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Abstract

Having a parent affected by late-onset Alzheimer’s disease (AD) is a major risk factor for 

cognitively normal (NL) individuals. This study explores the potential of PET with 18F-FDG and 

the amyloid- β (Aβ) tracer 11C-Pittsburgh Compound B (PiB) for detection of individual risk in 

NL adults with AD-parents.

Methods—FDG− and PiB-PET was performed in 119 young to late-middle aged NL individuals 

including 80 NL with positive family history of AD (FH+) and 39 NL with negative family history 

of any dementia (FH−). The FH+ group included 50 subjects with maternal (FHm) and 30 with 

paternal family history (FHp). Individual FDG and PiB scans were Z scored on a voxel-wise basis 

relative to modality-specific reference databases using automated procedures and rated as positive 

or negative (+/−) for AD-typical abnormalities using predefined criteria. To determine the effect 

of age, the cohort was separated into younger (49 ± 9 y) and older (68 ± 5 y) groups relative to the 

median age (60 y).

Results—Among individuals of age >60 y, as compared to controls, NL FH+ showed a higher 

frequency of FDG+ scans vs. FH− (53% vs. 6% p < 0.003), and a trend for PiB+ scans (27% vs. 

11%; p = 0.19). This effect was observed for both FHm and FHp groups. Among individuals of 

age ≤60 y, NL FHm showed a higher frequency of FDG+ scans (29%) compared to FH− (5%, p = 

0.04) and a trend compared to FHp (11%) (p = 0.07), while the distribution of PiB+ scans was not 

different between groups. In both age cohorts, FDG+ scans were more frequent than PiB+ scans 

among NL FH+, especially FHm (p < 0.03). FDG-PET was a significant predictor of FH+ status. 

Classification according to PiB status was significantly less successful.
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Conclusions—Automated analysis of FDG− and PiB-PET demonstrates higher rates of 

abnormalities in at-risk FH+ vs FH− subjects, indicating potentially ongoing early AD-pathology 

in this population. The frequency of metabolic abnormalities was higher than that of Aβ pathology 

in the younger cohort, suggesting that neuronal dysfunction may precede major aggregated Aβ 

burden in young NL FH+. Longitudinal follow-up is required to determine if the observed 

abnormalities predict future AD.
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1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is a 

neurodegenerative disorder with insidious onset and progressive cognitive declines. Many 

clinical studies indicate that by the time patients come in for diagnosis, too much irreversible 

brain damage may have already occurred for treatments to be effective. Preventive 

interventions, once they are developed, ideally would be implemented long before 

symptoms occur. A major goal in AD research is the detection of biological markers to 

identify at-risk people at the earliest stages of disease when symptoms are not yet apparent.

PET imaging with 2-[18F] fluoro-2-Deoxy-D-glucose (FDG) and amyloid-beta (Aβ) tracers 

such as 11C-Pittsburgh Compound-B (PiB) and other 18F-labeled compounds are under 

investigation as tools to improve the early detection of AD. FDG-PET is routinely used in 

the early and differential diagnosis of AD and other neurodegenerative disorders, and 

diagnostic criteria have recently been proposed for amyloid-imaging [1]– [8]. Of relevance 

to the early detection of AD, characteristic abnormalities of both biomarkers have been 

observed years prior to clinical decline in asymptomatic, cognitively normal (NL) 

individuals [9]–[12]. Although Aβ plaques are one of the defining pathological features of 

AD [13], a large proportion of otherwise healthy, non-demented elderly exhibit substantial 

Aβ burden [7] [9] [14] [15], making the functional significance of elevated Aβ in this 

population unclear. FDG-PET abnormalities reflect neuronal dysfunction and correlate well 

with dementia severity [1] [3] [10], although this biomarker is not as specific to AD. 

Examination of at-risk individuals represents an ideal way to explore the value of these two 

imaging modalities in the early detection of AD-typical pathology, prior to cognitive 

decline.

