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Abstract
Target identification is one of the most critical steps following cell-based phenotypic chemi-

cal screens aimed at identifying compounds with potential uses in cell biology and for devel-

oping novel disease therapies. Current in silico target identification methods, including

chemical similarity database searches, are limited to single or sequential ligand analysis

that have limited capabilities for accurate deconvolution of a large number of compounds

with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network

Analysis Pulldown), a new computational target identification method that utilizes chemical

similarity networks for large-scale chemotype (consensus chemical pattern) recognition

and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall

higher accuracy (>80%) of target prediction with respect to representative chemotypes in

large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally,

CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO)

and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target

validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target

prediction with experimental ligand evaluation to identify the major mitotic targets of hit com-

pounds from a cell-based chemical screen and we highlight novel compounds targeting mi-

crotubules, an important cancer therapeutic target. The CSNAPmethod is freely available

and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/).
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Author Summary

Determining the targets of compounds identified in cell-based high-throughput chemical
screens is a critical step for downstream drug development and understanding of com-
pound mechanism of action. However, current computational target prediction ap-
proaches like chemical similarity database searches are limited to single or sequential
ligand analyses, which limits their ability to accurately deconvolve a large number of com-
pounds that often have chemically diverse structures. Here, we have developed a new
computational drug target prediction method, called CSNAP that is based on chemical
similarity networks. By clustering diverse chemical structures into distinct sub-networks
corresponding to chemotypes, we show that CSNAP improves target prediction accuracy
and consistency over a board range of drug classes. We further coupled CSNAP to a mitot-
ic database and successfully determined the major mitotic drug targets of a diverse com-
pound set identified in a cell-based chemical screen. We demonstrate that CSNAP can
easily integrate with diverse knowledge-based databases for on/off target prediction and
post-target validation, thus broadening its applicability for identifying the targets of bioac-
tive compounds from a wide range of chemical screens.

Introduction
The use of chemical screens to identify molecules for the treatment of proliferative diseases like
cancer has relied on two major strategies, target-based screening and phenotypic screening
[1,2]. Unbiased cell-based screens, including phenotypic screens, have successfully discovered
numerous cytotoxic agents that inhibit cancer cell proliferation. By assaying structurally di-
verse compounds, cell-based phenotypic chemical screens have the potential to discover a mul-
titude of druggable protein targets that modulate cell cycle progression through diverse
mechanisms [2]. However, a major hurdle for cell-based phenotypic chemical screens has been
the deconvolution of active compounds, i.e. target identification [2,3]. Classical methods for
target identification like chemical proteomics rely on compound modification and immobiliza-
tion to generate compound affinity matrixes that can be used to pull down associated proteins
[4]. Without prior knowledge of compound structure-activity-relationship (SAR), the modifi-
cation of key functional groups can occlude compound activity and hamper protein-ligand in-
teractions [5]. Additionally, these approaches are labor intensive, costly and have a low
success rate.

Computational approaches for predicting the targets, off-targets and poly-pharmacology of
hit compounds have been used widely in recent years due to their speed, flexibility and ability
to be easily coupled to experimental validation techniques [1,2]. In-silico target inference meth-
ods include ligand-based and structure-based approaches. Ligand-based approaches, such as
similarity ensemble approach (SEA), SuperPred, TargetHunter, HitPick, ChemMapper and
others, compare hit compounds to a database of annotated compounds and drug targets of hit
compounds are inferred from the targets of the most similar annotated compounds, based on
their chemical structure similarity [6–9]. The premise of the 2D chemical similarity inference
approach is the “chemical similarity principle”, which states that structurally similar com-
pounds likely share similar biological activities [10–12]. The efficiency of 2D chemical search
algorithms also led to the wide adoption of this target inference method in public bioactivity
database searches including ChEMBL and PubChem [13,14]. Recently, similarity-based target
inference has been extended to incorporate 3D chemical descriptors derived from the bioactive
conformations of molecules [15]. For example, PharmMapper, ROCS and the Phase Shape
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programs use a reverse pharmacophore and shape matching strategy to identify putative tar-
gets [16–18]. Albeit computationally intensive, a major advantage of this approach is that “scaf-
fold-hoppers” can be deorphanized, as these compounds often share low chemical similarity
but bind similarly to known receptor sites [19]. On the other hand, structure-based target infer-
ence approaches, such a TarFisDock and INVDOCK, apply reverse panel docking and ranking
of docking scores to predict protein targets from pre-annotated structures [10,20]. In compari-
son, ligand-based approaches are particularly advantageous due to their speed and algorithmic
simplicity and they are not limited by structure availability. However, current ligand-based ap-
proaches analyze bioactive molecules in an independent sequential fashion, which has several
disadvantages [2,8,21]. For example, target inference is based on finding a single most similar
annotated compound for a given query ligand, which may not provide consistent target predic-
tion for a group of structurally similar ligands. Additionally, subtle structural changes in the
functional groups of active molecules can alter their potency and specificity toward drug tar-
gets; thus, analyzing each molecule independently may not offer a coherent SAR for a conge-
neric series. This suggests that a more global and systematic analysis of compound bioactivity
is required to improve the current state of in-silico drug target prediction.

Several global approaches to drug target profiling have been developed [2]. One approach is
bioactivity profile matching, where model organisms are treated with compounds and com-
pounds that induce similar phenotypic responses are clustered and inferred to have similar
mechanisms of action [2,22,23]. However, bio-signature fingerprint comparisons do not infer
direct protein-ligand interactions. Furthermore, large numbers of measurements are required
to construct such fingerprints [22,24]. Alternatively, computational networks have been effec-
tively utilized to mine the existing protein-ligand interaction data deposited in bioactivity data-
banks. One example is the drug-target network (DTN), which utilizes a bipartite network
encompassing interconnecting ligand and target vertex to capture complex poly-pharmacolog-
ical interactions [25]. While this prediction model is useful for predicting drug side effects and
identifying novel protein-ligand pairs, DTN demands statistical learning from prior protein-li-
gand interaction data using Beyesian analyses or Support Vector Machines. Thus, DTN’s
predictability beyond the training space may not be accurate, limiting DTN’s applicability for
large-scale drug target prediction [26–29].

