).

A central goal of our analyses was to look for fast neural processes occurring at mo-
ments of state transitions during memory-scanning. To identify those moments of state
transition on CR-channels during memory scanning, we used Dynamic Time Warping
(DTW) (39) to compute the optimal alignment between neural state-patterns on CR-
channels during movie viewing and the neural time series during memory scanning. In
brief, for each trial of memory-scanning and each CR-channel, we computed the state-
by-time correlation matrix and found the path from state 1 and time-point 1 (bottom
left of the matrix) to the last state and the last time-point (top right of the matrix)
that maximizes the overall correlation between state-patterns and data-points in the
memory-scanning interval (note that DTW only allows for forward transitions on the
warp-path). This path reflects the best state-pattern to memory-scanning alignment;
time-points of state-transition on this path consequently identify the most likely moments
of state-transition during memory-scanning.

Based on these newly identified time-points, we next tested for univariate correlates of
state-transitions during memory-scanning on CR-channels. In a first step we computed
the baseline-corrected Power Spectral Density (PSD, see Methods) for frequencies between
1 and 30 Hz and tested for a change in PSD at the exact time of state-transition. A two-
tailed t-test comparing the relative PSD against zero revealed a significant decrease in
the theta frequency band (4-6 Hz, ps <0.0002, controlling the false discovery rate at q =
0.025). We further tested for a cluster of changes in PSD within a window of 1 second prior
to 1 second after the state-transitions during memory-scanning and observed a cluster of
significant power decreases (Figure 4a) spanning a time-interval between 220 ms prior to
the state-transition and 180 ms post state-transition and the frequency bands of 3-30 Hz
(p = 0.035; two-sided).

We hypothesized that hippocampal correlates would precede state-transitions in cor-
tex and support the unfurling of a continous memory trace. Testing this hypothesis,
we computed the average baseline corrected PSD across hippocampal channels locked
to each CR-channel’s state-transitions. We then tested for a cluster of changes in PSD
up to the moment of state-transitions (starting 1s prior). A cluster of significant power
decrease in hippocampus spanned the time period from 760–510 ms before the cortical
state-transition (Figure 4c) and extended across the frequency bands of 3 to 30 Hz (p
= 0.022; two-sided). To test whether those power decreases were indeed related to the
cortical reinstatement of state-patterns throughout the memory-scanning period, we next
correlated the time-frequency bins inside the cluster of hippocampal PSD with the aver-
age amount of reinstatement that we observed for the state that the patient transitioned
to next. Specifically, across all state transitions on all CR-channels, we correlated PSD in
hippocampal time-frequency bins and the Fisher-Z transformed average correlation that
quantifies reinstatement throughout the next state. By flipping the sign of correlation
within each patient, we identified a cluster of significant correlations (p = 0.02, one-tailed)
where lower PSD in hippocampus was associated with more evidence for reinstatement of
the upcoming state (spanning 5-12 Hz and from to 760 – 619 ms before state transitions;
figure 4d). In a control analysis, we correlated PSD before event transitions with the evi-
dence for reinstatement of the current state (i.e., the state that was just abandoned in the
state-transition), however, we observed no significant association with hippocampal power
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decreases (no cluster emerged, p > 0.999). Comparing these correlations with upcoming
state and previous state statistically, we further observed a significant cluster where the
correlation with the upcoming state was stronger (p = 0.015); this cluster emerged almost
entirely within the cluster of significant association between PSD and reinstatement of
the next state (97.56% entailed, compare Figure 4d). Finally, we tested if the decrease in
PSD in hippocampus was directly related to the observed spectral pattern in cortex that
marked state-transitions. To this end, we assessed whether there was a systematic rela-
tionship between amplitude of the hippocampal signal (in frequency ranges 3-7, 8-15, and
15-30 Hz) and CR-channels at the times of state-transition. Specifically, we computed the
conditional Gaussian Copula Mutual Information (GCMI) (40) between each hippocam-
pal and CR-channel (Figure 4b) at various hippocampal lags (offsets). We conditioned
GCMI on the hippocampal signal at zero-lag to account for volume conduction and com-
mon noise. When comparing to GCMI derived from phase shuffled data, we observed
significantly enhanced connectivity between hippocampal channels and CR-channels at
two offsets (-540 to -520 ms and -380 ms to -340 ms) peaking at a 530 ms hippocampal
lead and a 360 ms hippocampal lead (ps <0.0033, controlling the false discovery rate
at q = 0.05); i.e., 3-30 Hz amplitude in hippocampus prior to state-transitions was sig-
nificantly related to CR-channels’ 3-30 Hz amplitude at time of state-transition (Figure
4e). Finally, we wanted to account for the possibility that information from hippocampus
arrives in cortex slightly before state-transitions. Therefore, we repeated above analysis
with a sliding window starting 500 ms prior to the CR-channels’ state boundaries. When
comparing patients’ average GCMI between hippocampal and cortical channels to GCMI
from phase-shuffled data (up to an offset of 1-second hippocampal lead), we observed a
cluster of significantly enhanced GCMI throughout the 500ms period that leads up to the
state-transition. This cluster spanned hippocampal leads from at least 550 ms (max = 580
ms lead) to leads of 280 ms (min = 530; Figure 4f); in sum, we observed information-flow
from hippocampus to cortex prior to state-transitions and at state-transitions in cortex.

