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A B S T R A C T

The frontal lobes are one of the most complex brain structures involved in both domain-general and specific
functions. The goal of this work was to assess the anatomical and cognitive affectations from a unique case with
massive bilateral frontal affectation. We report the case of GC, an eight-year old child with nearly complete
affectation of bilateral frontal structures and spared temporal, parietal, occipital, and cerebellar regions. We
performed behavioral, neuropsychological, and imaging (MRI, DTI, fMRI) evaluations. Neurological and neu-
ropsychological examinations revealed a mixed pattern of affected (executive control/abstraction capacity) and
considerably preserved (consciousness, language, memory, spatial orientation, and socio-emotional) functions.
Both structural (DTI) and functional (fMRI) connectivity evidenced abnormal anterior connections of the
amygdala and parietal networks. In addition, brain structural connectivity analysis revealed almost complete
loss of frontal connections, with atypical temporo-posterior pathways. Similarly, functional connectivity showed
an aberrant frontoparietal network and relative preservation of the posterior part of the default mode network
and the visual network. We discuss this multilevel pattern of behavioral, structural, and functional connectivity
results. With its unique pattern of compromised and preserved structures and functions, this exceptional case
offers new constraints and challenges for neurocognitive theories.

1. Introduction

From classical behavioral frameworks (Mesulam, 1986) to current
neurocognitive theories (Donaghy, 2007; Stuss and Levine, 2002;
Torralva et al., 2016) and even recent network approaches (Braun et al.,
2015; Hampshire and Sharp, 2015), all conceptions of brain function
have highlighted the complexity of the frontal lobes. These structures
constitute the chief executive component in a large hierarchy of control
mechanisms (Fuster, 2001), playing critical roles in domain-general
functions, such as executive control (Badre, 2008) and abstraction ca-
pacity (Badre and D'Esposito, 2009; Diamond, 2006). Moreover, they
are key contributors to other specific functions, such as decision making
(Rushworth et al., 2011), consciousness (Lau and Rosenthal, 2011),

memory (Kurby and Zacks, 2008), language (Hage and Nieder, 2016),
and social cognition (Amodio and Frith, 2006). Its structural connec-
tions, comprising 12 pathways along a rostrocaudal axis, provide links
across the whole brain (Thiebaut de Schotten et al., 2016). Similarly,
this region includes key hubs of multiple functional networks, including
intrinsic frontal connections (Badre and D'Esposito, 2009; Diamond,
2006) and extended circuits, such as the cingulo-opercular (or salience)
network, the default mode network (DMN), the fronto-striatal network,
and the domain-general frontoparietal network (FPN) (Hampshire and
Sharp, 2015).

While the above insights have been derived from multiple ap-
proaches, no study has yet profited from the unique opportunity to
study the multidimensional impact of massive developmental
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affectation of frontal lobes. Indeed, while cases of cerebellar, temporal,
and callosal agenesis have been repeatedly documented, there seems to
be no report of this condition with preservation of temporo-posterior
structures. Partial frontal compromise has been described in cases of
temporal agenesis (Kansu and Zacks, 1979), frontal ependymal or
arachnoid cysts (Sarnat and Flores-Sarnat, 2016), hydrocephalus
(Feuillet et al., 2007), and early or adult-onset strokes (Payne and
Lomber, 2001; Price et al., 1990). Moreover, although extended pat-
terns of frontal insult have been observed in holoprosencephaly (e.g.,
Liasis et al., 2009), hydranencephaly (Segawa et al., 2007), and other
neurodevelopmental conditions (Li et al., 2016; Sarnat and Flores-
Sarnat, 2016), these are accompanied by massive damage to temporal
and posterior regions. Thus, a case of nearly complete and selective
bilateral frontal affectation represents an unprecedented source of in-
sights into this structure's functional and plastic properties, with po-
tential implications for neurocognitive modeling.

Here we report the case of GC, an eight-year-old girl with massive
frontal affectation of unknown pathogenesis and molecular basis. The
patient presents complete absence of the several frontal bilateral
structures. However, temporal, parietal, occipital, and cerebellar re-
gions seemed preserved.