To address the current challenges in computational drug target prediction, we developed a
new drug target inference approach based on chemical similarity networks (CSNs) and imple-
mented this approach as a computational program called CSNAP (Chemical Similarity Net-
work Analysis Pull-down). CSN is a promising computational framework that allows large-
scale SAR analysis by clustering compounds based on their structural similarity [30]. This
framework has recently been applied to investigate “bioactivity landscapes” from known drugs
as well as for analyzing bioactivity correlations among secondary metabolites [30,31]. Further-
more, several network characteristics including degree of connectivity, centrality and cohesive-
ness offer critical information to study the global topology of large chemical networks and
allow key compound members to be identified [32,33]. Although CSNs have been widely ap-
plied to SAR studies, their application to drug target inference has not been explored [30,32].
In our CSNAP approach, both query and annotated compounds are first clustered into CSNs,
where nodes represent compounds and edges represent chemical similarity. The target annota-
tions of the reference nodes are assigned to the connecting query nodes whenever two node
types form a chemical similarity edge above a similarity threshold [13,34,35]. To determine the
most probable target, a consensus statistics score is determined by the target annotation fre-
quency shared among the immediate neighbors (first-order neighbor) of each query compound
in the network. When multiple ligands were analyzed by the CSNAP approach, diverse com-
pound structures were clustered into distinct chemical similarity sub-networks corresponding
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to a specific “chemotype” (i.e. consensus chemical scaffold), which was associated with specific
drug targets [36]. Within the context of drug design, “chemotype” has been widely used for
drug repurposing. For example, a single scaffold can be diversified by combinatorial synthesis
to modulate its specificity toward multiple secondary targets [36]. On the other hand, the
CSNAP approach identifies consensus “chemotypes” from diverse chemical structures, which
likely inhibit common targets capable of inducing similar phenotypes in cell culture. In con-
trast to current target prediction methods, CSNAP does not rely on absolute chemical similari-
ty nor does it necessitate a training set to make target inferences. Additionally, CSNAP is
capable of integrating with chemical and biological knowledge-based databases (Uniprot, GO)
and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target
validation. Our benchmark study showed that CSNAP can achieve an overall higher accuracy
(>80%) of target prediction with respect to representative chemotypes in large (>200) com-
pound sets, in comparison to the SEA approach (60–70%). To demonstrate the utility of the
CSNAP approach, we combined CSNAP's target prediction with experimental ligand evalua-
tion to identify the major mitotic targets of hit compounds from a cell-based chemical screen
and we highlight novel compounds targeting microtubules, an important cancer therapeutic
target. The CSNAP method is freely available and can be accessed from the CSNAP web server
(http://services.mbi.ucla.edu/CSNAP/).

Results

CSNAP workflow
We have developed a new computational workflow for compound target deconvolution and
prioritization of compounds based on chemical similarity networks that we have termed
CSNAP (Chemical Similarity Network Analysis Pull-down) (Fig. 1). In CSNAP, the Obabel
FP2 fingerprints, which characterize molecules by a series of structural motifs as binary num-
bers (0 and 1), were utilized for structural comparison and compound retrieval from the
ChEMBL database (version 16) containing more than 1 million annotated molecules with re-
ported bioactivities (Fig. 1A, 1B and S1 Text) [13,37]. In comparison to other available finger-
prints (FP3, FP4 and MACCS), the FP2 fingerprint uses a path-based algorithm, which has
high specificity, is generally applicable to any ligand size and is not limited to pre-defined sub-
structure patterns [38]. To retrieve structurally similar ligands from the bioactivity database,
two chemical similarity search functions were used: a threshold similarity search based on a
Tanimoto coefficient (Tc) score and a Z-score (S1 Text) [39,40]. The Tc score is one of the
most commonly used metrics for chemical similarity comparison in chemoinformatics, which
compares two chemical fingerprints to determine the fraction of shared bits with values rang-
ing from 0 to 1. However, a fixed similarity threshold search may not detect compounds with
statistical significant scores; thus, a Z-score was also used to search database compounds based
on the overall similarity score distribution of the hits [40]. The target annotations of the select-
ed ChEMBL compounds (baits) most similar to input ligands were subsequently retrieved
from the ChEMBL and PubChem databases (Fig. 1B and S1 Text). Based on the output of li-
gand similarity comparisons, a chemical similarity network was constructed by connecting
pairs of ligands with similarity above a Tc threshold according to a weighted adjacency matrix
(Fig. 1C and S1 Text) [41]. This resulted in weighted graphs (networks) in which nodes repre-
sent compounds and edges represent chemical similarity (Fig. 1D).

Target inference of the query compounds within the CSNAP-generated network, which
contains both query and reference nodes, is similar to the protein functional assignment in pro-
tein-protein interaction (PPI) networks, where protein functional lineage between a character-
ized and an uncharacterized protein are used to assign shared protein functions [34,42].
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Fig 1. Overview of the CSNAP approach for high-throughput compound target identification using Chemical Similarity Networks (CSNs). (A)
Discovery of diverse ligands from cell-based screens with unknown cellular targets. Note that structurally distinct compound classes are represented by
different shapes, while structurally-related analogs within each class are labeled with different colors. (B) Target identification using CSNAP. Bioactivity
database searches to identify structurally similar reference compounds with known target annotations. The grey nodes represent target annotated
compounds. (C) A pair-wise similarity matrix was computed by considering both intra and inter-ligand similarity between query and reference compounds
using Tanimoto coefficient (Tc) with cutoff> 0.7. (D) Structurally diverse ligands are clustered into chemical similarity subnetworks based on representative
chemotypes (consensus chemical patterns). (E) The network topology was used to guide and quantify the protein-ligand interactions for drug target
prediction. Two neighbor counting functions, S-score and H-score were applied to identify and rank the most common targets among the first-order neighbors
of the query compounds within the CSN. In this example, compound α has a consensus Target A score = 3 and a Target C score = 1, whereas compound β
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Multiple scoring schemes have been developed to infer protein functions in PPI networks, in-
cluding algorithms based on network connectivity, graph topology and modular recognition
[43–45]. The most direct network-based scoring scheme is the neighbor counting method,
where the annotation frequency in the immediate neighbors is ranked and assigned to the
linked queries. Thus, the similarity between PPI networks and CSNs suggested that this ap-
proach could be effective for network-based drug target inference. As a proof-of-principle, we
applied two neighbor-counting functions, Schwikowski score and Hishigaki score for drug tar-
get prediction in CSNAP networks [43,46]. Specifically, a target consensus statistics score,
Schwikowski score (S-score), was calculated by ranking the most common targets shared
among the neighboring annotated ligands of each query compound within the network
(Fig. 1E and S1 Text) [43]. Additionally, a Hishigaki score (H-score), a chi-square like test
based on the mean target annotation frequency distributed within the whole network, was also
implemented to compute a significance value for each drug target assignment (S1 Text) [46].
The rationale for applying Schwikowski and Hishigaki scoring functions in CSNAP target in-
ference, apart from their algorithmic efficiency and scalability for large-scale network compu-
tation, was their accuracy. For example, it was shown that a Schwikowski score correctly
predicted>70% of proteins with at least one functional category in a large-scale S. cerevisiae
PPI network [43]. Furthermore, a performance comparison in a S. cerevisiae network showed
that these nearest neighbor approaches offer high specificity and prediction accuracy, making
them competitive against more advanced statistical network models including Markov random
field (MRF) and kernel logistic regression [33,34].