These findings elucidate the slow and fast neural mechanisms that support memory-
search across extended periods. By using a novel transformation of iEEG data, we were
able to identify spatio-temporal patterns in the default mode network (DMN) of neo-
cortex that persisted over long periods during movie viewing, correlated with behavioral
measures of event perception, and were reinstated in a forward sequence during memory-
scanning. Computing the optimal fit between neural states during viewing and memory-
scanning allowed us to pinpoint the exact moments when one event ended and the next
one began during the memory-scanning period. Time-locking our analysis to these neural
event boundaries then allowed us to test our predictions about the fast neural mecha-
nisms that support memory search. Indeed, we found that low-frequency power decreases
in the default mode network marked the exact moment of state-transitions. Moreover,
state-transitions were preceded by power decreases on hippocampal channels by approx-
imately 700ms. Hippocampal power decreases further predicted the strength of memory
reinstatement for the upcoming state, but not the previous state, and analyses of mutual
information between the power-spectra in the hippocampus and cortex suggested that
information was transferred from hippocampal to cortical channels at and prior to the
state transitions.

Many features of these results align with and build upon existing findings in the liter-
ature relating to slow and fast memory-related processes, considered on their own. Our
finding that behavioral annotations of event boundaries aligned with transitions in slow
states during movie-viewing (measured using iEEG) is a conceptual replication of prior
work that used fMRI (19, 21), but adds a new level of temporal precision that pinpoints
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Figure 4: Neural underpinnings of state-transitions during memory-scanning. (a) Changes in
Power Spectral Density (PSD) at state-transitions. A significant decrease in PSD was observed
on CR-channels in a cluster spanning 3-30Hz between 220 ms before and 180 ms after state-
transitions. (b) Cortical reinstatement (CR) channels (blue) and hippocampal channels (red).
(c) A significant decrease in PSD was observed on hippocampal channels in a cluster spanning
3-30Hz between 760 and 510 ms before state-transitions. (d) Correlation between PSD in
hippocampus (c) and reinstatement of the upcoming state (compare figure 3c). A significant
negative correlation was observed in a cluster spanning 5-12 Hz between 760 and 619 ms, i.e.,
lower power before state transitions in hippocampus predicted more evidence for reinstatement
throughout the upcoming state. (e) Gaussian Copula Mutual Information (GCMI) in frequency
bands 3-7, 8-15, and 15-30Hz, between hippocampal channels and CR-channels for real data
(black line) and phase shuffled data (gray line ± SEM). GCMI is shown at different hippocampal
leads (negative lag), conditioned on zero-lag GCMI. Green dots mark points where GCMI of the
real data significantly exceeds GCMI of phase-shuffled data, controlling the false discovery rate
at q = 0.05. (f) The same analysis as in (e) at different times before the state-transition; y = 0
corresponds to the results in (e). The maximum cluster of increased GCMI is displayed, where
a significant GCMI between hippocampal and CR-channels is present.
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behavioral event segmentation at 1261 ms after neural state boundaries. Likewise, our
finding that reinstatement of these slow states during the interview occurred in the DMN
fits with a large number of fMRI studies that have also observed reinstatement of event
representations in the DMN (19, 22, 23, 25, 41–45). With regard to fast memory-related
processes: Our finding of decreased power spectral density (PSD) at state transitions dur-
ing memory-scanning is consistent with numerous other electrophysiology studies (using
other paradigms) that found an association between decreased PSD and memory reinstate-
ment (13,46–49). A key innovation of our approach was to use the slow-timescale analyses
(identifying moments of state transition) to time-lock the fast-timescale analyses. It is
worth emphasizing that no stimulus information is present during the memory-scanning
period, which lasts on the order of seconds, and participants do not emit any behavior dur-
ing this period – so, in the absence of the state-transition information, there would have
been no way to determine when in this period to look for fast memory processes, which
occur at a millisecond timescale (31,50,51). Time-locking to state transitions revealed a
rich array of hippocampal and cortical activity: both the aforementioned PSD decreases
(in both hippocampus and cortex, with hippocampus preceding cortex) but also, crucially,
relationships between hippocampal and cortical activity (whereby hippocampal PSD de-
creases predicted cortical reinstatement, and there was time-lagged mutual information
between early hippocampal and later cortical activity). These relationships provide sup-
port for our hypothesis that hippocampus supplies cortex with retrieved information at
state transitions.

These results (showing hippocampus-cortex interactions at state transitions during re-
call, in the absence of a stimulus) complement and extend prior work showing hippocam-
pal engagement at event boundaries during perception (stimulus viewing / listening) –
much of this prior work has focused on hippocampal contributions to encoding at event
boundaries (19, 23, 31, 43, 43, 52–54) but some of it, like the present study, has looked
at hippocampal contributions to retrieval at these boundaries (31, 55, 56). These prior
findings, like ours, provide evidence that hippocampal episodic memory helps to bridge
between related, temporally-extended events (9–11, 54, 55, 57–59). This “bridging” func-
tion can be engaged during perception (helping to anticipate upcoming events), or during
pure retrieval, as in our study. One difference between these scenarios is that, during a
memory-scanning task like ours, a failure to “bridge” from one event to the next can cause
the memory-scanning process to fail (whereas a failure to “bridge” during movie watch-
ing or story listening will, at worst, lead to a failure to anticipate upcoming events). In
our study, errors were too variable between patients to meaningfully analyze differences
between correct and incorrect responses, but future work can explore whether failures
in hippocampal retrieval at state transitions during memory scanning ultimately lead to
failures to locate the sought-after event.

