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The challenge
Genes and genomes can be routinely sequenced, the resulting

information stored, accessed and analyzed, and organisms

with altered gene expression produced. Use of these

resources requires powerful phenotyping platforms, including

approaches for the systematic analysis of metabolite com-

position. Whereas the chemistry of nucleic acids is relatively

simple and uniform, there are tens of thousands of metabo-

lites, with an immense range of types of structure. This has

led to a plethora of different extraction, separation and

detection systems for different groups of metabolically

important compounds. Researchers have typically measured

a handful of metabolites, chosen on the basis of assumptions

about what was relevant and the technical capacity of their

laboratory. But now, in parallel with the development of

genome-wide gene-expression arrays, there has been a shift

to an ‘unbiased’ approach to metabolite analysis. 

It is helpful to distinguish between metabolite fingerprinting,

metabolite profiling and metabolomics. Metabolic fingerprint-

ing is the application of a broad analytic technology to discover

some big differences between two samples, for example two

different genotypes. It provides information that helps to orien-

tate a research project. Metabolite profiling is the measurement

of hundreds or potentially thousands of metabolites. It requires

a streamlined pipeline for extraction, separation and analysis,

so that large numbers of metabolites can be measured in a

robust and quantitative manner while in the presence of the

extraordinarily complex mixture of chemicals (‘matrix’) that is

found in cellular extracts. Metabolomics, in the strict sense, is

the measurement of all metabolites in a given system. It is not

yet technically possible, and will probably require a platform of

complementary technologies, because no single technique is

comprehensive, selective, and sensitive enough to measure

them all [1]. This article provides an overview of technologies

for metabolite profiling, discusses problems relating to the

reliability and interpretation of the huge datasets these tech-

nologies produce, and outlines how they can be used to answer

important questions in plant biology in the future. 

Hardware platforms
Gas chromatography coupled to mass spectrometry
(GC-MS)
In gas chromatography coupled to mass spectrometry

(GC-MS), compounds are separated by GC and then trans-

ferred online to the mass spectrometer for further separation

and detection. This combines two strongly complementary
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technologies: GC can separate metabolites that have almost

identical mass spectra (such as isomers), while MS provides

fragmentation patterns that differentiate between co-eluting,

but chemically diverse, metabolites. GC-MS provides quanti-

tative information and is widely used for clinical diagnostics

[2] and large-scale profiling of complex biological samples

[3-5]. It has six important component steps. 

Extraction
Preparation of an extract should be as non-selective and com-

prehensive as possible. But treatments that stabilize one set of

metabolites often lead to degradation or modifications of

others. Furthermore, it may be necessary to separate fractions

so as to profile trace metabolites when the sample is dominated

by a small number of highly concentrated metabolites [6,7].

Derivatization
Derivatization is necessary to render metabolites volatile,

and so amenable to GC-MS. There is an extensive toolbox of

chemical reagents for GC-MS derivatization, including alky-

lating, acylating and silylating reagents [8]. At present,

trimethylsilylation is the favored choice [6]. In contrast to

other reagents, which are in part highly specific for chemical

moieties of certain metabolite classes, trimethylsilylation

uses the most comprehensive reagent and thus complies best

with the requirements of a non-biased metabolite profiling.

Separation by GC
Highly standardized conditions are needed for separation of

metabolites by GC, because slight changes in gas-flow condi-

tions, temperature programming and the type of capillary

column affect chromatographic retention, and can even alter

the order in which compounds are eluted [9]. 

Ionization
The most widely used ionization method for GC-MS is elec-

tron impact (EI) ionization, a robust, reproducible approach

that is not subject to ion suppression effects (mutual inter-

ference between compounds, leading to one or both being

underestimated or not detected; see the glossary in Box 1 for

further details). EI transfers a fixed energy load of -70 eV to

compounds, and the compounds are then directly trans-

ferred as molecular ions from the GC outlet into a high

vacuum. The energy load exceeds the first ionization energy

of all molecules, leading to very efficient generation of molecu-

lar ions. Surplus energy is dissipated via highly reproducible,

concentration-independent, fragmentation of the molecular

ions, which has two important consequences. Firstly, almost

all molecular ions carry one positive charge, which simplifies

evaluation of the mass spectra. Secondly, the highly repro-

ducible, compound-specific mass spectral fragmentation

pattern aids identification of the compounds. 