2. Patient and methods

2.1. Case GC

GC was a firstborn delivered at 40 weeks following a Cesarean
section for footling breech presentation. There were no prenatal com-
plications due to infections, trauma, drug abuse, or any other chronic
disease. At birth, she was 52 cm tall and weighed 3000 g. Her mother
and grandmother suffered from depression and schizophrenia, respec-
tively, but there were no familial antecedents of neurological conditions
or brain malformations. GC exhibited cephalic support at 5months and
achieved a stable sitting position at 9months. Fontanelle closure was
slightly delayed. At 6months she exhibited symptoms of probable de-
velopmental disorder and was diagnosed with presumed perinatal hy-
poxia (although diagnosis was later nullified). She uttered her first
words at 18months, began walking at 23months, and developed
structured language when she turned 3. At this age, after presenting
motor symptomatology and the first signals of disinhibition and im-
pulsivity, she underwent her first MRI scanning (Fig. 1A–B), which
showed that the anterior fossa was almost completely filled by cere-
brospinal fluid. Accompanying neuropsychological assessments at this
stage revealed a low IQ, disinhibition, and impairments of memory,
language, and attention. However, she successfully attended a regular
kindergarden from ages 3 through 5. In 2016, having turned 5, she
began primary school but was expelled three months later due to im-
pulsive behavior and recurrent aggression to her peers. Ever since, CG's
behavior has been characterized by irritability, disruption of social
norms, and impulsivity. External (physical and familial) assistance is
constantly required to organize her behaviors. She has received occu-
pational therapy, language therapy, and physiotherapy, but only spor-
adically. The reported evaluation was done at the patient's age 8 (see
Supplement 2 for a detailed description). All participants (patient's
parents, as well as controls, see below) provided written informed
consent in agreement with the Declaration of Helsinki, and the study
was approved by the Ethics Committee of the Institute of Cognitive
Neurology (INECO).

2.2. Neuropsychological assessment

We used a systematized battery of neuropsychological functions (see
Supplement 1) to evaluate attention (visual and auditory attention);
memory encoding, language, praxis, and emotional processing. All be-
havioral tests took place at the clinical center over two consecutive
days. The evaluations were performed in 20/30-minute periods, with

breaks initiated by either the examiner or the patient. Some subtests
could not be administered due to GC's refusal to complete them. Given
that the patient refused to complete some subtests, insights into these
domains were gained through a clinical interview for frontal disorders
(Mesulam, 2000). Some of these interactions were recorded and edited
in short videos (Supplementary videos).

2.3. Imaging recordings and analysis (MRI, DTI, fMRI)

2.3.1. MRI
The first MRI recordings of GC are from the year 2011, when she

was three years old. In this session, sagittal and axial T1 and T2 images
were acquired with a 3 T Siemens scanner. In the year 2016, at the age
of eight, GC underwent another scanning session in a 3 T Siemens
scanner with a standard head coil. Structural T1 scans were acquired
with the following parameters: matrix size= 247×206×213, 1mm
isotropic, TR=2200ms, TE=2000ms and flip angle= 90. Axial T2
sequences were also obtained.

2.3.2. DTI
We implemented a HARDI scheme, with the following parameters:

(i) a total of 128 diffusion sampling directions, (ii) b-value=1000 s/
mm2, (iii) in-plane resolution of 0.647059mm, and (iv) slice thickness
of 5.85mm. To show the normal patterns of white matter tracks, we
obtained data from a control subject (an eight—year-old, right-handed
female) from the Pediatric Imaging, Neurocognition, and Genetics
(PING) project (http://pingstudy.ucsd.edu/), downloaded through the
NITRC portal (https://www.nitrc.org/). For this control subject, diffu-
sion images were acquired on a GE SIGNA HDx scanner using a diffu-
sion sequence (PING_PROTOCOL_01_21_10/4), with TE= 83ms, and
TR=13,600ms. A DTI diffusion scheme was used, and a total of 30
diffusion sampling directions were acquired. The b-value was 1000 s/
mm2. The in-plane resolution was 1.875mm. Slice thickness was
2.5 mm.