CSNAP validation using benchmark compounds
To validate CSNAP computationally, we tested CSNAP’s ability to correctly predict the as-
signed targets for annotated compounds as well as its ability to cluster compounds with similar
target specificities using a diversity set retrieved from the directory of useful decoys (DUD LIB
VS 1.0) [47]. The diversity set contained 206 ligands from 6 target-specific drug classes with
known target annotations (including 46 angiotensin-converting enzyme (ACE), 47 cyclin-de-
pendent kinase 2 (CDK2), 23 heat-shock protein 90 (HSP90), 34 HIV reverse-transcriptase
(HIVRT), 25 HMG-CoA reductase (HMGA) and 31 Poly [ADP-ribose] polymerase (PARP)
inhibitors) (S1 Table). Two chemical search criteria were initially tested for CSNAP drug target
prediction including one search with a Z-score cutoff = 2.5 and Tc cutoff = 1 (identical match)
and another search with a Z-score cutoff = 2.5 and Tc cutoff = 0.85. In comparison, using an
absolute Tc similarity cutoff = 0.85 substantially increased the network density (number of
nodes in each network cluster) but did not significantly affect the number of network clusters
generated (66 and 61) (Figs 2A, S1 and S1 Text). In both cases, CSNAP was able to resolve 206
compounds into target specific chemical similarity sub-networks. Based on the chemical simi-
larity network generated by the latter chemical search criteria, we then assessed the prediction
accuracy (percentage of correctly predicted ligands) for each drug class by considering the top
five consensus targets ranked by S-scores; meanwhile, we applied a set of S-score cutoffs for hit
enrichment to reduce the target pool (Fig. 2B, 2C and S1 Text). The results indicated that
CSNAP’s overall prediction accuracy (recall-like score) for the benchmark compounds was
89% (S-score = 0) and 80% (S-score> = 4) respectively (Fig. 2B and 2C). Of those compounds
with a prediction, the precision-like score was 94% (S-score = 0) and 85% (S-score> =
4) respectively.

has a consensus score = 1 for Target A, B and C. (F) Experimental target validation. The predicted targets were validated by comparing RNAi with
compound-induced cellular phenotypes and by testing direct protein-ligand interactions in in-vitro assays.

doi:10.1371/journal.pcbi.1004153.g001
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Fig 2. CSNAP validation using benchmark compounds. (A) 206 compounds from six major drug classes (ACE, CDK2, HIVRT, HMGA, HSP90 and
PARP) were analyzed using CSNAP with a Z-score cutoff of 2.5 and a Tanimoto coefficient (Tc) cutoff of 1. With the exception of 7 molecules, all compounds
were ordered into chemical similarity subnetworks specific to each drug target. (B) Outcome of applying the neighbor counting function, S-score to predict the
top 5 most common targets shared by the annotated-neighbor nodes of all input ligands within the CSN. The prediction accuracy (percentage of correctly
predicted ligands) was determined by comparing the predicted target to ligand target annotations. CSNAP target prediction assessment for each drug class
ranked by different S-score cutoffs (S-cutoff = 0, 5 and 10) gave an overall prediction accuracy of 89%, 73% and 60% respectively. (C) Comparison of the
total percentage of target pool reduction (percentage of the total number of predicted targets with S-score cutoff over total number of predicted targets with S-
score cutoff) against the overall prediction accuracy indicated that an S-score cutoff of 4 is optimal for hit enrichment and target virtual screening. (D) CSNAP
target and off-target prediction for benchmark compounds. Predicted targets for the validation compounds were plotted against each drug class to identify
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To identify potential off-targets for these characterized drugs, we mapped the compound S-
score for each drug class against the predicted targets using a ligand-target interaction finger-
print (LTIF), which allowed us to differentiate primary targets from off-targets on a heatmap
(Fig. 2D and S1 Text) [48]. To further rank the most common targets within the whole com-
pound set, we generated a target spectrum by summing the target prediction score, S-score for
each predicted target, by which the heights of the target spectrum can be correlated with the
total S-score (∑ S-score). Next, we identified the most probable targets and off-targets from the
top peaks above the average ∑ S-score. While we cannot exclude smaller peaks as false positives,
as they may represent an experimentally verified interaction of the reference compounds in the
ChEMBL database, the higher peaks nevertheless represent the most common targets and off-
targets among the analyzed ligands. Within the context of a chemical screen, additional target
selection can be aided by gene ontology (GO) analysis, where molecular functions, cellular pro-
cesses and pathway information can be used to verify the functional role of the predicted tar-
gets (see CSNAP website for additional details).

We subjected the diversity set to two different LTIF analyses, first by analyzing each drug
class independently and then all drug classes combined. Independent LTIF analysis of HIVRT,
HMGA and PARP compound sets revealed specific target binding patterns in contrast to
CDK2 and ACE, which showed multiple interactions, suggesting potential off-target bindings
(Fig. 2D). From the target spectrum, we identified ENP and CDK1 as the major off-targets for
ACE and CDK2 inhibitors respectively, which had been previously reported (Fig. 2D) [49,50].
For the combined analysis, the targets and off-targets of the 206 benchmark compounds were
likewise successfully identified from the target spectrum (S2 Fig). Although these validated
compounds were “drug-like” and had been optimized for target specificity and transport prop-
erties, CSNAP analysis nevertheless identified potential off-targets that were not originally in-
tended for these ligands. This indicated that CSNAP could potentially be used for high-
throughput target deorphanization and off-target prediction for bioactive compounds from
any chemical screen.

Next, we compared CSNAP’s target prediction accuracy with SEA (Similarity Ensemble Ap-
proach), a widely used ligand-based target prediction approach based on sequential chemical
similarity comparisons, to correctly identify the annotated targets of the benchmark sets (S1
Table and S1 Text) [51]. CSNAP showed an overall improvement in prediction accuracy (80–
94%) over SEA (63–75%) at identifying the labeled targets of each of the six drug classes from
the top 1, top 5 and top 10 score rankings by each respective method. In particular, CSNAP
provided substantially better target prediction for promiscuous ligands such as CDK2 and
ACE inhibitors (92% and 96%) than the SEA approach (30% and 65%) (Fig. 3A–3C and S1
Text).