Detection 
Three sorts of mass-detection device are used in GC-MS

couplings: single quadrupole detectors (QUAD), ion-trap

technology (TRAP), and time-of-flight detectors (TOF; see Box

1 for further details). The throughput of GC-QUAD-MS

systems (10-20 samples per day) resembles that of typical

high-performance liquid chromatography (HPLC) applica-

tions. GC-TRAP-MS technology has a similar throughput,

but includes reaction monitoring (MSn) capability, in which

a predefined fragment mass is sampled (parent ion trapping)

and subjected to secondary fragmentation to generate

daughter fragments. This increases selectivity and sup-

presses chemical ‘noise’, an advantage for the analysis of

trace compounds in complex samples [6,7]. It also aids in

the identification of compounds. GC-TOF-MS systems allow

higher throughput (10-50 scans per second, allowing 30-40

samples per day).

Evaluation
Compounds are identified by matching their chromato-

graphic retention times and mass-spectral fragmentation

patterns to known and predicted information available in

databases [9]. Typical GC-QUAD-MS software requires

expert knowledge about the characteristic fragment masses

and retention time windows of each metabolite, and of the

pitfalls that can lead to misidentification. Accumulation of

experience is time consuming, but is aided by creating

mass-spectral and retention-time index reference libraries

for all routinely occurring metabolites. This manually sup-

ported process requires around 2 minutes per metabolite,

allowing about 20 chromatogram files to be evaluated per

day (with increasing numbers of metabolites this is the rate-

limiting step of sample analysis). A major advantage of GC-

TOF-MS systems (such as the GC-TOF-Pegasus II MS from

Leco Corp Inc., St. Joseph, USA) is their enhanced software

capability [9,10], which supports automated and compre-

hensive extraction of all mass spectra from a chro-

matogram, in-built mass-spectral correction for co-eluting

metabolites, calculation of retention-time indices, and auto-

mated picking of a suitable fragment mass for selective

quantification. GC-TOF-MS has the potential to be truly

non-biased and fully automated with respect to metabolite

identification, but at present it still requires expert input to

correct inappropriate assignments. 

Overall, about two days are needed to carry a batch of 50

samples through extraction and derivatization steps [4]. Analy-

sis and evaluation of one sample (derivatization, separation by

GC and ionization) requires 60-75 minutes by GC-QUAD-MS

or 35-45 minutes by GC-TOF-MS. The throughput is exceeded

only by fingerprinting technologies, or targeted analyses of

single metabolites. The major bottleneck is the evaluation and

manual check for misidentified metabolites. GC-MS provides

exact absolute quantification of the level of a given metabolite

in a concentration range of up to four orders of magnitude, pro-

vided that appropriate external and internal standardization

has been carried out. Each step during extraction, preparation

and analysis can introduce general and substance-specific

losses, however, and these can vary with the biological material.

109.2 Genome Biology 2004, Volume 5, Issue 6, Article 109 Kopka et al. http://genomebiology.com/2004/5/6/109

Genome Biology 2004, 5:109



co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2004/5/6/109                                                          Genome Biology 2004, Volume 5, Issue 6, Article 109 Kopka et al. 109.3

Genome Biology 2004, 5:109

Box 1

Glossary

Ionization methods 
Ionization is crucial to mass spectrometry: if there are no ions, there is no means of transporting and separating molecules
through the vacuum that is required for mass detection. Ionization can be performed by passing molecules through a high-
energy electron beam set to 70 eV, in so-called electron impact (EI) ionization; by electron discharge/electospray
ionization (ESI); by chemical reactions (chemical ionization, CI) or by photons (in atmospheric pressure photo-ionization,
APPI). Hard ionization, such as EI, transfers energy in excess of the first ionization energy required, so that all molecules are
ionized but excess energy in most cases causes strong molecular fragmentation. Soft ionization technologies, such as ESI, CI
and APPI, transfer less energy; as a result molecules are less likely to form fragments, but not all compounds can be ionized. 