In conclusion, the present study provides new insights into the slow event dynamics
and fast hippocampal-cortical interactions that support memory search. In our prior be-
havioral work using this paradigm (14), we inferred that event boundaries serve as “access
points” for memory retrieval during continuous memory scanning based on careful anal-
ysis of reaction times (e.g., by showing that memory search times are better predicted
by the number of events in the scanned period and, crucially, the distance of the search
target to the previous event boundary than by the clock-time durations of those events;
see also (15–18, 60, 61)). Here, through the time-resolved tracking of state-transitions in
iEEG during continuous memory-scanning, and the concurrent direct recording of hip-
pocampal activity, we were able to directly observe the neural mechanisms underlying
memory-search. At these moments of state-transition, we were able to show transfer of
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information from hippocampus to cortex and a correlation between hippocampal activity
and subsequent cortical reinstatement, thereby demonstrating how the hippocampus acts
at state transitions to support the unfurling of temporally-extended memories.
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Supplementary Material

Materials and Methods

Participants
A sample of 203 participants was recruited in online experiments for the purpose of norm-
ing the stimulus material for event boundaries. This norming experiment was previously
published as part of a behavioral study. From 203 collected participants, 33 data sets
were excluded for the first movie and 28 data sets were excluded for the second movie
because of lags in stimulus presentation. Further details on recruitment, compensation,
and exclusion criteria can be found in (14). A distinct sample of 10 intracranial electroen-
cephalography (iEEG) patients (18 − 41 years old, mean = 29.3, SD = 13.236, 4 male,
6 female, 9 right-handed, 1 ambidextrous) was recorded at the Comprehensive Epilepsy
Center of the New York University School of Medicine. Patients had been diagnosed
with medically refractory epilepsy and were undergoing intracranial recording for medical
purposes. The Princeton University Institutional Review Board granted ethical approval
for all studies, additionally, the Institutional Review Board at the New York University
Langone Medical Center granted ethical approval for the iEEG studies.

Stimulus material
To generate the video material, the movie Gravity (2013, Alfonso Cuaron) was edited
to tell a coherent story of 15 min duration. This edited version resembles an extended
trailer spanning the whole movie and features many of the key scenes in the story; for
the experiments, it was divided into two halves of 7 minutes and 30 seconds duration.
Interested readers can view the original movie for reference or contact the authors to
view the edited versions, however, we cannot publicly share the video material due to
the copyright. A set of 18 memory-scanning questions was used to induce memory-
search; those questions had been piloted and tested for difficulty in previous behavioral
experiments (14). The questions follow a specific format, they consist of a setup, and a
target: The setup describes a scene (Scene A) in the video with the purpose of orienting
the patient to that scene, e.g., “[In the space station] we see little flames flying [...] into
the hallway”; the target part of the question is typically introduced by “When is the next
time...” and asks about a later scene in the video (Scene B), e.g., “[...] that we see fire?”
(compare: Figure 1).

Experimental procedures
The norming of the stimulus material is described in detail in (14). In brief, participants
viewed the videos using their internet browser under the instruction to press the space bar
whenever, in their opinion, one natural and meaningful unit ended, and another began.
Thereby, each participant indicated at what times during the movie they perceived an
event boundary (6,7). For the naturalistic interviews, iEEG patients did not receive any
information about event boundaries, they performed an interview task that prompted
them to perform memory-scanning: Upon giving informed consent to participate in the
experiment they received comprehensive instructions from the experimenter. Here, the
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experimenter explained the tasks and emphasized the necessity for careful attention as
patients watched the videos. The experimenter further asked to provide vivid and detailed
descriptions as the patient answered the memory-scanning questions. Prior to starting
the experiment, patients also received additional information about the movie’s main
characters and locations. These details were read aloud and ensured that patients could
effectively follow the story line and were familiar with less common terms used in the
movie (e.g., the Soyuz spacecraft and the Hubble telescope). Next, the patients engaged
in a practice session with a brief clip of 9 seconds duration that featured Charlie Chaplin.
This practice served to familiarize patients with the experimental procedure and with the
format of the subsequent main movie-viewing and interview phase; if needed, the practice
session was repeated.

Patients then started the main experiment by viewing the first half of the movie, which
was then followed by the memory-scanning interview. During the interview, the first set
of 10 memory-scanning questions that pertained to this video was asked in randomized
order: First, the patient was told that they were about to hear a new question. The
experimenter proceeded to read the setup of the question, which asked the patient to focus
on a particular part of the movie (scene A); the experimenter then confirmed with the
patient that they remembered that moment. If the patient confirmed, the experimenter
proceeded to ask about a later part of the movie (scene B) by reading the target part
of the question. After the patient described that scene in their answer, the experimenter
proceeded to the next question. When all questions had been asked, the experiment
continued with the second half of the movie, upon which another set of 8 interview
questions were asked in randomized order. The reading of interview questions at the
bedside in free interaction with the patient is a loosely structured task that requires a
high amount of guidance and intervention from the experimenter: In some cases, the
patient did not remember the setup part of the question; the experimenter could then
try to describe the scene in more detail and give additional context to help the patient
find the correct scene in memory. Once the patient did remember the correct scene
(scene A) and was therefore oriented, the experimenter would proceed by asking about
the target to elicit memory-scanning. If the patient could not remember the setup at all,
the experimenter would proceed with the next question. Sometimes, the patient would
give a brief answer that did not provide sufficient detail to unambiguously determine if
they were referring to the correct scene (scene B); in that case, the experimenter could
ask the patient to provide more details, which was then used to determine whether their
previous answer was describing the correct scene. In the latter scenario the experimenter
would often follow up with a reminder, asking the patient to provide rich detail in their
future answers. Finally, the patient would sometimes describe more than the correct
scene (scene B) in their answer and proceed describing subsequent parts of the movie in
chronological order. In that situation the experimenter could interrupt the patient and
thank them for providing the correct answer. Once the interview process was completed,
patients were debriefed and thanked. They were given an opportunity to ask questions
or voice any concerns. Due to experimenter error, two patients received the interview
questions in the same order. For one patient, a question relevant to the second half of the
movie was inadvertently posed after the first half but was then repeated in the second
interview. In another instance, a question pertaining to the first segment was asked after
the second; in that specific instance, the question was excluded from subsequent analysis.
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Data collection
In the patient studies all video material was presented on a 15-inch MacBook screen using
85% of the screen space against a black background; throughout the entire experiment,
high-quality audio recording was continuously maintained, capturing every verbal inter-
action in the room. The onset of the two movie stimuli was recorded with a video-trigger
through a photo-diode. The diode was attached to the bottom-left corner of the screen on
the patient laptop and connected to a channel of the clinical amplifier that concurrently
recorded intracranial EEG recordings from the patient. Before the start of the movie, a
white rectangle was flashed underneath the photodiode for a duration of one second and
then set to black for an additional second three times. For the duration of the movie the
rectangle was then set to white again, i.e., the fourth onset of the photo diode marked
the onset of the movie. When the movie ended, the rectangle under the photo diode was
turned off again and flashed three more times with a one second duration and interval,
marking the end of the video presentation; the flashing of the trigger in known intervals
served to validate the accuracy of timing for on- and offsets. Additionally, an audio ca-
ble was connected from the laptop to the iEEG amplifier and an audio pulse was sent
concurrently with each onset of the video-trigger.