Apart from age, having a 1st degree family history of AD (FH) is a major risk factor for NL 

individuals [16] [17]. While the rare early-onset forms of AD have autosomal dominant 

genetic inheritance, the risk for late-onset AD (LOAD), which comprises over 99% of the 

AD population after the age of 60, is influenced by several genetic and non-genetic factors. 

Although LOAD does not show recognizable Mendelian inheritance, risk is to some extent 

genetically determined, as shown by the familial aggregation of many LOAD cases. Recent 

biomarker studies showed that NL with LOAD-parents, especially those with an affected 

mother, manifest an AD-endophenotype characterized by reduced brain metabolism on 

FDG-PET and increased Aβ deposition on PiB-PET compared to those with negative FH of 
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AD [18]–[21]. Maternal transmission may account for up to 30% of all LOAD cases [22]. 

These findings suggest that PET may play a role in the early detection of AD in these 

individuals. However, results were based on group differences and the value of PET to 

assess AD-like abnormalities on an individual basis in asymptomatic people is unknown. 

Additionally, there are no published studies that examined individual PET scans in young 

adults at risk for LOAD. The goal of this study was to examine FDG- and PiB-PET on a 

subject by subject basis in young to late-middle aged NL individuals with and without a FH 

of AD.

2. Methods

2.1. Subjects

This study examined 146 prospectively recruited, clinically and cognitively normal (NL) 

individuals enrolled in longitudinal PET imaging studies at NYU School of Medicine 

between 2009 and 2013. These included individuals interested in research participation and 

risk consultation, self-referred individuals with cognitive complaints, spouses, family 

members, and caregivers of patients participating in other studies. Subjects received 

medical, psychiatric, neuropsychological, clinical MRI and PET exams. The study was 

approved by the NYU IRB. Informed consent was obtained from all subjects. Individuals 

with medical conditions or history of conditions that may affect brain structure or function, 

i.e. stroke, diabetes, head trauma, any neurodegenerative diseases, depression, 

hydrocephalus, intracranial mass, and infarcts on MRI, and use of psychoactive medications 

were excluded. Subjects were 33 – 79 years old, with education ≥12 years, Clinical 

Deterioration Rating (CDR) = 0, Global Deterioration Scale (GDS) ≤2, Modified Hachinski 

Ischemia Scale <4 and Mini Mental State Examination (MMSE) ≥26. All subjects had 

normal cognitive test performance relative to appropriate reference values for age and 

education. Only individuals who completed both FDG− and PiB-PET procedures and had 

detailed family history information were included. A FH of LOAD that included at least one 

1st degree relative whose AD onset was after age 60 was elicited by using standardized FH 

questionnaires [19] [21]. All participants were asked to fill in names, dates of birth, age at 

death, cause of death, and clinical information of all affected family members. The 

information was confirmed with other family members by interview with the examining 

neurologist, discussing the parents’ symptomatology and progression of disease. Only 

individuals whose parents had lived to age ≥65 were included. For those with a FH, the 

parents’ diagnosis of LOAD was reportedly clinician certified. Subjects were divided into 

FH positive and negative groups (FH+ vs FH−). We examined parent gender effects by 

stratifying FH+ subjects into those with maternal (i.e., FHm) and paternal FH (i.e., FHp).

2.2. PET Acquisition

Subjects received two PET scans acquired in 3D-mode on an LS Discovery [G.E. Medical 

Systems, Milwaukee, WI; 5.4 mm FWHM, 30 cm FOV] or a BioGraph PET/CT scanner 

[Siemens, Knoxville, TN; 1 mm FWHM, 25 cm FOV] following standardized procedures 

[18]–[20]. Briefly, before PET imaging, an antecubital venous line was positioned for 

isotope injection. Subjects rested with eyes open and ears unplugged in the quiet and dimly 

lit scan room. Subjects were positioned in the scanner using laser light beams for head 
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alignment approximately 60 min after injection of 15 mCi of 11C-Pittsburgh Compound B 