2.3.3. fMRI
As in previous works of single subject fMRI recordings (Garcia et al.,

2017), the protocol lasted 9min and 180 volumes were obtained. GC
was sedated during the procedure given her difficulties to stay as still as
possible. Several studies have shown that even under sedation, resting-
state networks are still partially preserved and can be correctly iden-
tified [for a review, see (Heine et al., 2012)]. In particular, the DMN,
FPN, and visual network are still preserved and can be identified under
light/moderate conditions (Boveroux et al., 2010; Greicius et al., 2008;
Martuzzi et al., 2010; Stamatakis et al., 2010), and even unconscious-
ness level of sedation (Boveroux et al., 2010; Martuzzi et al., 2010).

Functional networks for the control sample were extracted from
Neurosynth (http://www.neurosynth.org/), a validated on-line plat-
form (Yarkoni et al., 2011) that automatically synthesizes results from
over 11,000 neuroimaging studies. Results from this database have
been used in previous functional connectivity research (Kong et al.,
2017; Lieberman and Eisenberger, 2015; Pauli et al., 2016). The cor-
relation maps for the bilateral amygdala, FPN, DMN, and visual net-
work were based on resting-state functional connectivity analysis on
1000 subjects, provided to Neurosynth courtesy of Thomas Yeo, Randy
Buckner, and the Brain Genomics Superstruct Project (https://
dataverse.harvard.edu/dataverse/GSP) [for details regarding acquisi-
tion, preprocessing, and analysis, see (Buckner et al., 2011; Choi et al.,
2012; Yeo et al., 2011)]. Seeds used to estimate these networks were
selected from Fox et al. (2005) (MNI coordinates, x=−23, y=−70,
z= 46) for the FPN, from Williams et al. (2006) for the bilateral
amygdala (MNI coordinates, x=−26, y= 2, z=−16, and x= 22,
y=−6, z=−12), from Greicius et al. (2003) for the DMN (MNI co-
ordinates, x=−12, y=−50, z= 32), and from De Luca et al. (2006)
for the visual network (MNI coordinates, x= 6, y=−78, z=−3).
Their coordinates were introduced in the platform to generate seed-
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voxels to obtain a correlation map for each network comprising all co-
activated brain regions across the resting-state fMRI time series of the
1000 subjects. Then, each correlation map was downloaded from the
platform and overlapped in a MNI-T1 template with a threshold of
Z > 0.02 to show only the strongest associations of each network.

2.3.4. DTI preprocessing
Note that in previous single case reports of agenesis or massive

compromise assessed with DTI (e.g., Ronconi et al., 2017; Yu et al.,
2015), only the patient's DTI data was provided given that canonical
tracts present standard pathways, despite small differences. In this work
we additionally included a single case to illustrate the canonical normal
structural connections and to evidence how preserved or disrupted the
patient's structural connections are.

As in other single cases of brain agenesis or major brain compromise
(e.g., Ronconi et al., 2017; Yu et al., 2015), anatomical MRI data was
co-registered and re-sliced into the diffusion MRI data using SPM. The
co-registration of the anatomical MRI to the DTI data was not chal-
lenging as both the anatomical MRI and the diffusion MRI data share
the absence of frontal lobes. A diffusion tensor was calculated after the
diffusion MRI data was slice-orientation-corrected to the b-table. The
slice orientation correction to the b-table depends exclusively on the
orientation of the slice and on the form of the b-table, and it is not
dependent on the shape of the brain. Thus, the absence of frontal lobes
causes no problems for this correction. Anatomical MRI data was co-
registered and re-sliced into the diffusion MRI data using SPM, and the
diffusion MRI data was processed using DSI Studio (http://dsi-studio.
labsolver.org). White matter fiber tracks were obtained by using pairs
of anatomically-defined regions, where one defines a group of track-
generation seed points (TSP), and the other acts as a Region-of-Interest
(ROI) which the tracts need to touch for them to be preserved. For some
white matter fibers, we also used Region-of-Avoidance (ROA) analyses,
specifying areas which fibers cannot touch (see Basser et al., 2000;
Conturo et al., 1999; Lori et al., 2002). The same procedure was im-
plemented for GC and the control, the only difference being the location
of the TSP, ROI, and ROA, given the particularities of GC's brain
anatomy.