Neural data were collected via grid arrays (8 × 8 contacts, 10 or 5 mm spacing), linear
strips (1 × 8/12 contacts), depth electrodes (1 × 8/12 contacts), and a high-density grid
(16 × 8 contacts, 1 mm spacing) for one patient over the lateral posterior occipital cortex.
The recording was realized with a NicoletOne C64 clinical amplifier (Natus Neurological,
Middleton, WI), data were referenced online to a two-contact subdural strip close to
the craniotomy location. Data underwent filtering through an analog bandpass (0.16–
250 Hz range), they were digitized at 2048 Hz and down-sampled to 512 Hz. Available
data spanned 1515 channels (ranging from 104 to 242 channels per patient, detailed in
Supplementary Figure 1). Out of these, 109 channels were omitted from the analysis
due to insufficient signal quality (varying between 1 to 33 channels for each patient, as
detailed in Supplementary Table 1).

Audio data processing and alignment
To analyze the iEEG recording in conjunction with the interview data and the videos,
several alignment and processing steps were applied. Using Audacity® (version 2.4.2,
audacityteam.org), the high-definition audio from the patient room was first converted
to mono and down-sampled to 16 kHz. Subsequently, the audio trace from the video
stimuli was extracted at the same sampling frequency. Cross-correlation analyses between
each video’s audio trace and the room recording were then computed in Matlab (2020b,
mathworks.com). Specifically, the cross-correlograms between the audio time-series were
computed and smoothed with a gaussian kernel (width: 32 sample points); the lag of the
peak in the respective smoothed cross-correlogram was used as a marker of the exact onset
of the videos in the audio recording. Next, the audio recording was used to manually
transcribe the interview. Then, all words in the interview and during the movie were
time-stamped via Penn Phonetics forced aligner (62). To ensure precision, a custom-
written graphical user interface was used to hand-select small sub-sections of text and their
corresponding sub-sections in the audio 1, which effectively mitigated word alignment error
due to ambient noise or extended pauses. The audio recording’s time scale was henceforth

1https://github.com/s-michelmann/semi_automatic_aligner
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patient # sex
(m/f/d) hand diagnosis N channels

(raw)
N channels
(included)

HC channels
(included) CR channels

1 m ambi treatment-resistant
focal epilepsy arising
from left hemisphere,
not clearly localized

161 141 7 28

2 f right treatment-resistant
focal epilepsy arising
from left hemisphere,
not clearly localized

120 113 7 2

3 f right drug-resistant focal
epilepsy likely arising
from left temporal
lobe

242 218 3 14

4 m right drug-resistant focal
epilepsy arising from
left temporal lobe

124 119 7 8

5 f right drug-resistant non-
lesional left temporal
(likely neo-cortical)
epilepsy

133 131 3 4

6 f right drug-resistant focal
epilepsy, with focal
aware and impaired
aware seizures

196 193 13 8

7 m right focal epilepsy 128 95 6 0
8 f right refractory focal

epilepsy and anxi-
ety/depression

132 131 4 2

9 m right drug-resistant lesional
focal epilepsy

104 99 6 3

10 f right drug-resistant focal
epilepsy, likely arising
from a right parietal
lesion

175 166 13 15

Supplementary Table 1: Characteristics of the patient sample and details on the number
of analyzed channels.

adopted as the reference time-scale for the experiment in all recordings, notably including
the iEEG recording, where the onset of the movie was determined via the trigger pulses of
the photodiode. In brief, the outcome of the procedure was the alignment between word
onsets in the interview, the movie onset during the experiment, and the iEEG recording.
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Supplementary Figure 1: Position of analyzed electrodes. Electrodes from the same patient are
coded in the same color.

Neural data processing
Electrode localization and alignment
Electrode localization was achieved by aligning either the post-surgical T1-weighted MRIs
(patient 1 and 2), or post-surgical CT scans (patient 3–10) to the pre-surgical MRI of
each patient (63). Manual examination in MRIcroGL (64) was performed to identify
the hippocampal electrodes. Subsequently, nonlinear mappings of the MRIs to the Mon-
treal Neurological Institute’s MNI-152 template were computed to transform electrode
coordinates into MNI space.