(PiB) and scanned for 30 min [18] [19]. The FDG scan procedure started 30 min after the 

PiB scan or on a separate day. After an overnight fast, subjects were injected with 5 mCi of 

2-[18F] fluoro-2-Deoxy-D-glucose (FDG), positioned in the scanner 35 min after injection, 

and scanned for 20 min. Prior to PET, a CT scan was acquired for attenuation correction. All 

images were corrected for photon attenuation, scatter, and radioactive decay, and 

reconstructed into a 512 × 512 matrix. The higher resolution scans were degraded to match 

the resolution of the LS Discovery scans using uniform resolution smoothing parameters 

[23].

2.3. Image Analysis

Image analysis was performed blind to clinical data. For each subject, summed PET images 

corresponding to the 40 – 60 min of FDG data and to the 60 – 90 min of PiB data were 

generated, and coregistered to their corresponding T1-MRI using a surface-fitting algorithm 

[24]. Following coregistration, PET scans were processed using the iSSP35-NMP-us 

standard diagnostic routine of the well-established, rater-independent Neurological 

Statistical Image Analysis program (NEUROSTAT, University of Washington, Seattle, 

USA). All scans were realigned to the anterior-posterior commissure line and spatially 

normalized to the Talairach and Tournoux atlas using an affine transformation with 12 

parameters followed by nonlinear warping, yielding a standardized image set with 2.25 mm 

voxels [3] [25] [26]. The spatially normalized FDG and PiB PET scans of an additional 

twelve NL individuals (age 42 – 80 yrs, 50% female, education >12 yrs, MMSE ≥ 28, all FH

−) with FDG− and PiB− scans were used to generate an FDG and a PiB normative database 

[25] [26]. PET scans of each subject under study were compared with the corresponding 

reference database while controlling for pons activity for FDG [27] and for cerebellar uptake 

for PiB [28] using NEUROSTAT scaling procedures. Z scores [Z = (voxelsubject − voxel 

meandatabase)/voxel standard deviationdatabase] were calculated on a voxel-basis, and gray 

matter activities were extracted to predefined surface pixels using a three-dimensional 

stereotactic surface projection (3D-SSP) technique, which minimizes residual anatomic 

variances across subjects and partial volume effects, yielding robust voxel- based statistical 

analysis [3] [25] [26]. 3D-SSP maps allow visualization of deviations in FDG and PiB 

uptake on an individual basis [3] [10] [11] [25] [26]. Z scores are automatically adjusted by 

age and gender using scaling procedures [3] [25] [26]. NEUROSTAT generates two Z-score 

maps for each scan, one depicting negative Z-scores and the other positive Z-scores. 

Negative Z-score maps were inspected for FDG, and positive Z-score maps for PiB. All 3D-

SSP maps were independently inspected by two raters and classified as positive (FDG+, PiB

+) or negative (FDG−, PiB−) for presence of a neurodegenerative disease consistent with 

AD using published protocols with known intra- and inter-rater reliabilities and an absolute 

Z score threshold of >1.5 SD [3] [4] [10] [29]. The final diagnosis was made by joint 

agreement. Classification was facilitated by detection of AD-patterns exceeding the 

predefined Z score threshold within AD-specific regions of interest (ROI) superimposed 

onto the 3D-SSP maps [3] [10] [30]. ROIs included parietal, temporal, medial and pre-

frontal cortex, posterior cingulate cortex (PCC), precuneus, and angular gyrus [1]–[7] [11] 

[27] [30]. FDG+ scans had focal cortical hypometabolism in PCC, precuneus, parietal, 

temporal and/or prefrontal cortex of at least one hemisphere, with sparing of sensorimotor, 
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visual cortex basal ganglia and cerebellum [3] [4] [10] [26] [29]. As reduced FDG uptake 

may occur in frontal cortex in AD, this region was also inspected although frontal 

hypometabolism alone was not regarded as indicative of AD. FDG− scans had no abnormal 

findings or had abnormal findings reported other than those meeting the definition of FDG+ 