2.3.5. FMRI preprocessing
Preprocessing and resting-state network estimations were im-

plemented with the DPARSF toolbox (Chao-Gan and Yu-Feng, 2010), as
in previous works of our group (Abrevaya et al., 2017; Garcia-Cordero
et al., 2016; Melloni et al., 2016; Sedeno et al., 2016; Sedeno et al.,
2014; Sedeno et al., 2017; Yoris et al., 2017). The first functional
images were discarded; the rest were slice-time corrected, realigned to
the middle slice of the volume, band-pass filtered (0.01–0.08 Hz), and
finally smoothed with an 8-mm full-width half-maximum kernel. GC
showed movements no> 1.5mm (right= 0.01mm; for-
ward= 0.04mm and up=0.02), and/or rotations higher than 1.5°
(pitch= 0.01°; roll = 0.01°; yaw < 0.01°). However, to remove po-
tential variance introduced by spurious sources, we also regressed out
the six movement parameters, along with the average signal of the
ventricular CSF and white matter (Van Dijk et al., 2012). Given that all
the analyses were performed on GC's native space, images were not
normalized to any standard template – to avoid deformations due to
this transformation process.

For the analyses of the bilateral amygdala, the DMN, the FPN, and
the visual network, we located 5-mm-diamter spheres as seeds in the
left and right amygdalae (Williams et al., 2006), in the left posterior
cingulate cortex (Greicius et al., 2003), the left-intraparietal sulcus (Fox
et al., 2005), and the right lingual gyrus (De Luca et al., 2006), re-
spectively. As our analysis was performed on GC's native space, the
seeds' positions in these areas were determined by an expert neurologist
[FM]. Then, BOLD signal time-courses were extracted from the voxels
within each seed region and correlated to every other voxel in the brain
using Pearson's correlation coefficient. Next, a Fisher z-transformation

r-to-z was performed.

3. Results

3.1. Neurological and neuropsychological assessment

Poor control and regulation of behaviors were the hallmark of GC's
deficits (frontal disinhibition syndrome). No signs of frontal abulic
syndrome were evident. She could describe sensory and affective ex-
periences, and reacted to environmental events with apparent emo-
tional and cognitive congruency (e.g., pleasure, tiredness, playfulness,
anger, and basic symbolization; Supplementary Videos 1–2). Her basic
motor repertoire was characterized by perseveration, but muscle bulk,
muscle tone, posture, and strength were normal. Bilateral mirror
movements were observed alongside affected rapid alternating move-
ments. There was partial dysmetria on finger-to-nose (Supplementary
Video 3) and heel-knee-shin tasks.

Structured neuropsychological tests revealed strong executive con-
trol and abstraction deficits, accompanied by partial preservation of
other domains including language and communication, memory, spa-
tial cognition and socioemotional behaviors (Table 1, Supplementary
Videos 1–4, 8–10, Supplement 2).

3.2. Imaging

A 3 T MRI scan revealed almost complete absence of the frontal lobe
(with a large extraparenchymal cyst filled with CSF in the whole
anterior fossa). Only a minor portion of the ventral territory seemed
preserved (Figs. 1B and 2, Supplementary Video 11). Temporal, par-
ietal, occipital, and cerebellar structures, as well as mesencephalon,
pons, and medulla oblongata were present and apparently normal in
spite of some expected compression.

We investigated the structural connections (DTI) of the amygdala
and the mid-intraparietal sulcus (mid-IPS, Fig. 1C, top & bottom). Both
areas normally have prefrontal connectivity. A qualitative comparison
from an age- and gender-matched healthy control (Figs. 1D, 3) with
Fractional anisotropy showed almost complete lack of frontal fibers
between the amygdala and frontal regions (Fig. 1C, top). Only a small
and atypical group of fibers were preserved in the frontal ventral re-
gion. In the patient, atypical connections were observed in the amyg-
dala and the cuneus (Fig. 1C). Regarding the mid-IPS, the patient ex-
hibited abnormal tracts connecting posterior, occipital and even
cerebellar regions (Fig. 1C, bottom), in comparison with the classical
fronto-parietal connections observed in the healthy control (Fig. 1F).
Complementary analyses showed multiple absent tracts in the frontal
regions (Fig. 3).