Pre-processing
Electrophysiological data were pre-processed using the FieldTrip toolbox (65) and custom
written scripts in MATLAB (2020b, mathworks.com).
Alignment and segmentation: To synchronize iEEG recordings with the movie stimuli,
triggers marking the start of each movie were used. To mitigate drift between recordings,
the iEEG data were duplicated and each duplicate’s time-axis was aligned separately
with the audio recording’s time-axis from the first and second movie, based on their re-
spective triggers. The first duplicate was then cut to encompass the interval from four
seconds before the first movie to five seconds before the second movie; the second du-
plicate spanned from four seconds before the second movie’s start until the end of the
experiment. This process yielded two non-overlapping recordings corresponding to the
first and second halves of the session.
Artifact Identification: Residual epileptic spikes and artifacts were marked with a semi-
automatic procedure: Candidate artifacts exceeding 5 inter-quartile ranges above a chan-
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nel’s median were marked along with 300ms around these values. Subsequently, only
instances of artifacts where at least 3 neighboring channels concurrently identified them
were retained, Finally, all potential artifacts underwent manual inspection and correction.
Re-referencing and interpolation: An ICA was computed to remove shared noise across
channels (66). ICA filters were generated using data from both experiment parts, pre-
viously filtered by a band-stop filter (stopbands: 55–65, 115–125, 175–185). The ICA
computation was exclusively on artifact-free data. Next, raw data around manually re-
vised artifact moments, where channel amplitude additionally exceeded 3.5 interquartile
ranges above its median, underwent Monotone Piecewise Cubic Interpolation (67) within
a 150ms window. The previously computed ICA solution was then applied to the re-
sulting data and maximally ten spatially broad components capturing reference noise
were rejected (mean = 2.5, median = 2 components). Finally, a band-stop filter (stop-
bands: 58–62, 118–122, 178–182) removed residual line noise from the interpolated and
re-referenced data. All filter operations were conducted using zero-phase lag 4th order
Butterworth IIR filters.

Slow component analysis
Temporal embedding searchlight: Electrophysiological recordings exhibit intricate tempo-
ral dynamics, encompassing both fast and slow neural processes that manifest in complex
spatio-temporal patterns of activity. To effectively leverage rich spatio-temporal patterns,
we employed a method proposed by Vidaurre et al. (36): By concatenating shifted ver-
sions of the recording along the channel dimension, we temporally embedded the data.
To preserve spatial specificity, however, we limited this temporal embedding to 5 neigh-
boring channels at a time, effectively combining the temporal-embedding approach with
a searchlight procedure. Specifically, in each local neighborhood, we concatenated the
data at 128 lags at a sampling rate of 512 Hz, thereby covering a window-width of 250
milliseconds (Supplementary Figure 2a).
Dimensionality reduction via Canonical Correlation Analysis: We next performed a di-
mensionality reduction on these high-dimensional data similarly to Vidaurre et al, who
performed a principal component analysis (PCA) of the embedded data. Importantly,
however, we pursued a method that emphasizes slow components, i.e., that maximizes
autocorrelation rather than variance (Supplementary Figure 2b). Our rationale was that
components of interest would display dynamics described by (19), staying stable for long
periods of time and then shifting to a new pattern. Specifically, we wanted to obtain
components of maximal covariance between the embedded signal and its shifted copies
without favoring any specific frequency (e.g., 60 Hz line noise would be maximally corre-
lated at a constant shift of 16.67 ms). To this end, we computed a canonical correlation
analysis (CCA) between the embedded signal and its own shifted versions. CCA maxi-
mizes covariance between two time-series X and Y while constraining the projected data
to unit variance. We concurrently maximized the correlation between the signal and its
shifted version at all lags between 252 milliseconds (1 sampling point outside of the tem-
poral window of the feature vector, i.e., starting at lag k = 129) and ending at a shift of
10 seconds (maximum lag, L = 5120). This was done separately for the recording corre-
sponding to the first and second video, i.e., no interview data was used in the computation
of the slow component transformations.

In practice, we computed these components by solving the generalized eigenvalue
problem:

A · u = Λ · B · u (1)

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.02.11.637471doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.11.637471
http://creativecommons.org/licenses/by-nc-nd/4.0/


with A = Cxy · C−1
yy · C′

xy and B = Cxx.
Cxx and Cyy are covariance matrices of the signal without shifts; Cxx is computed with
the signal truncated at the right end:

Cxx = 1
L − 128

L∑
k=129

(
X ′

1:n−k,: × X1:n−k,:
)

(2)

with k referring to the offset in the signal and L denoting the maximal number of lags
(here: 10 seconds, i.e., 5120 points at a sampling rate of 512 Hz). Cyy is computed with
the signal truncated at the left end:

Cyy = 1
L − 128

L∑
k=129

(
X ′

k:n,: × Xk:n,:
)

(3)

Cxy refers to the cross-covariance matrix between copies of the high-dimensional signal
and its shifted versions.

Cxy = 1
L − 128

L∑
k=129

(
X ′

1:n−k,: × Xk:n,:
)

(4)

To increase stability, we additionally applied shrinkage regularization (68) to all co-
variance matrices before computing the eigenvalue decomposition via:

(1 − γ) · C + γ · I · tr(C) (5)

with a regularization parameter of γ = 0.0001.
To obtain a threshold for the retention of components from this analysis, we next com-

puted the correlation coefficient of each component from the square root of the eigenvalues
r =

√
λ and derived a p-value as p = 1 − tcdf(t, n − 2), where tcdf denotes the cumulative

distribution function of the t-distribution and t denotes the t-statistic t = r√
1−r2
n−2

. We

only considered the maximal number of components for that the obtained p-value was
smaller than 0.05 for the components computed on data from the first and second video
presentation; however, we never considered more than 300 components.