(e.g., global decrease in metabolic levels without sparing of sensorimotor and visual cortex 

and cerebellum; hypometabolism restricted to brain regions not specific to AD) [3] [4] [10] 

[26] [29]. PiB+ scans had focal cortical PiB uptake in PCC/precuneus, parietal, temporal 

and/or medial and prefrontal lobes of at least one hemisphere, with sparing of sensorimotor 

cortex, basal ganglia and cerebellum [1]–[7] [11] [27]. As amyloid deposition may occur in 

occipital cortex and striatum in AD, these regions were also inspected although PiB uptake 

in occipital cortex and striatum alone was not regarded as indicative of AD. PiB− scans had 

no abnormal findings or had abnormal findings reported other than those meeting the 

definition of PiB+ (e.g., PiB retention restricted to brain regions not specific to AD). The 

method was further validated vs. visual inspection of raw scans as well as vs. quantitative 

assessment. As different levels of abnormalities were observed for both tracers, FDG+ and 

PiB+ scans were further divided into patterns with mild vs moderate-to-severe deficits based 

on Z scores within diagnostic regions. For both tracers, mild abnormalities were defined by 

Z ≤ 2.5 and cluster extent >50 voxels, and moderate-to-severe abnormalities by Z > 2.5 and 

cluster extent >200 voxels (Figure 1).

2.4. Statistical Analysis

Statistical analyses were done with SPSS 16.0 (SPSS inc., Chicago, IL). Differences in 

clinical and demographical measures between groups were examined with χ2 tests and the 

general linear model (GLM). χ2 tests were used to compare the distribution of FDG+ vs 

FDG−, and PiB+ vs PiB− scans, as well as the degree of biomarkers abnormalities 

(moderate-to-severe vs mild) between family history groups (FH+ vs FH−), and parent-

gender groups (FHm vs FHp). Non-parametric McNemar tests for related samples were used 

to compare the frequency of FDG+ and PiB+ ratings within groups. To assess the effect of 

age on diagnostic accuracy, the cohort was separated according to its median age (60 y) into 

two groups, younger (49 ± 9 y) and older (68 ± 5 y), which were examined in interaction 

with FH status. Logistic regressions and ROC curves were used to estimate accuracy, 

sensitivity, specificity, and relative risk (95% confidence interval, C.I.) of individual FDG 

and PiB scans, and their combination, as risk classifiers. Results were considered significant 

at p < 0.05.

3. Results

3.1. Subjects

Of the 146 NL individuals enrolled, 24 were excluded, including 9 subjects who did not 

complete the FDG or PiB procedure, 4 subjects of age >80 yrs, 4 subjects who were 

excluded because of comorbidities (i.e., severe depression or MRI abnormalities), and 10 

subjects with incomplete family history. The remaining 119 NL individuals were examined 

in this study (Table 1). Of these, 80 (67%) had a positive family history of AD (FH+), 

including 50 FHm and 30 FHp. The remaining 39 subjects were FH−. Family history groups 

were comparable for clinical and demographical measures (Table 1).
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3.2. PET Findings: Age

A significant effect of age was observed for both FDG and PiB-PET. NL of age >60 y 

showed a higher frequency of FDG+ (37%) compared to those of age ≤60 y (16%; p = 0.01), 

as well as of PiB+ scans (21% vs 2%; p < 0.001) (Figure 2). Additionally, older individuals 

showed a higher frequency of FDG+ and PiB+ scans with moderate-to-severe abnormalities 

compared to younger individuals (p < 0.04; Figure 2).