We explored two fMRI functional connectivity seeds on amygdala
and the mid-IPS, the posterior part of the frontoparietal network (FPN).
Results were compared with data from the Connectome project. In
comparison with controls (Fig. 1E–F), GC evinced an almost complete
lack of connections between the amygdala and frontal regions, together
with atypical connections between the amygdala and the territory of
the DMN (cuneus, Fig. 1E). FPN connectivity showed abnormal con-
nections of posterior, occipital, and even cerebellar regions in the pa-
tient (Fig. 1E), relative to the classical fronto-parietal connections ob-
served in the healthy controls (Fig. 1F). As a complementary analysis,
we measured the DMN and the VN (Fig. 1E–F). Both networks were
unexpectedly preserved, with the DMN resembling the posterior cin-
gulate-precuneus territory (although no anterior part of the network
was present) and the VN displaying the expected spatial extension
(Fig. 1E).

4. Discussion

To our knowledge, this is the first case of nearly complete and se-
lective neurodevelopmental affectation of the frontal lobes, presenting

A. Ibáñez et al. NeuroImage: Clinical 18 (2018) 543–552

546

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org


with marked deficits in abstraction, attention, and cognitive control.
She exhibited partial preservation of sensorimotor (walking and sensory
abilities) and cognitive (consciousness, language, memory, social in-
teraction) functions. Though deficits in these domains were present,
they were much less pervasive than would be expected.
Neurodevelopmental disorders are crucial to identify critical neuro-
cognitive functions that resist neurodevelopmental adaptation (Kansu
and Zacks, 1979; Ronconi et al., 2017; Yu et al., 2015). This case sug-
gests that, despite probable developmental and neuroplastic changes,
the absence of frontal lobes inexorably impairs its classical putative
functions, namely, executive control and abstraction (Badre, 2008;
Badre and D'Esposito, 2009; Diamond, 2006; Mesulam, 1986), as well
as contextual appropriateness and behavioral self-regulation (Baez
et al., 2017; Baez et al., 2016; Burgess et al., 2009; Ibanez et al., 2017;
Ibanez and Manes, 2012; Melloni et al., 2016). Conversely, a set of
sensorimotor (basic walking and sensory abilities) and cognitive (basic
levels of consciousness, language, memory, social interaction) functions
were partially spared. Among the affected frontal areas, the anterior
insula is also involved in some of the preserved functions, such as a
consciousness, social cognition, interoception, and emotion processing
(Adolfi et al., 2017; Baez et al., 2014; Couto et al., 2015; Couto et al.,
2013; Garcia-Cordero et al., 2017; Ibanez et al., 2010; Ibanez et al.,
2013; Melloni et al., 2014; Santamaria-Garcia et al., 2017; Vicario
et al., 2017; Yoris et al., 2017). Though deficits in these domains were
clearly present, they were much less pervasive than would be expected
in the face of fronto-insular underdevelopment.

The preservation of motor activity and motor cognition may be
explained by plasticity and compensation via other motor structures,
such as the basal ganglia and the cerebellum (Leisman et al., 2014).

Instead, subtler impairments seem to reflect the absence of prefrontal
structures and their subcortical connections (Bostan et al., 2013). Also,
the sparing of basic sensory and perceptual domains may reflect the
integrity of the postero-temporal ventral perceptual stream and the
partial preservation of the ventral-lateral prefrontal cortex and its
connections (Faw, 2003).

Similarly, this case offers an alternative model for the classical
ventral and dorsal accounts of apraxia and agnosia. Here, the overall
pattern of preserved basic functions and affected complex functions
may be related to the absence of frontal mechanisms and related
working memory deficits (Pisella et al., 2006), with preserved parietal
and posterior regions specialized in lower-level operations. Similarly,
deficits in gnosis and general praxis, together with limb-kinetic apraxia
and apraxia of speech, may reflect the partial reliance of these domains
on frontal structures (Acciarresi, 2012).

GC also demonstrated preserved conscious functions. She showed
well-defined wakefulness states, with several sensory and emotional
experiences, including explicit self-other distinctions. This suggests that
pre-attentive (primary or phenomenal consciousness) and more elabo-
rate forms of consciousness were unaffected. This case supports pre-
vious evidence of preserved conscious states in hydranencephalic chil-
dren (Merker, 2007), ongoing frontal removal (Penfield and Jasper,
1954), and other conditions (Merker, 2007), undermining the recently
reedited role (Lau and Rosenthal, 2011) of the frontal lobes in con-
sciousness. Arguably, compensatory or sufficient mechanisms would
comprise the brainstem (Merker, 2007) and posterior regions (Koch
et al., 2016).