Target prediction of mitotic compounds from chemical screen
Recently, we performed a high-throughput cell-cycle modulator screen with a diverse, unbiased
set of 90,000 drug-like compounds, which identified compounds arresting cancer cells in mito-
sis (212 compounds) (S2, S3 Tables and S1 Text). We applied CSNAP to identify the potential
targets of the 212 antimitotic compounds (S3 Fig and Supporting File). CSNAP analysis gener-
ated 85 chemical similarity sub-networks representing diverse chemotypes and retrieved 116
UniProt target IDs from ChEMBL annotations (Fig. 4A). These targets were analyzed using

targets and off-targets using Ligand-Target Interaction Fingerprints (LTIFs) analyzed on heat maps. The color intensity was scaled according to the S-score
(0–1). Note that ACE and CDK2 inhibitors have predicted off-targets based on the additional coloring patterns, indicating drug poly-pharmacology. See S1
Fig for LTIF analysis of the combined drug classes.

doi:10.1371/journal.pcbi.1004153.g002
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LTIF with a predefined cutoff (∑ S-score>10) from which we identified 4 broad categories of
putative mitotic targets (20 UniProt target IDs) (Fig. 4B). These included 3 fatty acid desa-
turases (SCD, SCD1 and FADS2), 1 ABL1 kinase, 5 non-receptor type tyrosine phosphatases
(PTPN7, PTPN12, PTPN22, PTPRC and ACP1) and 11 tubulin isoforms. Further compound
deconvolution with respect to these targets identified 7 SCD inhibitors, 9 ABL1 inhibitors, 14

Fig 3. Target prediction accuracy comparison of network-based and ligand-based approaches. (A)
Comparison of the overall target prediction accuracy based on the top hit, top five hits and top ten hits
analyzed by CSNAP or the SEA approach using 206 benchmark compounds comprised of six major drug
classes (ACE, CDK2, HIVRT, HMGA, HSP90 and PARP). The result shows that CSNAP provides a
substantial improvement in target prediction accuracy over the traditional ligand-based approach by pair-wise
chemical similarity comparison. (B and C) Detailed target prediction accuracy comparison breakdown of each
of the six drug classes predicted by (B) CSNAP and (C) SEA approach respectively. The comparison showed
that CSNAP provided a greater success rate at identifying the major targets of promiscuous ligands such as
CDK2 and ACE inhibitors, which resulted in low prediction accuracies by the traditional ligand-based method.

doi:10.1371/journal.pcbi.1004153.g003
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Fig 4. Integration of CSNAPwith knowledge databases for mitotic target prediction and phenotypic target validation. (A) Mitotic compound chemical
similarity network. CSNAP analysis of 212 mitotic compounds yielded 85 chemical similarity clusters representing diverse chemotypes, only 21 compounds
were not clustered into annotated similarity graphs. (B) LTIF analysis of CSNAPmitotic target predictions. The target spectrum identified four major classes
of targets from the top peaks including fatty acid desaturase (SCD), ABL kinase (ABL1), phosphatase (PTPN) and tubulin (TUBB). An independent LTIF
analysis of each target class is presented in S2 Fig. (C) Mitotic compound deconvolution. Target associated chemical similarity sub-networks of four
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PTPN inhibitors and 7 TUBB inhibitors from 6 distinct clusters from the mitotic compound
network (including SCD/ABL1: cluster 6, PTPN: cluster 3 and TUBB: clusters 1, 2, 4 and 5)
and in which 4 compounds were shown to target both SCD and ABL1 (Figs 4C, S4 and S1
Text). Meanwhile, by querying the PubChem target annotations with respect to these four tar-
get categories, we identified an additional 19 tubulin-associated clusters (total 23), including 51
compounds with unknown bioactivities, which were predicted to be tubulin binders that cov-
ered ~20% of our mitotic set (S5A Fig). Among the predicted targets were the tubulins (TUBB,
including α and β-tubulin), which are the building blocks of microtubules that are essential for
mitotic spindle assembly and are established anticancer drug targets [52,53]. Consistently, sev-
eral well-known microtubule-targeting agents were identified in the TUBB clusters including
mebendazole and nocodazole from cluster 5 (Fig. 4A) [52]. Although the compound chemo-
types for ABL1, SCD1 and PTPN were known, either identical or analogous to reference com-
pounds deposited in the bioactivity databases, the assay context from which these compounds
were retrieved was not related to mitosis [54–56]. Additionally, the function of ABL1, SCD1
and PTPN in mitotic progression had not been explored [57–60]. Thus, this analysis linked
these proteins to potentially important new roles during cell division.

Target validation of mitotic compounds from CSNAP predictions
To further substantiate that these compounds were likely inhibiting these targets (ABL1, SCD,
PTPN and TUBB), we compared the phenotypes induced by their siRNA knockdown (which
often correlates with inhibition of protein activity) with the phenotypes induced upon treat-
ment with compounds from each target category using immunofluorescence (IF) microscopy
[61]. To determine the target siRNA phenotype, we queried the MitoCheck database, which
maintains data on the mitotic phenotypes observed upon siRNA knockdown of gene expres-
sion for most human genes (S1 Text). As expected, all four target categories (SCD, ABL1,
PTPN and TUBB) displayed diverse mitotic defects by siRNA treatment [62]. This included
defects in spindle assembly, chromosome segregation and cytokinesis that led to mitotic delay,
post-mitotic defects (binuclear and polylobed nucleus) and apoptosis (cell death), suggesting
that these targets were critical for cell division (S6 and S7 Figs) [62]. Next, five compounds
from these target clusters were selected for phenotypic comparison including compound 1
from the SCD sub-cluster (cluster 6), compound 2 that overlapped with both SCD and ABL1
sub-clusters (cluster 6) and compound 3 from the ABL1 sub-cluster (cluster 6). Additionally,
compound 4 and compound 5, were retrieved from the PTPN cluster (cluster 3) and the TUBB
cluster (cluster 4) respectively (Fig. 4A, 4C, and S4 Table). All five compounds showed consis-
tent cell phenotypes between siRNA knockdown and drug treatment (Figs 4D, 4E, and S8).
However, compound 1 (SCD sub-cluster) also displayed a “large nuclei” phenotype that was
specific to ABL1 inhibitors, indicating that it may also target ABL1 based on chemical and phe-
notypic similarity (Fig. 4D, 4E, and S8). As expected, compound 2 (SCD/ABL1 sub-clusters)
exhibited a “mixed” phenotype similar to compound 1 while compound 3 was ABL1 specific

predicted targets (SCD, ABL1, PTPN and TUBB) were “pulled-down” from the mitotic CSN. For each cluster, at least one mitotic compound connected to one
or more reference nodes with Tc threshold> 0.7. Note that the predicted SCD and ABL1 compounds display over-lapping neighbors, indicating that the
predicted targets may be modulated by both compound sets. (D) Phenotypic validation of predicted mitotic targets. Asynchronous HeLa cells were treated
with indicated compounds for 24 hours, fixed and stained for DNA and Tubulin. The observed compound-induced cell division defects were compared to
target gene expression knockdown defects within the MitoCheck database. All compounds matched the previously characterized phenotypes associated
with knockdown of target protein expression. See S6 Fig for complete compound-induced phenotypes.

doi:10.1371/journal.pcbi.1004153.g004
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with very few mitotic delay and apoptotic cells that were specific to SCD inhibitors (Figs 4D,
4E, and S8).