Electrospray ionization (ESI) ionizes molecules that are dissolved in large amounts of solvent, as is typically used in
liquid chromatography. The ionization process starts with the formation of small charged liquid droplets, which are
sprayed into a vacuum. The solvent evaporates while the charge is concentrated at the surface of the shrinking droplets.
Finally the charge is transferred to the solutes, and ions are discharged from the small droplets by electrostatic repul-
sion. The resulting ions can subsequently be analyzed by mass-spectrometric detectors. Electrospray preferentially
ionizes molecules with low ionization potential. If molecules compete for ionization, those molecules that do not readily
form ions may be lost (so-called suppression). Atmospheric pressure photoionization (APPI) is an emerging
alternative to electrospray ionization. APPI uses a hot stream of inert gas instead of a vacuum to dry charged droplets
and finally release ions. Photoionization utilizes photons adjusted to approximately 10 eV, instead of electron discharge
or chemical reactions, for the ionization of molecules. Photoionization has the advantage of allowing the ionization of
less polar molecules, which are either not ionized or produce unstable ions when subjected to other techniques.

Mass-detection approaches 
Quadrupole detectors (QUAD) are analytical devices for the mass-spectrometric detection and quantification of ions,
which are generated from molecules of interest by one of the available methods for ionization and fragmentation. The
quadrupole is a set of four metal rods, which are electronically operated as a mass-selective ion filter. Quadrupole detectors
generate mass spectra by counting the ions that pass this filter at each of the successively monitored masses. Triple quadru-
pole detectors are a variation of the single quadrupole detector, in which three quadrupole devices are coupled in a linear
array. Ions that are generated in an ion source are passed through the first quadrupole, which is used as a mass-selective filter
that permits specific selection of ‘parent ions’ of a defined mass. The selected parent ions enter a second quadrupole device,
which is used as a ‘collision cell’. Here, collision of parent ions with gas molecules results in the generation of ‘daughter ions’,
which are breakdown products of the parent ions. The daughter ions are then passed on to the third quadrupole device,
which is again used as a mass-selective filter. This last filter allows determination of the masses of the daughter ions, and also
counts them. Because of the two selective filtering steps, triple quadrupole detectors are much more efficient than single
quadropoles at removing from a complex mixture all unwanted components and leaving the target metabolite of interest. 

Ion-trap technology (TRAP) is also used for the mass-spectrometric detection and quantification of ions. In contrast
to quadrupole technology, which allows linear movement of ions, the ion-trap device first collects and stores ions by
forcing them into stable orbits. Then, the ions are released from the device and counted. This two-step process allows
the generation of mass spectra by trapping and release of ions of successive masses. In addition, the collected and
stored ‘primary ions’ can be fragmented a second time and thus secondary fragments can be analyzed. This process is
highly useful in determining the structure of molecules, or in monitoring known compounds in highly complex samples. 

Time-of-flight technology (TOF) is a third mass-spectrometric technology for detection and quantification of ions; it was
developed initially for the analysis of macromolecules, such as proteins, peptides and polysaccharides, by matrix-assisted laser
desorption (MALDI-TOF). Recent modifications to this technology allow online coupling to gas chromatography. Ions are
bundled into small packages, simultaneously accelerated along an evacuated flight tube and detected at a fixed distance. Ions
of low mass travel faster than those with a high mass and can thus be distinguished by time of flight. Each of the bundling,
accelerating and detection cycles takes only a few milliseconds. Thus GC-TOF-MS is ideally suited for fast-scanning analysis of
small volatile molecules, whereas MALDI-TOF-MS is the preferred technology in polymer analysis and proteomics.



Ideally, each compound should be standardized using a stable-

isotope-labeled isotopomer that is differentially detectable by

mass spectrometry, or a xenobiotic stereoisomer that is distin-

guishable by its chromatographic properties [4,11]

One major limitation is that GC can be used only for volatile

compounds or compounds that can be chemically trans-

formed into volatile derivatives (see [12] for a list). Current

methods detect trisaccharides, steroids, diglycerides and

some monophosphorylated metabolites (such as glycerol 3-

phosphate and glucose 6-phosphate), but most polyphos-

phorylated and activated metabolic intermediates are

presently not accessible to GC-MS analyses (see Figure 1 for

an example of a GC-QUAD-MS profiling experiment). 

The other major limitation of GC-MS is that most peaks are still

unidentified. This is a tribute to the high sensitivity and resolu-

tion of capillary GC-MS, but a frustration for the biologist.