GC's long-term memory remained partially functional. Deficits may
reflect reentrant loops of fronto-posterior structures (Eriksson et al.,
2015) and related functions of attention and working memory (Kurby
and Zacks, 2008), whereas preserved patterns may depend on the
temporal cortex and other posterior structures (Kurby and Zacks, 2008).
Similarly, GC retains basic language and communicative skills. Espe-
cially noteworthy are her spared speech production skills despite the
apparent absence of bilateral Broca's areas and related motor cortices
(to our knowledge, this is the first report of such a pattern). The most
preserved domains (word repetition, word/non-word dissociation,
naming) seem to depend on the temporal stream (Leonard and Chang,
2014), which was considerably unaffected. Also, GC' exhibited spared
(though reduced) communicative intention. This suggests that ven-
trolateral prefrontal language networks in the language-dominant
hemisphere (Faw, 2003) are not critical (in the presence of neurode-
velopmental changes) when the temporo-posterior language stream is
uncompromised.

In addition, the frontal lobes seem to be implicated in social and
emotional processes (Amodio and Frith, 2006; Ibanez et al., 2018;
Ibanez et al., 2014; Ibanez and Manes, 2012; Ibáñez et al., 2017;
Stanley and Adolphs, 2013). However, the patient presented some
normal social cognition and emotions. Of course, beyond these basic
skills, explicit, reflective, and high-level social cognition (i.e., second-
order theory of mind) was impaired. Social cognition and emotions
seem to intensely depend on distributed mechanisms and networks,
with frontal lobes supporting high-level processing (Amodio and Frith,
2006; Ibanez and Manes, 2012; Stanley and Adolphs, 2013). Con-
versely, temporal, parietal, and subcortical structures (including the
basal ganglia, the amygdala, and the cerebellum) are also engaged in
different aspects of social and emotional process. The posterior DMN
has been related to social cognition (for a review, see Li et al., 2014)
and this network was functionally preserved in GC. In brief, the pa-
tient's socioemotional repertoire was preserved, probably due to the
complementary roles of temporal and parietal poles, and the distributed
nature of socioemotional processing (Feinstein, 2013).

Standard group approximations to brain function are crucial the
characterize the average brain and their neurocognitive functions.
However, classical cognitive neuroscience views about neurocognition
can be challenged by unusual individual cases. Alongside other lesion-

Table 1
Neuropsychological performance of the patient.

Cognitive domain Task Performance (%) Patient's
responses

Attention and control Cancellation 0 N
Visual letter
cancellation

0 N

Digits forward 25 Y
Digits backward 25 Y

Verbal and visual
memory coding

Word learning 39 Y
Geometrical figure
learning

0 N

Delayed verbal recall Free recall 33.3 Y
Cue recall 55.5 Y
Recognition 66.5 Y

Delayed visual recall Free recall 0 N
Cue recall 0 N
Visual recognition 0 N

Language Syllables repetition 12.5 Y
Words repetition 62.5 Y
Non-words repetition 25 Y
Sentences repetition 37.5 Y
Objects naming 60 Y
Pointing 100 Y
Discourse
comprehension

65 Y

Praxis Complex figure
(copying)

0 N

Visual perception Superimposed
figures

50 Y

Spatial orientation 12.5 Y
Line orientation 0 N

Emotions Fear 40 Y
Disgust 60 Y
Anger 60 Y
Surprise 20 Y
Sadness 40 Y
Happiness 100 Y

Percentage of correct responses in each task. The rightmost column indicates whether the
patient provided responses (task engagement) for each task. Y: yes. N: no.
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based approaches, frontal compromise offers an informative model of
development, resilience, and plasticity (Payne and Lomber, 2001).
Comparably unexpected evidence has been offered in previous reports,
including those of a man who led a completely normal life although he

lacked 75% of his brain (Feuillet et al., 2007), a woman with highly
preserved motor function despite primary cerebellar agenesis (Yu et al.,
2015), another woman with multiple preserved functions even after
two subsequent stroke affecting massive regions of her brain (García