Based on target prediction, we selected microtubules (α and β-tubulin) as our target for in-
vitro validation. To test CSNAP’s prediction that 51 of the 212 mitotic compounds were target-
ing microtubules, we re-acquired all 212 compounds and tested their ability to perturb micro-
tubule polymerization (stabilize or destabilize microtubules) in an in-vitromicrotubule
polymerization assay at 50μM concentration (Fig. 5A). The end-point absorbance (dOD) was
used to quantify the degree of microtubule polymerization and was converted to percent fold
change (F) relative to DMSO drug vehicle (0%), as previously described (Fig. 5A and S1 Text)
[63]. Of the 51 compounds predicted to be targeting microtubules, 36 had more than 20% fold
change in microtubule polymerization and 14 had no measurable effect (S5B Fig). Thus
CSNAP was able to predict the targets of this set with> 70% accuracy. In addition, in-vitro
testing led to the discovery of 96 additional compounds for a total of 132 anti-tubulin agents,
including structurally diverse compounds covering ~54 novel chemotypes not discovered in
previous chemical screens (S3 Table).

Relating network connectivity to consensus drug mechanism
Since CSNAP was able to cluster compounds into sub-networks with respect to target specifici-
ties, we asked if ligands within the same chemotypic cluster shared a consensus drug-target
binding mechanism, as shape complementarity between receptor surface and ligand geometry
is essential for inducing a specific cellular phenotype. To test this, we mapped the tubulin poly-
merization activity onto the mitotic chemical similarity network. Overall, compounds with
similar drug mechanisms, e.g. tubulin polymerization or depolymerization were clustered in
close proximity within the CSN (S5A Fig). However, a few compounds with opposing mecha-
nisms of action were clustered within the same sub-network. This was expected as chemical
similarity may not always correlate with compound bioactivity [12]. Here, we investigated a
chemical similarity sub-network consisting of 7 novel anti-tubulin ligands based on a phenyl-
sulfanyl-thiazol-acetamide scaffold (Fig. 5B and S9B). Notably, all the connected ligands within
the sub-network shared a similar microtubule destabilization effect. By conducting SAR analy-
sis on the network, we noticed that the addition of hydrophobic groups to the northern and
eastern parts of the ligand enhanced microtubule depolymerization (Fig. 5B and S1 Text). Con-
sistently, a similar SAR trend was observed by evaluating each compound’s potency (EC50) in
HeLa cells with regards to their ability to arrest cells in G2/M-phase and induce cell death. This
identified compound 8 (EC50:G2/M = 33 nM; EC50: cell death = 60 nM) as the most potent com-
pound in the series (S10 Fig and S1 Text).

To provide a structural explanation for this SAR, we observed that compound 6 shared a
common structural feature (tri-methoxyphenyl ring) with the microtubule depolymerizer col-
chicine, suggesting that compounds 6–12, within the sub-network may share a common col-
chicine-like binding mechanism (Fig. 5C) [53]. To test this hypothesis, we performed a
structural alignment of compound 6 with colchicine and docked the aligned conformations
onto the ligand-bound tubulin crystal structure (PDB: 1SA0) (Fig. 5C). Surprisingly, the pre-
dicted binding modes of the two molecules were conserved despite low structural similarity. As
further validation of this binding mode, the same binding conformation was also recovered
from the top poses by re-docking compound 6 into the colchicine binding site of an apo beta
tubulin structure (chain B, PDB: 1FFX), giving a score of-10.82 (London dG) based on free en-
ergy binding of the ligand to the receptor site points. The docked structure revealed a consen-
sus pharmacophore between the two aligned ligands including the 2 and 10-methoxy groups
and a 9-keto group that interacted with Cys 241 of beta tubulin and Val 181 of alpha tubulin
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Fig 5. Network-based elucidation of a novel tubulin-targeting chemotype. (A) In-vitro tubulin polymerization assays were used to test the effect of the
212 mitotic compounds on microtubule assembly at 50μM concentration. The end-point absorbance, based on change in OD (dOD), was used to quantify the
degree of microtubule polymerization and was converted to percentage fold change relative to DMSO (0%). Among the tested compounds, 134 compounds
(63%) had an effect (>20% fold change) on tubulin polymerization. (B) Chemical similarity sub-network consisting of 7 novel anti-tubulin ligands based on a
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respectively, which had been previously reported (Fig. 5D) [52,64]. The docking of compounds
7–12 using the same approach also yielded similar binding interactions (S11 Fig). The discov-
ery of this consensus-binding model for compounds 6–12 allowed us to link specific protein-li-
gand recognition features to compound network association and their SAR. For example, the
receptor hydrophobicity map showed that the increased potency of compounds 7 and 8, com-
pared to 6, could be attributed to the additional interaction of N-propyl group of compound 7
and the N-phenyl group of compound 8 within a sub-pocket enclosed between Leu 248 and
Lys 352 of the colchicine-binding site, thus enhancing the protein-ligand interaction (Figs 5E
and S11). To validate the binding of these compounds to the colchicine site, we used a mass
spectrometry-based competition assay where compound 8 competed with colchicine for tubu-
lin binding, similar to the positive control podophyllotoxin (colchicine site binder), and the
negative control vincristine (vinca site binder) was unable to compete this interaction (Fig. 5F
and S1 Text) [65]. To test if tubulin was the primary target, we treated HeLa cells with com-
pounds 6–12 and analyzed their effects by IF microscopy. As expected, compounds 6–12 in-
duced a microtubule depolymerization phenotype in HeLa cells (Figs 5G and S12). Thus, the
structural binding analysis within a specific sub-network identified a relationship between net-
work connectivity and consensus mechanism, likely due to shape complementarity between
protein and ligands. Most importantly, this could be generalized as an effective strategy for
structure-based target validation following CSNAP drug target prediction.