Some ‘unknowns’ may be analytes generated during extraction

and sample preparation, or by fragmentation in the MS step,

but others may be important and even novel metabolites. Their

identification is therefore an important activity, which cumula-

tively increases the power of GC-MS platforms. The straightfor-

ward approach involves addition to the battery of authenticated

standard metabolites that interest the biologist. Elucidating the

identity of a peak of interest is more difficult, however, because

GC-MS is destructive and usually does not generate enough

pure substance for structural elucidation (for example, the

upper microgram to milligram range required for offline

nuclear magnetic resonance, NMR).

Liquid chromatography coupled to mass
spectrometry (LC-MS)
Liquid chromatography coupled to MS (LC-MS) exploits the

high separation power of HPLC, including its ability to sepa-

rate compounds of high molecular weight that cannot be ana-

lyzed by GC. An enormous range of columns and elution

procedures are available. Traditionally, HPLC has been

coupled to ultraviolet and visible light (UV/VIS) or diode-

array detectors. Coupling it to MS instead provides further

selectivity, unbiased detection, and information about the

structures of the separated compounds. Metabolites are intro-

duced into the mass spectrometer by electrospray ionization

(ESI). ESI is an atmospheric pressure process, transferring

analyte molecules that elute from an HPLC column into the

gas phase suitable for mass analysis. The analytes enter the

mass spectrometer as charged molecules that are transported

in an electrical field between the end of the column and the

entrance of the mass spectrometer. Ionization can occur via

protonation (ESI+) or deprotonation (ESI-) [13,14] and can

lead to single and multiple ions. The presence of multiple ions

shifts the mass-to-charge ratio (m/z) of even high-mass ana-

lytes into the scanning range of a typical mass analyzer. When

ESI is combined with high-end mass spectrometers there is

effectively no mass-range restriction, allowing complete pro-

teins to be analyzed [15]. ESI has a bias against less polar com-

pounds, such as terpenes, carotenoids and aliphatics, for

which it is better to use alternative procedures, such as atmos-

pheric pressure photoionization (APPI) [16] or GC-MS.

Structural information is obtained by collision-induced decom-

position [17]. Parent ions produced by ESI are isolated and

accelerated inside the mass spectrometer using quadrupole

mass filters (see Box 1), forcing them to collide with molecules

of the bath gas (usually helium or argon). The resulting frag-

ment spectrum can be compared with fragmentation libraries

for known chemical structures. Depending on the mass ana-

lyzer used, several fragment spectra per second can be per-

formed ‘on the fly’. Using quadrupole ion traps it is further

possible to generate multiple fragment spectra of selected frag-

ments of a parent ion mass (see Box 1 for further information).

Evaluation needs expert knowledge. Complications arise

from chromatographic interference, the enhancement or sup-

pression of ionization in complex matrices, and the presence

of multiple ions [18]. This makes it vital to develop robust

and standardized protocols, and to include routine checks in

case changes in the complex mix of compounds within a bio-

logical extract are affecting the separation and analysis.

Triple quadrupole instruments allow quantification by

single-reaction monitoring (SRM). A specific mass ion - the

metabolite of interest - is selected ‘on-the-fly’ with the first

quadrupole mass filter, fragmented in the second quadru-

pole, and a corresponding fragment is then selected in the

third quadrupole. SRM provides highly specific mass-ion

traces for preselected metabolites, which can then be quanti-

fied by peak integration. It provides high selectivity and sen-

sitivity, but it can only be applied to metabolites that have

known fragmentation pathways. It can also only be applied

to a certain number of metabolites per run. 

LC-MS has mainly been used to analyze selected metabolites

[19], but it has enormous potential for metabolite profiling, as

a complement to GC-MS. High-resolution mass spectrometry

[20] (detecting 11,000 mass ions in a single spectrum) and

high-resolution chromatography [21,22] will further increase

the number of metabolites detected. The biggest challenges

are to develop an automated procedure for evaluation and

metabolite quantification from raw chromatograms similar to

those already available for GC-MS [23,24], and to discover

the identity of the huge numbers of unknown metabolites and

analytes detected by these powerful analytic platforms. This

can be achieved using structural information from the MSn

capactity of LC-MS systems [18,25], and by combining LC-

MS with Fourier-transform ion cyclotron resonance mass

spectrometry (FTICRMS) and NMR.