Fig. 2. Detailed Structural results. (a–b) GC's first report at age three. MRI scans revealed no structures in the frontal lobe, covered with CFS. Weighed-T1 MRI scans showed no
recognizable frontal structures, expect for a small portion of the ventral frontal cortex. The mesencephalon, pons, and medulla oblongata were present, and so were all other lobes and the
cerebellum. Cortical gyri were relatively preserved, as were the shape and proportion of the lateral, third, and fourth ventricles. (c) GC's report at age 8: T2 axial image. (d) Structural
images at age 8: Original T1 sequence showing sagittal, axial, and coronal views of the patient's brain. (e) Multislice images at age 8: axial (from ventral to dorsal slices) and coronal (from
posterior to anterior) views. Only a small portion of the ventral frontal cortex was evident, resembling a ventrolateral portion of the orbitofrontal cortex. All images (a to e) are shown in
neurological orientation. For more views, see Supplementary Video 11.
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Fig. 3. Additional structural connections. The first three columns show DTI results of the patient and the right-side column shows results from a matched healthy control. Rows
correspond to different white matter connections, namely: whole brain, uncinate fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fascicle, ventral
stream, cortical-spinal tract, and corpus callosum. DTI shows the color-coded ascending and descending fiber, as well as the anterior-posterior fibers. A comparison with DTI trajectories
from a healthy control revealed pervasive changes in the spatial and directional spread of fibers. Coloring of the white matter fibers is based on the following color code: red: medial-
lateral; green: anterior-posterior; blue: inferior-superior. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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et al., 2016), patients who were able to restore their language skills
after left hemispherotomy (e.g., Hertz-Pannier et al., 2002), or hy-
dranencephaly patients with almost not cortices and preserved func-
tions of consciousness, emotion, and basic sensorimotor abilities
(Merker, 2007). In fact, these previous cases of preserved functions
despite damage to critical regions have provided important insights into
cognitive function and challenge current neurocognitive models and
conceptions of brain organization and plasticity. Moreover, cases of
structural underdevelopment, such as the present one, provide a pow-
erful model revealing the self-sufficiency of specific neurocognitive
mechanisms despite the absence of frontal structures. For instance, a
predominantly behavioral profile (marked impulsive behavior, deficits
of self-organization, and abstract reasoning) with partial preservation
of other domains (e.g., memory, spatial skills, language) has been de-
scribed in early stages frontal injuries (Price et al., 1990). However, this
is the first report of the multidimensional impact of massive frontal-lobe
underdevelopment with preservation of temporo-posterior structures.
Thus, our case provides important insights regarding which critical
functions resist developmental changes of the frontal lobes.

We are unable to definitively indicate whether frontal regions were
displaced, or re-represented in other regions due to early neuroplastic
changes or compensatory mechanisms. Frontal lobe affectation may
have caused retrograde degeneration of the thalamus and transsynaptic
degeneration of the cerebellum, as well as atrophy in the cerebral
peduncles and diaschisis in the cerebellum. Given that these features
were only partially present (Supplementary Fig. S1), the patient may
still have the equivalent of some frontal functions but in a different
location, triggered by neurodevelopmental changes. The partial ana-
tomical preservation of these regions as well as the functional/struc-
tural network reorganization evidenced in the fMRI and DTI results
suggests an early plastic reorganization, as observed on other condi-
tions (Sarnat and Flores-Sarnat, 2016) and motor disorders (Rowe and
Siebner, 2012).

Our study features the first report of DTI in frontal massive devel-
opmental changes. We found that fronto parietal and fronto-amygda-
line connections (as well as other frontal connections) were lost. Only a
few ventral connections (resembling a reduced section of the pre-
frontotectal pathways critical for attention (Gaymard et al., 2003))
were identifiable. Missing frontal tracts (uncinate, anterior cingulum)
and atypical interconnections of temporo-posterior pathways suggest
plastic and/or adaptive neurodevelopmental changes. Moreover, our
results also evidence that except in ventral regions, no structural con-
nections were identifiable in the remaining portions of frontal regions
(e.g., the remaining small structures above of the corpus callosum). To
our knowledge, this is the first human evidence that massive absence of
frontal tracts involves atypical reorganization of cortico-cortical and
cortico-subcortical connections.