Slow components could subsequently be computed by projecting the embedded signal
via X × u. To avoid over-fitting we projected each signal with the solution from the other
movie (Supplementary Figure 2c). That is, for data XA and XB corresponding to the first
and second video, we obtained eigenvectors uA and uB. We then projected X̂A = XA ×uB

and X̂B = XB × uA.

Neural state segmentation
We performed a segmentation on the slow components that were extracted in each chan-
nel’s local neighborhood. First, we down-sampled the components to a sampling rate
of 40 Hz for reasons of computational efficiency. We then applied greedy state boundary
search (20) to the data (with a block-size of 40 and a maximal number of 250 states). In 3
instances the algorithm did not converge on a solution (2 channels of subject 9 during the
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Supplementary Figure 2: Slow component analysis. (a) A searchlight of 5 neighboring channels
was used. Time courses were concatenated along the channel dimension for shifts up to 128
sample points (250 ms), effectively bringing the spatial and the temporal dimension together in
spatio-temporal feature vectors. (b) Spatio-temporal feature vectors were mapped onto them-
selves concurrently at various lags. Specifically, the transformation matrix U maximizes the
correlation of the signal with itself at lags between 250 ms and 10 s. The transformation was
applied in a cross-validated fashion: The transformation fit to the first half of the data was
applied to the data from the second half and vice-versa. (c) Projected feature vectors from (a)
capturing spatio-temporal patterns that are stable over long periods of time.

first video and 1 different channel during the second video); these instances were treated
for further analysis as if no boundary had been detected; i.e., no further analyses were
performed on these channels. From this analysis, we obtained neural states for each local
neighborhood characterized by corresponding state-patterns. Furthermore, we obtained
the boundaries between those states to a precision of <25 ms.

Representational similarity between movie viewing and the interview
To test for the reinstatement of neural state-patterns during the naturalistic interview
(specifically, the parts of the interview where the experimenter or the participant were
speaking, excluding the silent memory-scanning period), we performed a representational
similarity analysis (RSA) between state-patterns at encoding (during the presentation of
the movie) and the slow component data during the interview. For this analysis, we cor-
related the components throughout the time period in which a given scene was described
in the interview (either by the researcher or by the patient) with all neural state-patterns
that corresponded to that scene in the movie during viewing. For the movie-viewing pe-
riod, corresponding state-patterns were selected for correlation if the first movie-frame or
the last movie-frame of the described scene was inside the interval spanned by the begin-
ning and end of a neural state. Intervals during the interview were determined based on
the onset time of the first word in a description and the offset time of the last word in
a description. To account for a delay in processing (the patient may take some time to
understand which scene is being described), we considered an additional 4 seconds of data
after the interviewer’s description (setup) in the interview. For answers, we considered
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the first 10 seconds after the onset of the patient’s response (later parts of the response
often digressed into irrelevant content and were characterized by long pauses). We then
computed the average correlation (over time) of neural patterns from the interview with
each state-pattern from encoding, and compared the correlations of corresponding inter-
vals (same scene in perception and memory) to correlations of non-corresponding intervals
(different scene in perception and memory). Specifically, we averaged all correlations of
same content (rsame) and all correlations of different content (rdiff ). We further boot-
strapped the standard deviation of averages (SDavg) by resampling 100,000 times from
all computed correlations (corresponding and non-corresponding); crucially, these samples
were of the same size as the number of corresponding correlations (Nsame). From this we
computed a z-score: zrsa = (rsame − rdiff )/SDavg.

To assess reinstatement of event patterns in the memory-scanning period, we selected
corresponding neural state-patterns from the scanned segment during movie-presentation.
Specifically, state-patterns from the viewing period were selected starting with the first
movie-frame after the scene described in the setup, and ending with the last movie-
frame from the target scene. Memory scanning intervals were determined based on the
offset time of the last word in a description of the setup and the onset time of the first
word in the patient’s answer. We obtained z-scores again by comparing corresponding
correlations (i.e., correlations to the state-patterns from the scanned segment of the movie)
and non-corresponding correlations (correlations to other state-patterns, from outside of
the scanned segment). We then computed a standard deviation by bootstrapping averages
from all combinations of corresponding and non-corresponding correlations to derive z-
scores.

Channel selection for further analysis
A substantial number of channels survived the correction for multiple comparisons, sta-
tistically confirming the existence of reinstatement. Crucially, however, many more chan-
nels displayed high z-scores. For further analysis, we selected those channels on which
the evidence for reinstatement exceeded at least two standard deviations above the null
distribution. We derived that null-distribution empirically by fitting a Gaussian mixture
model with 2 Gaussian distributions onto the z-scores from all channels. Subsequently, we
computed a threshold from the parameters of the distribution with the lower average as
2 Standard deviations above that mean; this resulted in an empirical cutoff of 2.326, i.e.,
a value that is slightly more conservative than we would have obtained from assuming a
standard normal distribution.

Assessing the direction of memory-scanning
To assess the direction of memory-scanning, we analyzed the correlation of each neural
state-pattern from encoding with each moment during memory-scanning, i.e., we derived
time-courses of correlation for each neural state-pattern. Because each memory-scanning
trial could span a different number of states, and each channel could have a different
number of neural state-patterns, we aggregated the correlation time-courses in the fol-
lowing way: First, we discarded trials at a given channel if that channel did not have
at least two state-patterns. Second, we scaled the states’ correlation time courses to the
same number of states and to the same scanning duration for all subjects, channels, and
trials. Finally, we averaged the time courses of correlation across channels, obtaining an
averaged time course for each interpolated neural state for each trial. This allowed us to
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obtain an averaged state-by-time correlation matrix that captures the similarity of early
and later (interpolated) neural states to different moments during memory-scanning via
their correlation.