Fourier-transform ion cyclotron resonance mass
spectrometry
In Fourier-transform ion cyclotron resonance mass spec-

trometry (FTICRMS), extracts are directly infused into the
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Figure 1
An example of a metabolite profile. The results of quadrupole GC-QUAD-MS total ion chromatogram of different tissues of tomato (Lycopersicon
esculentum) are shown. (a-c) Complete chromatogram (12.0-50.0 min). (d-f) An illustration of sample complexity and analyte range, by a representative
expansion of the chromatograms shown in (a-c) for the region 26.3-28.2 min (highlighted). Tissues are: (a,d) tomato source leaf; (b,e) green fruit (30 days
after flowering, DAF); (c,f) red fruit (60 DAF). Major peaks in the expanded region are identified directly on the chromatogram; *indicates novel
metabolites detected within tomato fruit extracts compared to tomato leaf extracts. This figure illustrates clearly the problem of overloading, as sugars
accumulate to high levels in red fruits, demonstrating the importance of measuring every metabolite at a concentration wherein the peak area is
proportional to the metabolite concentration. Reproduced with permission from [47], which contains further details of the method and of the
metabolites identified.
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MS instrument using soft ionization techniques, to gain fin-

gerprints of the molecular ions present [26]. This technique

requires a mass analyzer of sufficient accuracy to generate

the definitive empirical formulae for several hundred ions.

For profiling, it currently has two major limitations. Firstly,

the lack of chromatography renders it incapable of distin-

guishing between isomers, because of their identical molecu-

lar masses, making unambiguous discrimination of many

metabolites impossible. Secondly, there is no documentation

of vigorous method validation, which is required to support

its utilization for metabolite analyses. These caveats aside, it

is clear that the coupling of such a machine to instrumenta-

tion allowing high-quality separation of analytes would allow

a far greater accuracy of identification - albeit at a heavy cost

in terms of sample throughput.

Nuclear magnetic resonance spectroscopy (NMR)
A radically alternative approach is to use NMR to detect and

quantify metabolites, via the magnetic properties of isotopes

of the constituent atoms. In principle, this approach will

detect an exceedingly broad range of metabolites, because

hydrogen, carbon, nitrogen, phosphorus and oxygen have

magnetic isotopes that are detectable by NMR [27,28]. The

computational analysis and chemometric software are highly

developed, enabling rapid processing of acquired spectral

data and identification of metabolites from the signals.

In practice, however, NMR detects fewer metabolites and

has a smaller dynamic range than MS-based technologies

[5]. Although around 2,700 analytes were detected in a study

of plant extracts using LC-NMR [29], fewer than 50 could be

quantified and unambiguously identified. The lower sensi-

tivity of NMR-based techniques restricts them to quantifica-

tion of the most abundant compounds [30,31] or single

classes of compounds [32,33]. In wide surveys, they provide

mainly non-quantitative information [34].

Although NMR spectroscopy is of limited utility for metabo-

lite profiling, it is important for unequivocal determination

of metabolite structure, which is one of the major bottle-

necks of metabolite profiling. Two other features also make

it invaluable for specific applications: it can be used to study

metabolite levels in vivo, albeit for only a few major metabo-

lites [27,28], and it can be used to unravel complex meta-

bolic fluxes by following labeled atoms through metabolic

intermediates at the atomic level [35]. 

Developments in UV/visible spectroscopic and
enzyme-based assays
There are innumerable methods for detecting specific com-

pounds or groups of compounds, using UV/visible light

absorbance, fluorescence or luminescence. Metabolites are

detected directly, or after chromatographic separation, or

after specific chemical or enzymatic reactions have con-

verted a given metabolite into an analyte that can be

detected spectroscopically. There are often diverse methods

available for any one metabolite, differing in sensitivity,

specificity, throughput, or in the type of equipment needed

[36]. It is difficult to base a high-throughput profiling plat-

form around such diverse procedures and instrumentation.

They nevertheless provide an important component in any

profiling platform because, for example, they allow sensitive

quantification of low-level phosphorylated intermediates

and coenzymes [37]. Spectrophotometry usually provides

sensitivity in the nanomole range, and this can be increased

100- to 1,000-fold by using enzyme-activation [38], enzyme-

inhibition [39] or cycling [37] assays, fluorimetry [40,41]

and luminometry [42].