This is also the first functional connectivity analysis in massive and
neurodevelopmental frontal reorganization. Single-case analysis of
connectivity (Dubois and Adolphs, 2016; Garcia et al., 2017; Sedeno
et al., 2014) is useful to track the re-organization of abnormal brain
networks. In line with DTI results, the anterior part of the amygdala and
mid-IPS connections were absent. Nevertheless, basic organization of
some posterior networks (amygdala, DMN) does not require frontal lobe
integrity in the presence of developmental changes. This was also and
especially true for other resting-state complexes that do not require
direct functional coupling with frontal structures (i.e., the visual net-
work). Nevertheless, a network requiring a critical role of frontal re-
gions, such as the fronto-IPS and FPN (Fox et al., 2005; Hampshire and
Sharp, 2015), presented an aberrant pattern connections. Finally,
functional connections in the remaining portions of the frontal regions
were absent, confirming the absent network activity in these regions.

This is the first assessment of this unique patient. Given the con-
tinual interruptions caused by the patient's conduct and the ensuing
delays, only the reported behavioral tasks and recordings could be
successfully completed. Though very challenging, it would be

interesting for future studies on this subject to include EEG recordings
during wakefulness and sleep as well task-based fMRI paradigms that
normally engage the frontal lobes.

We were unable to confirm the pathogenesis and molecular basis of
this case. Most neurodevelopmental disorders with absent brain struc-
tures involve neurogenetic or early compromise during embryogenesis.
Certainly, this is not a case of holoprosencephaly, as no fusion in medial
structures were identified. Neither could it be attributed to hy-
dranencephaly, given the large portions of preserved cortex and absent
phenotypic manifestations. Detailed visual inspection of MRI did not
reveal (subependymal or subcortical) heterotopies, signs of migration
alteration, schizencephaly or lissencephaly (alteration in cortical la-
mination). Nevertheless, the absence of higher resolution images pre-
cluded a definitive evaluation of these abnormalities. Only the re-
maining parenchyma in frontal locations showed fewer grooves and
convolutions (pachygyria). The absence of prenatal imaging and ge-
netic or histological data prevented clear neurodevelopmental diag-
nosis. In light of the patient's familial antecedents and phenotypical
presentation, GC's seems to be a heterogeneous condition. The devel-
oping brain is highly sensitive to hydrostatic pressure generated in-
ternally, within the ependymal cavities, or externally, within the sub-
arachnoid (meningeal) compartments (Budday et al., 2015). Hypoplasia
does not follow from a simple pathogenic process. A combination of
alterations in neural stem cell proliferation, apoptosis, neuronal mi-
gration, neuritogenesis, and connectivity alterations can be observed in
different CNS hypoplastic regions (Budday et al., 2015; Lyss et al.,
1999). During development, meningeal and nervous tissues interact by
means of mesenchymal-neuroepithelial interactions. In fact, meninges
are organized adapting to CNS morphogenesis (O'Rahilly and Müller,
2007). MRI images of the patient show the falx cerebri (sickle of the
brain) correctly developed close to frontal and caudal parietal regions
(Supplementary Fig. S2). This suggests normal development of the
frontal lobes to a certain degree, at least until week 19. Though small,
the majority of the sulci and gyri, as well as the corpus callosum, can be
recognized in the images (Supplementary Fig. S3), further suggesting
quasi-normal brain development up to week 30 (Bayer and Altman,
2006). The hypoplasic frontal lobes are displaced against the base of the
skull and the frontal horns of the lateral ventricles are collapsed. Thus,
the most plausible interpretation seems to be a prenatal intrauterine
cyst filled with CFS during embryogenesis, which induced a secondary
hypoplasia (dysplastic and underdeveloped) of the frontal lobe (for
further considerations, see Supplementary discussion, Section 4).

5. Conclusion

Massive insults of the frontal lobes in early developmental stages
can prove devastating for neurocognitive functions. This case demon-
strates that even in the almost complete absence of frontal lobes, basic
sensory, somatosensory, motor, emotional, and cognitive functions can
be partially preserved. Conversely, critical frontal functions indexing
domain-general skills (executive control and abstraction) were sys-
tematically affected. This profile of preserved and affected domains was
supported by the specific pattern of brain structural and functional
connections. Thus, even in the presence of functional compensation and
neurodevelopmental plasticity, the frontal lobes seem critical for com-
plex actions and thoughts demanding attention, abstraction, and con-
trol. Exceptional single cases like this one provide a challenge for cur-
rent frameworks cutting across clinical science and current
neuroscientific theories.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.02.026.
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