Discussion
At the completion of cell-based chemical screening efforts researchers are faced with the daunt-
ing task of understanding drug mechanism of action and selecting lead compounds from a
large number of structurally diverse hits to pursue further. To date, researchers have relied on
experimental secondary screens, like multiparametric phenotypic profiling, to select a small
number of compounds to validate, which is often costly to conduct and has reduced through-
put [66]. On the other hand, computational approaches like simple chemical similarity
searches do not capture the bioactivity correlation among the analyzed ligands, leading to pre-
diction inconsistencies and low prediction accuracy. Our study demonstrated that CSNAP, a
new computational target prediction methodology that uses chemical similarity networks cou-
pled to a consensus-scoring scheme, improves the current state of the art in in-silico drug target
identification. First, our benchmark study showed that CSNAP achieved a higher success rate
than SEA, an approach based on sequential ligand similarity searches, at identifying pre-anno-
tated drug targets from six major drug classes, especially for promiscuous ligands like CDK2
and ACE inhibitors. Since hit compounds from large chemical screens usually possess sub-op-
timal target specificity, CSNAP is particularly suitable for deconvolving these compounds com-
pared to the existing approaches. Second, we applied CSNAP to predict and validate the drug

phenyl-sulfanyl-thiazol-acetamide privilege scaffold. The connected analogues within the network showed a consensus tubulin destabilization effect where
each step in the path (red) of the sub-network corresponded to a minimum structural change correlating with the observed structure-activity-relationship
(SAR). (C) Docking of compound 6 into the β-tubulin colchicine-binding site based on the crystal structure (PDB: 1AS0) exhibited a similar predicted binding
mode to colchicine. (D) Ligand alignment between compound 6 and colchicine identified a conserved pharmacophore critical for ligand binding, including the
2 and 10-methoxy groups and a 9-keto group that interacts with Cys-241 of beta tubulin and Val-181 (not shown) of alpha tubulin respectively. (E)
Hydrophobicity map of docked compound 6within the colchicine-binding site revealed a hydrophobic sub-pocket enclosed by Leu-248 and Lys-352. The
model showed that compounds 7 and 8 enhance binding affinity by fitting the N-propyl and N-phenyl group in the hydrophobic cavity, consistent with the SAR
analysis. See S11 Fig for molecular modeling of compounds 6–12. (F) The most potent compound 8 was tested for direct colchicine site binding using mass
spectrometry competitive binding assays. Compound 8 competed strongly with colchicine for the colchicine-binding site, similar to the colchicine-site binder
podophyllotoxin. Note that the negative control vincristine did not compete. (G) Immunofluorescence microscopy images of HeLa cells treated with DMSO,
taxol, colchicine or compounds 6–8 for 20 hours. Cells were fixed and stained for DNA (Hoechst 33342) and tubulin (primary rat anti-tubulin antibodies and
secondary anti-rat Cy3 antibodies). Scale = 5 μm. Note that colchicine, and compounds 6–8 depolymerize microtubules. See S10 Fig for compound 6–12
induced phenotypes.

doi:10.1371/journal.pcbi.1004153.g005
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targets of 212 mitotic compounds, whose drug binding mechanisms were previously unknown.
Here, CSNAP was used in both a positive selection strategy to identify known compounds as-
sociated with three new categories of mitotic targets and in a negative selection strategy to iden-
tify novel chemotypes targeting microtubules, a major target in cancer drug discovery. Thus,
we have demonstrated that CSNAP can achieve accurate large-scale drug target profiling of
any compound set without relying on absolute chemical similarity or pre-conditioning from
training sets.

However, CSNAP has several limitations. For instance, our tubulin polymerization assays
indicated that around 30% of the tubulin targeting compounds were not predicted by CSNAP.
This highlights the general limitation of any ligand-based approach, in that target annotation
of the intended chemotype has to be deposited in the bioactivity database a-priori. Neverthe-
less, our structural studies of the novel microtubule depolymerizer compound 6, whose phar-
macophore aligned with the known microtubule targeting agent colchicine, suggests that a
chemical similarity measure based on the three-dimensional structure of the compounds could
potentially improve CSNAP’s prediction power. Likewise, the similarity between CSNAP net-
works and PPI networks provides further opportunities to apply different PPI network scoring
schemes to improve CSNAP prediction [34]. For instance, neighbor counting functions could
be readily expanded to consider second-order network neighbors, which has been shown to
improve the prediction accuracy of PPI networks [67]. Finally, we showed that incorporating
multiple databases, for example PubChem in conjunction with ChEMBL, improved the predic-
tion range of the mitotic compounds by CSNAP. Thus, the simultaneous integration of multi-
ple chemogenomic and bioinformatic knowledge databases can potentially aid the ability of
CSNAP to predict the targets of any compound set.

In conclusion, we have developed a new network-based compound target identification
method called CSNAP that can be used for large-scale profiling of hit compounds from chemi-
cal screens. To further extend the applicability of CSNAP for compound target prediction in a
broad array of disciplines, we have made the CSNAP algorithm freely accessible as a CSNAP
web server (http://services.mbi.ucla.edu/CSNAP/). The web server allows users to analyze up
to 300 ligands in parallel, where each ligand can be processed in less than a minute on average
(S13 Fig). We envision that CSNAP will be instrumental for deconvolving bioactive com-
pounds from past and future cell-based studies relating to the discovery of antiproliferative
agents and other processes related to cell division. More broadly, the flexibility of CSNAP to in-
corporate a wide variety of databases enables it to analyze any active compound set identified
from any cell-based high throughput screen, thus expanding its utility across disciplines. Final-
ly, CSNAP should expedite target identification and validation, while limiting costs associated
with conventional target identification approaches.

Materials and Methods

Compounds
The benchmark validation sets were downloaded from the directory of useful decoys (DUD)
VS 1.0 (http://dud.docking.org/jahn/). The mitotic compounds were retrieved from a vendor
master compound SDfile. The ChEMBL reference compound databases were downloaded
from the ChEMBL website (http://www.ebi.ac.uk/chembl/).

In-vitromicrotubule polymerization assays
A stock plate of the 212 mitotic compounds was prepared by transferring each drug in DMSO
into a 384 well plate at a final concentration of 500 μM. Tubulin polymerization assays were
conducted using HTS-Tubulin polymerization assay kit from Cytoskeleton Inc. To minimize
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pre-mature tubulin polymerization, 24 reactions were tested per run using multi-channel pi-
pettes. Briefly, a 500 μM solution of each test compound and control compounds (Nocodazole
and Taxol) were prepared in DMSO and subsequently diluted in ice-cold G-PEM buffer
[80 mmol/L PIPES (pH 6.9), 2.0 mmol/L, MgCl2, 0.5 mmol/L EGTA, 1.0 mmol/L GTP] to a
final concentration of 50 μM. Lyophilized bovine brain tubulin was resuspended in ice-cold
G-PEM buffer to a final concentration of 4 mg/ml. Test compounds were added to each well
(2μl/well) of a 384 well plate followed by the addition of tubulin (20μl/well). The reactions were
assembled on ice to prevent tubulin pre-polymerization. The final concentration of test com-
pounds was 50 μM in 0.5% DMSO. To measure tubulin polymerization kinetics, the plate was
warmed to 37°C in a Tecan microplate reader (Tecan Group Ltd.) and read at 340 nm every
minute for total of 1 hour.