These dedicated assays allow high-throughput analysis,

which is crucial for diagnostic purposes and for the design of

profiling experiments, an aspect of functional genomics

whose importance is frequently underestimated [43]. A labo-

ratory equipped with a simple microplate reader can assay

and calculate the results for several hundred extracts in a

day. Throughput can be increased to over 100,000 analyses

per day by combining microplate technology with robotics

[44]. The bottleneck for such approaches is then the prepa-

ration and extraction of samples.

The evolution of high-throughput assays is linked to minia-

turization to save material, costs and time. While microplate

technology is approaching saturation in terms of scaling

down, new microchip-based techniques such as microfluidic

chips that operate in the nanoliter range [45] will dramati-

cally increase throughput and also lower costs [46]. One use

will be in combination with enzymatic reactions which gener-

ate fluorogenic products that allow sensitive detection. This

will probably be restricted by the availability of enzymes and

substrates, however. Another approach will be to use apoen-

zymes (proteins that bind their substrate without further

catalysis) fused to fluorophores, allowing substrate binding

and the resulting conformational changes to be detected by

fluorescence. The creation of vast libraries of apoenzymes

covering the different parts of the metabolome could lead to a

new generation of ultra-high-throughput profiling methods.

Faith is good but controls are better
The chemical complexity of metabolites and extracts makes

checks of the extraction and analytic procedures vital.

Without them, the levels reported for a particular tissue may

be incorrect, and differences reported between tissues may

be artifacts due to differential losses in contrasting matrices.

Compared to transcripts and proteins, metabolites have high

turnover rates. It is imperative to harvest the tissue of inter-

est without subjecting it to transients - for example of chang-

ing light intensity - which could alter the levels of

metabolites (see [43]). Disruption of cellular structure leads

to mixing of metabolites with enzymes that are normally

sequestered in a different subcellular compartment or cell,

and this degrades the metabolites rapidly. It is essential to
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quench metabolism fast enough to prevent post-extraction

changes in metabolite levels (by freezing in liquid nitrogen,

for example, or squashing tissue between large metal blocks

precooled in liquid nitrogen). Given the chemical diversity of

metabolites, it is impossible to devise a method that allows

all of them to be quantitatively and totally extracted. The

procedures for extraction and extract handling must there-

fore be tuned to the biological question of interest - which

metabolites is it essential to measure with the highest possi-

ble precision? For example, to measure metabolites that are

susceptible to enzymatic breakdown, it is essential totally to

inhibit all enzyme activity (see [43]). This requires treat-

ments (such as extraction in trichloroacetic acid) that will

degrade or derivatize other metabolites. 

Extraction and analysis should be optimized and routinely

checked for specific metabolites of interest, by spiking tissue

samples with small amounts of authenticated chemical stan-

dards just prior to extraction [12]. Such ‘recovery’ experi-

ments should be repeated with each new tissue, or with each

treatment that strongly affects the spectra of enzymes or

metabolites (for example, fruit ripening or pathogen attack).

This becomes impractical when hundreds or thousands of

metabolites are being analyzed. In such cases, a generic

strategy is required for quality control. The simplest is to

mix the tissues 1:1 with a standard tissue, for which the pro-

cedures have already been validated, and to check for each

individual analyte that the level in the mixture is the arith-

metical mean of the level in the individual tissues. This

approach was used, for example, in the adaptation of GC-MS

protocols for the measurement of tomato fruits [47]. A

bonus is that it provides additional information on reten-

tion-time shifts between the standard and novel tissues, and

that it rapidly identifies differences in the dynamic range of

metabolite levels between the tissues. 

Software, and making sense of lots of data
Because metabolite profiling is cheap once the hardware

platforms have been established, it can be applied to a large

number of samples to generate huge amounts of data. The

next bottleneck is in finding ways to combine and interpret

the data. A first, apparently trivial, step is to develop a

clearly defined syntax for all the metabolites being mea-

sured. This is analogous to the establishment of a complete

list of all the genes in an organism, but is more complex

because there is no genome sequence that can act as a point

of reference, and because of the large numbers of synonyms

and baffling length of many chemical names. The first steps

towards this goal are being taken, but it is an arduous

journey and requires a combination of expert knowledge of

metabolites and of text-mining algorithms.