3.3. PET Findings: Family History

Across all subjects, FH+ individuals showed a higher frequency of FDG+ scans (28/80, 

35%) as compared to FH− (2/39, 5%; p < 0.001), as well as a higher frequency of 

individuals with moderate-to-severe metabolic deficits (9% vs 0%, respectively, p = 0.002) 

(Figure 2). There was a non-significant trend towards a higher frequency of PiB+ scans in 

FH+ vs. FH− (13% vs 5%, p = 0.21, n.s.), and all PiB+ scans with moderate-to-severe 

abnormalities belonged to the FH+ group (Figure 2). A significant interaction between FH 

and age was observed for both FDG− and PiB-PET, with FH+ individuals of age >60 y 

showing the highest frequency of FDG+ and PiB+ scans among all groups (p ≤ 0.001). 

Among NL of age >60 y, FH+ subjects showed a higher frequency of FDG+ scans (53%), as 

well as a higher frequency of moderate-to-severe metabolic deficits (15%) compared to FH− 

(6% and 0%, respectively; p ≤ 0.003). There was a trend towards a higher frequency of PiB+ 

scans in FH+ vs FH− (27% vs. 11%; p = 0.19). Among NL of age ≤60 y, FH+ subjects 

showed a trend towards a higher frequency of FDG+ scans vs FH− (22% vs 5%, p = 0.08). 

There were no group differences for PiB-PET, as only 1 NL subject out of 67 was PiB+. 

Among FH+ individuals, the frequency of FDG+ scans was higher than that of PiB+ scans 

in both age cohorts (p ≤ 0.02; Figure 3). No differences between biomarkers were found for 

the FH− group, at any age.

3.4. PET Findings: Parent-Gender Effects

Across all subjects, significant parent-gender effects were observed on FDG–PET. This 

effect was driven by FHm individuals who showed a higher frequency of FDG+ scans 

(40%) compared to FH− (5%) and to FHp subjects (27%) (p < 0.001; Figure 3). The FHm 

group included slightly more subjects with moderate-to-severe metabolic deficits than the 

other groups (Figure 3). Neither the frequency of PiB+ scans or of moderate-to-severe PiB 

abnormalities differed between groups (p < 0.35, n.s.), although none of the FH− subjects 

showed moderate-to-severe PiB abnormalities (Figure 3). A significant interaction between 

parent-gender FH status and age was observed on both FDG− and PiB-PET (p < 0.005). 

Among individuals of age >60 y, NL FHm and FHp showed a higher frequency of FDG+ 

scans compared to FH− (55% and 50% vs 6%, p = 0.003), as well as a higher frequency of 

moderate to severe deficits (p < 0.02). NL FHm and FHp showed more PiB+ scans than FH

− (23% FHm, 33% FHp vs 11% FH−), which did not reach significance (p = 0.33). Among 

individuals of age ≤60 y, NL FHm showed a higher frequency of FDG+ scans (29%) 

compared to FH− (5%, p = 0.04) and a trend compared to FHp (11%) (p = 0.07), while the 

distribution of PiB+ scans was not different between groups (Figure 3). Overall, among 

FHm individuals, the frequency of FDG+ scans was higher than that of PiB+ scans in both 
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age cohorts (p < 0.03). No differences between biomarkers were found within the FHp 

group, at any age.

3.5. Abnormalities of Both Biomarkers

A total of 7 subjects had both FDG+ and PiB+ scans (FDG+/PiB+). All these individuals 

had age >60 yrs and were FH+, including 4/50 (8%) FHm and 3/30 (10%) FHp (Figure 2 

and Figure 3). Three representative cases of different FDG and PiB patterns are shown in 

Figure 4.

3.6. Discrimination Accuracy

Family history—Across all subjects, FDG-PET discriminated FH+ vs FH− status with 

56% accuracy (35% sensitivity, SS, 85% specificity, SP) and relative risk, RR = 1.6, 95% CI 

= 1.2 – 1.8 (p = 0.001). Within age groups, FDG-PET was a significant predictor for NL of 

age >60 y, with 67% accuracy, 53% SS, 94% SP and RR = 2.0, 95% CI = 1.3 – 2.2 (p = 

0.003) and showed borderline value for NL of age ≤60 y (45% accuracy, RR = 1.4, 95% CI 

= 0.9 – 1.6, p = 0.17). PiB–PET did not predict FH status at any age. Adding PiB to FDG in 

the prediction model did not increase the discrimination accuracy over FDG for any 

comparisons.