Identification of neural state-transitions during memory-scanning
To identify the transition from one neural state-pattern to the next during memory-
scanning, we used the algorithm behind dynamic time warping (DTW) to compute the
optimal alignment between the state-patterns from encoding and the component time
course during memory-scanning (39); we computed this separately for each subject, trial,
and channel. Concretely, we used the correlation of the multivariate patterns as a dis-
tance metric between every state-pattern and every time-point during retrieval. We then
computed the optimal warp-path that maximizes the correlation in the transition through
state-patterns from the beginning of the memory-scanning period to its end. Each tran-
sition in that optimal warp-path from one neural state-pattern to the next (i.e., a step
on the y-axis in the cumulated pairwise correlation matrix) was taken as a neural state
boundary during memory-scanning.

Time-resolved frequency spectra at neural state-transitions during memory-
scanning
During memory-scanning, we computed the power spectral density (PSD) around neural
state-transitions separately for each channel on which we observed reinstatement (see
above for channel selection). Specifically, for a given channel, we epoched the data
centered on the moment of neural state-transition and convolved the data with Mor-
let wavelets. To maintain maximal temporal resolution, we used 3 cycles of a frequency
and computed the spectral power for 1 Hz frequency bins between 1 and 30 Hz in steps
of 10 ms. We centered this analysis on the time points of neural state-transitions and
computed the average power, which we baseline corrected by z-scoring on the baseline
between -2500ms and 2500ms around the neural state-transitions. In another analysis,
we epoched all available hippocampal channels in the same way and centered them rel-
ative to each available cortical channel’s state-transitions; after computing the PSD and
performing baseline correction, we averaged across all hippocampal channels. This re-
sulted in a hippocampal homolog for each cortical channel, analyzed with respect to that
channel’s state-transitions.

Correlation between hippocampal PSD and cortical reinstatement
To assess the relationship between PSD in hippocampus and reinstatement during memory-
scanning, we computed the baseline-corrected PSD in the same way as described above,
were each cortical channel has a hippocampal homolog. On cortical channels, we then av-
eraged correlations along the warp-path determined by dynamic time warping (see above).
Specifically, for each state in which patients lingered for at least one sample-point during
memory-scanning, we averaged correlations between the corresponding state-pattern and
all sample-points that were assigned to that state on the warp-path for each CR-channel.
We then computed the Fisher-Z transformation (i.e., atanh) of that average correlation as
a measure of reinstatement of the upcoming state. Thereby, we obtained a single correla-
tion value for each state-transition that we matched to a value of baseline-corrected PSD
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for each time-frequency bin inside the cluster of hippocampal power decreases. Note that
this analysis was limited to those channels where at least one state-transition was present
and to those states that were visited for at least one sample-point. We then computed the
correlation between PSD and reinstatement across all state transitions and CR-channels
for each patient.

Mutual information connectivity analysis
Connectivity analysis between cortical and hippocampal channels was performed by as-
sessing multivariate Gaussian Copula Mutual Information (GCMI (40)) between the am-
plitudes of the filtered signal (compare (31)). GCMI is a rank-based, robust method that
makes no assumptions about the marginal distributions of each variable and is insensitive
to outliers; its estimate is a lower bound of the true Mutual information (40). Specifically,
we filtered the data in 4 frequency bands with a zero-phase lag 4th order Butterworth IIR
filter as implemented in the fieldtrip toolbox (65): a lowpass at 3Hz, and bandpass filters
between 3 -7Hz, 8-15Hz, and 15-30 Hz. We then computed the absolute of the Hilbert
transform and down-sampled each channel’s continuous time-courses to 100Hz. For every
channel on which we observed reinstatement (see above for channel selection), we then
centered a 1-second wide window at the time points of neural state-transition and com-
puted GCMI with every hippocampal channel. Therein, the computation of GCMI was
repeated at all possible lags (the offset between hippocampus and cortex), starting with
a 1-second hippocampal lead and ending at a 1-second hippocampal lag. Specifically, the
conditional GCMI was computed to account for spurious (zero-lag) connectivity, i.e., the
GCMI between a cortical and HC channel at lag L was conditioned on GCMI between
them at lag 0. We then averaged the GCMI across all hippocampo-cortical channel-pairs,
which resulted in a GCMI value for each lead/lag in every subject. Next, we repeated
this analysis at different offsets to the neural state-boundary, i.e, we shifted the centering
from 500ms before the neural state-transition to the moment of state-transition.

Statistical testing
Association between neural state boundaries and behavioral event perception
To test if the neural event boundaries that were derived in a data-driven way captured be-
havioral button presses that we recorded in online experiments, we computed a behavioral
response profile around neural event boundaries for each channel. To this end, we locked
the time course of agreement that was derived from the ratio of button presses in the be-
havioral sample, to the neural event boundaries at each channel; Thereby, we computed
the average response to a neural event boundary at each channel. We then computed a
null distribution of that response by randomly permuting the order of neural states 1000
times (keeping their length intact) at each channel and recomputing the average response.
Subsequently, we z-scored the observed behavioral response profile to each channel’s neu-
ral boundaries based on the permuted data, i.e., we subtracted the average response to
shuffled data and divided by the standard deviation across permutations. Note that under
the null hypothesis, which states that there is no systematic association between neural
event boundaries and behavioral response profiles, the z-scored response profiles should
not be statistically different from zero. We next tested whether there was an overall statis-
tical association between neural state boundaries and behavioral responses: We computed
the average response profile for each patient (averaging the time-locked z-scored response
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profile across all channels) and subjected the average response profiles to a two-sided t-
test across patients at every time point. Finally, we corrected the resulting t-values for
multiple comparisons across time on the interval starting 2 seconds before neural state-
transitions and ending 10 seconds after neural state-transitions by controlling the false
discovery rate at a threshold of q = 0.05. We additionally confirmed the significance of the
effect by computing a cluster permutation: We thresholded the t-statistic across patients
at a t-value corresponding to an alpha threshold of 0.05 and computed the cluster sum
of the largest contiguous cluster. We then flipped the sign of values randomly for each
patient and re-computed the cluster 1000 times. Finally, we obtained a p-value as the
ratio of random permutations where the empirically observed cluster sum was exceeded.