Databases of metabolite profiles contain a large number of

experimental data points for each parameter, and are well

suited for data mining. Analysis with statistical tools to

detect correlations and clusters drives unbiased knowledge

acquisition, by identifying unknown relationships. Analysis

via principal component analysis, individual component

analysis or machine-learning approaches can be used to

uncover important patterns or differences in metabolite

levels [4,12]. This will generate leads for further experimen-

tation and define ‘diagnostic’ metabolites that can then be

selectively measured in very high-throughput ways. 

Metabolism is notoriously incomprehensible to the non-spe-

cialist. In parallel with informatics-driven approaches, tools

are needed that place metabolite-profiling data in a biologi-

cal context. Metabolic databases (such as KEGG [48])

provide exhaustive information about the possible roles of a

given metabolite, based on information compiled from

numerous prokaryotes and eukaryotes. They are useful for

reference, but daunting for non-specialists. In such data-

bases, pathways are defined as large networks, the informa-

tion is inclusive rather than specific, and it is often unclear

which pathways or sections of them operate in which organ-

ism. Recently a first build of the AraCyc resource was pub-

lished [49,50]. This database will cumulatively assemble

information about different plant metabolic pathways, pro-

viding diagrams that show the metabolites and the genes

that encode the enzymes in each pathway. The next step is to

develop tools to display metabolite data onto diagrams of

pathways. This has been approached by Thimm et al. [51,52]

with a tool called MapMan that allows users to paint

metabolite-profiling datasets out onto existing templates, or

onto diagrams they design themselves. MapMan also places

metabolite data in a wider context, in combination with

expression-profiling datasets and, potentially, with informa-

tion about proteins and enzyme activities.

Back to biology
Measurements of metabolites provide basic information

about biological responses to physiological or environmental

changes. Metabolite profiling allows a shift from hypothesis-

driven research to the analysis of system-wide responses,

especially when it is integrated with other profiling technolo-

gies (see, for example, [53,54]). After characterizing the

response, the next task is to elucidate the regulatory mecha-

nisms. Systematic investigation of all of the metabolites

within a part, or segment, of a metabolic network provides a

powerful and unbiased strategy for identifying the site or

sites at which key mechanisms act to alter fluxes. The regu-

lated enzyme is revealed because the level of its substrate(s)

changes reciprocally to the flux through the pathway (see,

for example, [55]). Metabolite-profiling datasets can also be

chemometrically analyzed to uncover correlations between

individual metabolites and the expression levels of specific

genes [53] or proteins [54]. In the post-genomic era,

metabolite profiling will be increasingly used to phenotype

mutants and transgenic organisms, so as to define the role of

a gene. One of the major challenges in functional genomics is
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to assign functions to the many poorly or unannotated genes

[56]; metabolite profiling will provide a key for those that

encode proteins involved in metabolism.

In plant breeding, questions related to molecular composi-

tion and its implications for nutrition and health are moving

to the fore. Advances in technology are speeding up the

introduction of new diversity into breeding programs, either

via transgenic technology or by using molecular markers in

combination with wide crosses. Metabolite profiling can be

used to characterize this diversity phenotypically with

respect to its metabolite composition, providing a powerful

resource to guide breeding programs and to alert researchers

at an early stage to positive or detrimental traits. The power

of this approach will be vastly increased if it can be com-

bined with a systematic survey of the metabolite composi-

tion of the plant produce that is already on the market. As

well as providing a baseline, this will also provide a rational

framework for risk assessment via ‘substantial equivalence’:

metabolite profiling will be used to determine the metabolite

composition of novel products, which can be compared with

the range of metabolites in produce already available. Fur-

thermore, metabolic profiling will provide important input

into nutritional research, and into the public debate about

the acceptability of changes in food-production chains. 

One of the major challenges for the life sciences in the coming

decades is to move beyond detailed knowledge about organ-

isms and their responses in the laboratory or controlled envi-

ronments to understand complex interactions in natural

ecosystems and during evolution. The combination of high

throughput and breadth will allow metabolite profiling to be

integrated with ecological studies, which require large sam-

pling strategies but have often suffered from the limitations

of preconception-driven research. Metabolite profiling can

also be used to assess genotypic variation, without requiring

the prior development of molecular tools for a particular

species [4,57]. We can expect metabolite profiling to become

a key tool in a variety of fields in the years to come. 
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