Family history parent-gender—Across all subjects, FDG–PET discriminated FHm vs 

FH− with 64% accuracy (40% SS, 95% SP) and RR = 2.0, 95% CI = 1.4 – 2.3 (p = 0.001). 

This effect was observed for the older (73% accuracy, RR = 2.5, 95% CI = 1.4 – 3.0, p = 

0.003) and younger cohorts (57% accuracy, RR = 1.8, 95% CI = 1.0 – 2.1, p = 0.07). FDG-

PET discriminated FHp vs FH− only for NL of age >60 y, yielding 77% accuracy and RR = 

3.3, 95% CI = 1.2 – 4.5 (p = 0.02). PiB–PET did not discriminated FHm and FHp groups 

from controls or from each other and did not add to the prediction accuracy of FDG for any 

comparisons (p ≥ 0.3).

4. Discussion

As several disease-modifying treatments for AD are being evaluated, detection of preclinical 

brain abnormalities is of great importance to identify individuals at high risk for AD who 

will most likely benefit from early interventions. By using automated, observer-independent 

Z scoring software, the present study shows that FDG− and PiB-PET abnormalities are 

detectable on an individual basis in NL individuals at known increased risk for AD, years 

prior to possible symptoms onset. NL FH+ showed a higher frequency of metabolic deficits 

compared to FH−, at any age, whereas increased PiB uptake, reflecting increased fibrillar Aβ 

deposition, became prominent after age 60 in FH+. The frequency of FDG deficits exceeded 

that of PiB abnormalities among FH+ individuals, especially those with FHm, of both age 

cohorts.

Changes in brain histopathology are known to precede the symptoms of AD by many years 

[31]. According to a popular theoretical model of AD, the “amyloid cascade hypothesis”, Aβ 

plaques increase during the preclinical phase of AD, causing synapse loss and neuronal 

death [13]. Other studies have shown that oxidative stress may precede and promote Aβ 

plaques deposition [32]. While Aβ deposition and metabolic impairments are likely 
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cooccurring phenomena in AD, discrepancies in timing and regional distribution are to be 

expected, especially in early disease. PiB retention co-localizes with Aβ plaques [5], while 

FDG uptake reflects local glucose consumption and synaptic functioning, and is therefore 

influenced by various factors, including reduced synaptic activity [33], neuronal disruption 

by Aβ oligomers and plaques [13], and disconnection between histopathologically affected 

regions and functionally associated areas [34] [35]. As such, local Aβ toxicity may not be 

the only determinant of hypometabolism in early AD.

Fibrillar Aβ deposition was strongly age-related in our data set, as hardly any individuals of 

age ≤60 y showed significant PiB uptake, whereas 21% of individuals over age 60 had PiB+ 

scans. These estimates are consistent with other reports showing increased PiB uptake in 

AD-vulnerable regions of 20% – 50% NL elderly [9] [14] [15] and with post-mortem reports 

showing that Aβ deposition develops mostly after age 60 [31] [36]. Amyloid deposition was 

significantly associated with FH status in older individuals, indicating that aging FH+ 

people are more susceptible to develop brain Aβ compared to FH−. Conversely, 

hypometabolism on FDG-PET strongly segregated with FH status, especially FHm, 

irrespective of age. An FDG pattern suggestive of AD was observed in 16% NL of age ≤60 

y and 37% NL of age >60 y, the majority of whom were FH+. While there are no prior 

reports on the prevalence of FDG+ scans in NL individuals, current estimates are quite 

comparable to those of PiB+ scans in elderly populations [9] [14] [15]. To our knowledge, 

this is the first study to examine individual PiB or FDG-PET in young adults. The higher 

prevalence of FDG+ vs. PiB+ scans in our younger FH+ cohort suggests that either 

metabolic deficits promote, and possibly precede Aβ dysmetabolism in this subset of at-risk 

individuals, or that FDG reductions are a consequence of Aβ oligomers which are not 

detectable using PiB.