Competitive mass spectrometry binding assay
Colchicine (1.2 μM) was incubated with porcine brain tubulin (1.0 mg/mL) in incubation buff-
er [80 mM piperazine-N,N0-bis(2-ethanesulfonic acid) (PIPES), 2.0 mMmagnesium chloride
(MgCl2), 0.5 mM ethylene glycol tetra acetic acid (EGTA), pH 6.9] at 37°C for 1 hour. Test
compounds (100 μM) were added to compete with the binding of colchicine to tubulin. After
1 h incubation, the filtrate was obtained using an ultrafiltration method (microconcentrator)
(Microcon, Bedford, MA) with a molecular cut-off size of 30 kDa. The ability of the com-
pounds of interest to inhibit the binding of colchicine was expressed as a percentage of control
binding in the absence of any competitor. Each experiment was performed in triplicate.

Cell culture
HeLa cells were grown in F12:DMEM 50:50 medium (GIBCO) with 10% FBS, 2 mM L-gluta-
mine and antibiotics in 5% CO2 at 37°C.

Immunofluorescence microscopy
Immunofluorescence was carried out essentially as described previously [68]. HeLa cells were
treated with indicated compounds at their respective EC90 for 20 hours, fixed with 4% parafor-
maldehyde, permeabilized with 0.2% Triton X-100/PBS and co-stained for DNA (0.5 μg/ml
Hoechst 33342) and tubulin (rat anti-tubulin primary antibodies and anti-rat Cy3 secondary
antibodies). Images were captured with a Leica DMI6000 microscope at 63X magnification.

Molecular modeling
The crystal structure of colchicine-bound tubulin was downloaded from the PDB database
(PDB code: 1SA0) and the beta tubulin monomer with bound colchicine (chain D) was ex-
tracted from the protein model [69]. Compounds 6–12 were flexible aligned with colchicine
within the colchicine-binding site using the “flexible alignment” protocol and default parame-
ters (alignment mode: flexible, iteration limit: 200, failure limit: 20, energy cutoff: 15, stochastic
conformation search), which gave a score for each alignment by quantifying the quality of
internal strain and overlap of molecular features. Additionally, we realigned the colchicine
structure with its crystal-derived conformation to ensure accuracy of the protocol. The aligned
conformation of each compound was subsequently energy minimized within the colchicine-
binding pocket using the LigX protocol. The re-docking of compound 6 into the colchicine-
binding site was performed using the Dock protocol with default parameters (placement: trian-
gle matcher, score: London dG, retained conformations: 30). The molecular modeling was
performed using the MOE software version 2009.
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Statistical analysis
The mean and standard deviations of DMSO and Taxol controls for the in-vitro tubulin poly-
merization assays were calculated and used to scale the compound OD readout between differ-
ent runs to normalize the heterogeneity of the reaction. All the statistical analysis for in-vitro
tubulin polymerization assays was performed using Microsoft Excel.

Software
The CSNAP program is written in shell scripting language and Perl programming language on
Ubuntu 12.10 Linux operating system. The program is dependent on the following external
programs/scripts including OBABEL version 2.3.1 and NCI SDF toolkit version 1.2. Addition-
ally, the R statistical package and Cytoscape version 2.8.2 were applied for visualizing and ana-
lyzing heat maps and networks respectively. See Supporting Information for program
description and tutorials. The CSNAP program is freely accessible from the CSNAP web server
(http://services.mbi.ucla.edu/CSNAP/).

Supporting information
Supporting Information includes Supporting Materials and Methods, thirteen figures, four ta-
bles, two supporting files, and supporting tutorials and can be found with this article online.

Supporting Information
S1 Fig. CSNAP Analysis of benchmark compounds based on an alternative chemical simi-
larity search criteria, related to Fig. 2. Performing CSNAP analysis of the benchmark com-
pounds using a lower Tc threshold (Tc cutoff = 0.85 and Z-score cutoff = 2.5, ChEMBL version
16) in comparison to using a higher threshold criteria (Z-score cutoff = 2.5, Tc-score cutoff = 1,
ChEMBL version 16) shown in Fig. 2A, leads to a substantial increase in network density
(number of nodes) but does not significantly change the number of chemical similarity
clusters.
(PDF)

S2 Fig. CSNAP target identification and LTIF analysis of the benchmark compound sets,
related to Fig. 2. The benchmark compounds comprised of six drug classes (CDK2, ACE,
HMGA, PARP, HIVRT, and HSP90) were combined and analyzed by CSNAP followed by
LTIF analysis. The target spectrum represented by the sum of S-scores of each predicted target,
were used to identify the major targets from the top peaks. The results showed that all of the six
labeled drug targets and predicted off-targets were identified from the target spectrum.
(PDF)

S3 Fig. Integration of CSNAP analysis with the MitoCheck knowledge database for mitotic
target identification, related to Fig. 4.Workflow for integrating CSNAP analysis with the
knowledge database MitoCheck (maintains data on the mitotic phenotypes observed upon
siRNA gene expression knockdown for almost all human genes) for mitotic drug target identi-
fication. 212 mitotic compounds with unknown drug targets from chemical screens were ana-
lyzed by the CSNAP program and 116 predicted target IDs were retrieved. These targets were
analyzed by LTIF analysis with a predefined cutoff (∑ S-score>10), from which we identified 4
broad categories of putative targets (20 UniProt target IDs) from the top peaks of the target
spectrum (See S4 and S5 Figs for query results).
(PDF)
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S4 Fig. Target and off-target prediction of the mitotic compounds, related to Fig. 4. The
mitotic compounds with four predicted mitotic targets by CSNAP analysis were analyzed by
LTIF to determine their off-target effects. The LTIF analysis of SCD and ABL1 reveals several
compounds targeting both SCD and ABL1 in each target category.
(PDF)

S5 Fig. Identification of novel tubulin-targeting agents by CSNAP analysis, related to
Fig. 4 and 5. (A) 212 antimitotic compounds clustered into 85 distinct chemical similarity sub-
networks of which 23 clusters contained annotated anti-tubulin agents (green); additionally 54
novel tubulin-targeting chemotypes (yellow) were identified from in-vitro tubulin polymeriza-
tion assays. (B) The first-order neighbors of the anti-tubulin compounds were extracted from
the chemical similarity sub-network, resulting in 24 similarity clusters. Of the 51 compounds
predicted to be targeting microtubules, 36 compounds (71%) had more than 20% fold change
in in-vitro tubulin polymerization assay and 14 had no measurable effect.
(PDF)