Neural state-pattern reinstatement
We first assessed significance of pattern reinstatement during the interview across all
channels: we subjected the p-value corresponding to each z-score in the cumulated nor-
mal probability density function to a false discovery rate correction across all channels.
Next, we tested whether the average reinstatement during memory-scanning exceeded
chance level on those channels that were selected for further analysis. To this end we ran-
domly flipped the sign of all correlations at the subject level and recomputed the averages
1000 times (i.e., for each subject all correlations were either multiplied by 1 or -1 before
correlations were averaged). From this permutation we obtained a p-value as the number
of random averages that exceeded the true average.

Direction of memory-scanning
To test for the direction of memory-scanning, we scaled the time-courses of reinstatement
to a length of 2 temporal units and scaled the number of neural states to a length of
2. We then performed a Fisher Z transformation of the values and computed a one-
way ANOVA across all trials effectively testing if the four bins of state-to-scanning-time
correlation were significantly different from each other. We then averaged the correlations
that corresponded to scanning in a forward direction (1,1) and (2,2) and contrasted them
with correlations that corresponded to scanning in a backward direction (2,1) and (1,1)
via a 2-sided one-sample t-test.

Source SS df MS F Prob >F
Columns 0.24071 3 0.08024 4.98 0.0022
Error 5.15948 320 0.01612
Total 5.40019 323

Supplementary Table 2: 2x2 ANOVA across 81 memory-scanning trials

PSD and correlation between PSD and reinstatement
Changes in PSD at the exact moment of state-transitions in cortex were first tested against
zero with a two-tailed dependent-sample t-test across 9 patients (for which memory-
reinstatement was observed). This was done for each frequency bin. Subsequently, p-
values were subjected to a correction for multiple comparisons across frequency bands
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by controlling the false discovery rate at q = 0.025. Changes in PSD at cortical and
hippocampal channels were next tested with a cluster-based permutation test. Baseline-
corrected power was first tested across 9 patients with a two-tailed t-test that tested PSD
against zero in each time-frequency bin near state-transitions on CR-channels. For CR-
channels, the statistical analysis was restricted to a time-window from 1 second prior to the
state transition to 1 second after the event transition. For hippocampal channels (where
we assessed whether neural correlates preceded state transitions), statistical analyses were
restricted to a period from 1 second prior to the state transition to the moment of the
state transition on the corresponding CR-channel. Neighboring t-values that exceeded
the critical t-value at an alpha-level of 0.05 were subsequently summed across time and
frequency bins and the absolute of the sum within each cluster was computed. We then
repeated the same analysis, however, we randomly multiplied each patient’s average PSD
with 1 or -1. Finally, we compared the resulting distribution of maximal absolute cluster-
sum to the maximum sum that was observed in the real data and obtained a p-value
as the ratio of instances that were more extreme under random permutation. For the
correlation values between PSD and reinstatement, we restricted the statistical analysis
to the time and frequency period where a cluster of significant power decreases had been
observed. Here we computed a one-sided dependent-sample t-test across 9 patients where
we compared the Fisher-Z-transformed correlations against zero (as per our hypothesis
of an association between power decreases and reinstatement, which yields a negative
correlation). Again we compared the maximum cluster sum to the distribution of cluster-
sums under random sign-flip permutation across patients and report a p-value from the
ratio of observations that are more extreme under random sign-flip.

Lagged mutual information
To obtain a random distribution of conditional GCMI, we generated surrogate cortical
and hippocampal data by phase-shuffling their time-courses 1000 times using the method
introduced in (69). We then recomputed the exact same analysis for each of the surro-
gates. To test whether there was significant information-flow from hippocampus to cortex,
we compared the GCMI at each lag between a 1 second hippocampal lead and a zero-lag,
to the distribution of GCMI that was derived from the surrogate data. Additionally, to
obtain a higher numerical precision of p-values, we upsampled the surrogates by comput-
ing 100,000 averages of GCMI across patients, where we randomly selected one out of
1000 surrogate versions for each patient to compute the average (70). We then controlled
the false-discovery rate across lags to account for multiple comparisons. To test for sig-
nificance on 2-dimensional maps of GCMI, we thresholded the average maps (averaged
across patients for real and surrogate data) at the 95th percentile of the surrogate data.
We then computed the sum of GCMI within each cluster and compared the distribution
of maximum cluster sums in the surrogate data to the maximum cluster-sum in the actual
data. We derived a p-value as the ratio of random permutations that resulted in a higher
maximum cluster sum than the real data.
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Supplementary Figure 3: Patients’ individual time courses of z-scores that measure the associ-
ation between neural state boundaries and the agreement on event boundaries in the norming
sample.
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Supplementary Figure 4: Patients’ individual CR-channels. Displayed is the z-score of reinstate-
ment of state-patterns during the naturalistic interview superimposed on the brain (top) and
displayed in red with box-plots of all channels (bottom).
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