While we cannot statistically define a temporal or causal relationship between biomarkers 

due to the cros-ssectional nature of our study and differences in the methods’ sensitivity, 

biomarkers could be staged as having early or later value for detection of AD risk. For 

instance, if hypometabolism happens at a higher frequency than Aβ deposition in younger 

FH+ vs FH− individuals, and yet the two abnormalities occur at the same frequency in older 

subjects, it may be hypothesized that hypometabolism occurs prior to Aβ deposition. 

Logistic regressions showed that FDG deficits distinguished FH+ from FH− among older 

and younger individuals, while PiB failed to do so, especially in the younger cohort. Fibrillar 

Aβ deposition on PiB-PET may thus be regarded as a “late emerging” biomarker in NL FH

+, which is more likely to have changed after “early emerging” hypometabolism on FDG-

PET. Future studies are needed to clarify whether metabolic abnormalities in these at-risk 

individuals are an upstream event to Aβ deposition, or rather reflect disruption of synaptic 

plasticity by Aβ, in oligomeric or aggregated forms [13] [22]. For practical purposes, present 

results indicate that FDG-PET may be more informative than PiB-PET for early detection of 

AD-like changes in NL FH+.

Our findings of hypometabolism in absence of substantial Aβ pathology in young adults FH

+, especially those with FHm, are in agreement with reports of metabolic deficits in NL at 

genetic risk for LOAD [37], and add complexity to current theoretical models of AD 

progression [9]. These observations are consistent with epidemiological studies showing a 
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main role for maternal transmission in LOAD. Maternal transmission is more frequent than 

paternal transmission and is associated with a more predictable age of onset and lower 

performance on cognitive testing in the offspring [22]. Additionally, maternally-inherited 

LOAD biological endophenotypes are increasingly recognized [18]–[21]. Metabolic changes 

may be, to some extent, developmental in FHm individuals [22]. It remains to be established 

whether these changes are due to early, ongoing AD pathology or rather reflect an inborn 

precondition for later development of disease. Maternal inheritance of oxidative 

dysmetabolism and other AD-related changes suggests genetic transmission that may be 

mediated by mitochondrial DNA, which is maternally inherited in humans [22].

Longitudinal follow-ups of our subjects are warranted to determine the predictive value of 

the observed PET abnormalities. To our knowledge there are no studies that examined PET 

in the prediction of individual clinical outcome in NL subjects. Therefore, any clinical value 

at this time is unclear. A few studies of Mild Cognitive Impairment (MCI), a clinical 

condition at high risk for LOAD, showed high prognostic accuracy for conversion to AD 

using both FDG− and PiB-PET [4] [10] [29] [38]. About 80% – 90% of MCI with baseline 

FDG+ or PiB+ scans declined to AD within 1 – 2 years, while the majority of MCI with 

negative PET scans remained stable over time. By applying similar PET rating criteria as in 

previous studies, we observed that NL FH+ of age >60 y had 2-fold higher risk of metabolic 

deficits than controls, which yielded 67% accuracy to discriminate high vs low risk groups. 

These estimates are necessarily less impressive than in MCI studies, as the conversion rate 

from normal cognition to AD is substantially lower than for MCI to AD (1% – 2% vs 10% – 

30% per year) [39]. Additionally, although FDG-PET abnormalities predict decline from 

normal cognition to dementia on a group basis (23 – 25), these measures are surrogate 

markers of AD and doubt remains as to whether the observed hypometabolism is due to AD 

pathology or other causes.