S6 Fig. Integration of CSNAP with knowledge databases for mitotic target prediction relat-
ed to Fig. 4. CSNAP analysis of 212 mitotic compounds predicted 20 mitotic targets. The
MitoCheck database confirmed 14 targets within 4 broad categories: SCD, ABL1, PTPN, and
TUBB, whose depletion induced a mitotic defect phenotype and are potential targets for these
compounds. The color intensity of the band correlates with the number of successful replicates
for the target phenotype by siRNA knockdown.
(PDF)

S7 Fig. Mitotic phenotypes of target subtypes, related to Fig. 4. All subtypes within each of
the 4 predicted target categories (SCD, PTPN, ABL1 and TUBB) were searched within the
MitoCheck database. Note that all four target categories display diverse mitotic phenotypes by
siRNA knockdown.
(PDF)

S8 Fig. Phenotypic analysis of SCD, ABL1, PTPN and TUBB compound classes, related to
Fig. 4. (A-F) Immunofluorescence of HeLa cells treated with control DMSO or indicated com-
pounds (1–5) for 20 hours. Cells were fixed with paraformaldehyde, permeabilized and stained
for DNA and tubulin. Legend describes the different types of observed phenotypes correspond-
ing to the reported MitoCheck phenotypes for siRNA-mediated knockdown of predicted com-
pound targets. Scale = 5 μm.
(PDF)

S9 Fig. Identification of a compound sub-network with a consensus tubulin destabilizing
effect, related to Fig. 5. (A) Mapping of tubulin polymerization activity onto the mitotic com-
pound set CSN identified a compound sub-network with a consensus tubulin destabilization
effect. (B) Tubulin polymerization kinetics for 7 novel tubulin destabilizers (6–12), based on a
phenyl-sulfanyl-thiazol-acetamide scaffold, using an in-vitro tubulin polymerization assay.
Note that all compounds inhibited tubulin polymerization compared to the DMSO control
and tubulin stabilizer Taxol control.
(PDF)

S10 Fig. Determination of compound potency in cell culture, related to Fig. 5. (A) For cell
viability assays, HeLa cells were treated with increasing concentrations (20-point titration 0–-
100 μM) of indicated compounds (6–12) for 20 hours and the percentage of cells arrested in
G2/M was quantified. (B) For cell cycle arrest assays, cells were treated with compounds for 72
hours and the extent of cell death was quantified. The EC50s were calculated using the CDD
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(Collaborative Drug Discovery) software. See Extended Experimental Procedures for
complete details.
(PDF)

S11 Fig. Molecular modeling of structural binding mechanism for compounds 6–12, relat-
ed to Fig. 5. Structural alignment of compounds 6–12 within the colchicine-binding pocket of
the colchicine-tubulin crystal structure (PDB: 1SA0) using the MOE FlexAlign protocol fol-
lowed by an energy minimization procedure to simulate the “induced-fit” effect. All protein-li-
gand complexes showed similar binding modes and were consistent with the SAR analysis.
(PDF)

S12 Fig. Phenotypic analysis of microtubule destabilizing compounds 6–12, related to
Fig. 5. Immunofluorescence microscopy of HeLa cells treated with control DMSO, Taxol, col-
chicine, or the indicated compounds (6–12) for 20 hours. Cells were fixed with paraformalde-
hyde, permeabilized, and stained for DNA (Hoechst 33342) and tubulin (primary rat anti-
tubulin antibodies and secondary anti-rat Cy3 antibodies). Note that all compounds showed a
microtubule destabilization effect similar to colchicine-treatment. Scale = 5 μm.
(PDF)

S13 Fig. CSNAP web performance benchmark. To evaluate CSNAPWeb performance, an in-
creasing number of ligands (6–96) from the benchmark set containing six drug classes (CDK2,
ACE, HMGA, PARP, HIVRT, and HSP90) were input as queries and the total processing time
(minutes) was measured using default chemical search parameters. Each input compound set
was selected randomly in triplicate from each drug class and the average total processing time
for each number of compound set was computed. Regression analysis (y = 0.2951x+0.8667,
R2 = 0.9342) showed a linear relationship between the processing time and the number of
input ligands where each ligand was processed in less than a minute on average.
(PDF)

S1 Table. Benchmark compound structure and methods comparison data, related to Fig. 3.
Complete list of benchmark compound data in SMILES notation and their target prediction re-
sults analyzed by CSNAP and SEA approaches respectively. The SMILES data were converted
from the original benchmark compound SD file downloaded from the DUD LIB VS 1.0 set
(http://dud.docking.org/). The top hits ranked by each respective measure (S-score or E-value)
were recorded (CSNAP top hit or SEA top hit). If the labeled target did not match the top hit,
the rank of labeled targets were identified as rank (labeled) and the corresponding scores were
recorded as S-score (label) or E-val (label) respectively.
(XLS)

S2 Table. Small molecule screening data, related for Fig. 4. Complete description of HTS
assay, compound library, screening conditions and post HTS analyses.
(PDF)

S3 Table. List of 212 mitotic compounds and results of in-vitro tubulin polymerization as-
says, related to Fig. 5. The effect of the 212 mitotic compounds on microtubule assembly was
analyzed using an in-vitro tubulin polymerization assay. The end-point absorbance based on
change in OD (dOD) was used to quantify the degree of microtubule polymerization and was
converted to percentage fold change relative to DMSO (0%). The percentage fold change is
listed for each compound.
(XLS)
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S4 Table. Target identification for compounds 1–5, related to Fig. 4. Five compounds (one
from each of the five predicted target chemical similarity sub-networks) were selected for phe-
notypic analysis including compound 1 from the SCD sub-cluster (cluster 6), compound 2 that
overlapped with both SCD and ABL1 sub-clusters (cluster 6) and compound 3 from the ABL1
sub-cluster (cluster 6). Additionally, compound 4 and compound 5, were retrieved from the
PTPN cluster (cluster 3) and the TUBB cluster (cluster 4) respectively. Note that the reference
ChEMBL compounds are in gray, the mitotic compounds are in red and the selected com-
pounds are in yellow.
(PDF)

S1 Text. Supporting tutorials, supporting materials and methods, supporting references.
(PDF)

S1 File. CSNAP analysis results of benchmark sets (benchmark.cys) (Tc-cutoff = 0.85) for
visualization using Cytoscape.
(CYS)

S2 File. CSNAP analysis results of mitotic sets (mitotic.cys) (Tc-cutoff = 0.85) for visualiza-
tion using Cytoscape.
(CYS)
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