3D-SSP mapping was developed and extensively validated for FDG-PET [11] [26], and was 

only recently applied to PiB imaging [40]. 3D-SSP output maps are derived from surface 

projections. It is possible that, as non-specific PiB uptake is quite elevated in white matter, 

the program may accidentally project white matter voxels on the surface, increasing the 

surface area showing abnormalities. This would however result in an increased number of 

false PiB positives. On the other hand, in severely atrophic brains, the method may 

underestimate the small amyloid-positive cortical rim surrounding white matter. Partial 

volume correction (PVC) was not performed in this study because of two considerations. 

First, our subjects were clinically NL and the oldest was 79, with a median age of 60 y. 

Atrophic changes severe enough to result in critical underestimation of amyloid burden are 

more likely in clinical AD patients. Second, it would not be feasible to apply mathematically 

complex, MRI-based PVC for routine clinical studies. Third, we validated the method 

against visual reads of all scans and vs. quantitative Z score assessment, showing 100% 

agreement between 3D-SSP maps and visual inspection of PiB scans. Nonetheless, it 

remains to be determined whether MRI-based white matter masking would improve the 

technique’s accuracy, and whether the method may have underestimated detection of very 

mild, “emerging” PiB abnormalities. Our reference database included carefully selected NL 

FH− individuals, whose scans were rated as negative for presence of hypometabolism or 

amyloid pathology, using the same criteria and procedures as with the study cohort. As we 
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further refine the method, larger normative databases may improve detection of subtle 

abnormalities.

We caution that the NL population selected in our study represents a group with a high a 

priori risk of preclinical AD-changes, results were made with small numbers of subjects 

under controlled clinical conditions, and our observations are restricted to NL FH+. 

Replication of these preliminary research findings in community-based populations is 

warranted and clinical application is not justified. Nevertheless, we believe that present 

results are plausible and promising, and set the stage for further studies of asymptomatic 

individuals at risk for LOAD with longitudinal follow-ups and larger samples. In 

conclusion, FDG and PiB-PET abnormalities were detectable on an individual basis in 

asymptomatic people by means of standardized, automated PET analysis procedures, and 

segregated with FH+ status. This supports the notion that having a 1st degree family history 

is a major risk factor for LOAD.
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Figure 1. 
Left panel: Representative FDG-PET patterns in NL individuals: (A, B) FDG−; (C, D) mild 

hypometabolism of PCC a/o parieto-temporal cortex; (E, F) moderate-to-severe 

hypmetabolism of PCC a/o parieto- temporal cortex. Right panel: Representative PiB-PET 

patterns in NL individuals: (A, B) PiB−; (C, D) mild PiB uptakein PCC a/o parieto-temporal 

cortex; (E, F) moderate-to-severe PiB uptake in PCC a/o parieto- temporal cortex. 3D-SSP 

maps showing tracer uptake deviations relative to norms are displayed on a color- coded 

scale and shown on the right and left lateral, superior and inferior, anterior and posterior, 

right and left medial views of a standardized brain image.

Murray et al. Page 14

Adv J Mol Imaging. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
PET abnormalities in NL FH+ vs. FH− individuals. Top panel: Percentage of FDG+, PiB+ 

and FDG+/PiB+ scans by age (A); family history status (B); and age by family history status 

(C); Bottom panel: Percentage of FDG and PiB scans showing absent, mild, or moderate-to-

severe abnormalities by age (D); family history status (E), and age by family history status 

(F).

Murray et al. Page 15

Adv J Mol Imaging. Author manuscript; available in PMC 2014 December 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
PET abnormalities in NL FHm vs. FHp vs. FH−. Top panel: Percentage of FDG+, PiB+ and 

FDG+/PiB+ scans by parent-gender (A); age by parent-gender status (B); Bottom panel: 

Percentage of FDG and PiB scans showing absent, mild, or moderate-to-severe 

abnormalities by parent-gender (C); and age by parent-gender status (D).
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Figure 4. 
Three representative cases: (A) 50 y/o FH− with FDG−/PiB− scans; (B) 52 y/o FHm with 

FDG+/PiB− scans; (C) 65 y/o FHm with FDG+/PiB+ scans.
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