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Chronic liver diseases include a broad group of hepatic disorders from different etiologies
and with varying degrees of progression and severity. Among them, non-alcoholic fatty
(NAFLD) and alcoholic (ALD) liver diseases are the most frequent forms of expression,
caused by either metabolic alterations or chronic alcohol consumption. The liver is themain
regulator of energy homeostasis and metabolism of potentially toxic compounds in the
organism, thus hepatic disorders often promote the release of harmful substances. In this
context, there is an existing interconnection between liver and brain, with the well-named
brain-liver axis, in which liver pathologies lead to the promotion of neurodegenerative
disorders. Alzheimer’s (AD) and Parkinson’s (PD) diseases are the most relevant
neurological disorders worldwide. The present work highlights the relevance of the
liver-related promotion of these disorders. Liver-related hyperammonemia has been
related to the promotion of perturbations in nervous systems, whereas the production
of ketone bodies under certain conditions may protect from developing them. The capacity
of the liver of amyloid-β (Aβ) clearance is reduced under liver pathologies, contributing to
the development of AD. These perturbations are even aggravated by the pro-inflammatory
state that often accompanies liver diseases, leading to the named neuroinflammation. The
current nourishment habits, named as Western diet (WD) and alterations in the bile acid
(BA) profile, whose homeostasis is controlled by the liver, have been also related to both
AD and PD, whereas the supplementation with certain compounds, has been
demonstrated to alleviate the pathologies.
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1 LIVER DISEASES

Chronic liver diseases include a broad group of hepatic disorders from different etiology, in which a
characteristic progression leads to severe stages such as cirrhosis or liver cancer. With the appearance
of Sovaldi for treating hepatitis C (HCV) and the subsequent reduction of its incidence (Lam et al.,
2014), non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) have become the
main cause of chronic liver pathologies.
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NAFLD, which is newly noted as metabolic-associated fatty liver
disease (MAFLD) due to its metabolic etiology, has become a major
health problem in the world. Younossi and others who have
estimated its prevalence to be 20–30% worldwide, expect a
steeper increase within next years due to current lifestyle habits
and western diet (WD) (Younossi et al., 2018). NAFLD/MAFLD
consists of a clinical syndrome that comprises a group of disorders
characterized by a slow progression, where the disruption of lipid
homeostasis causes a benign condition named steatosis or fatty liver
(NAFL). NAFL development can be followed by second hits that
contribute to the aggravation of the pathology: Oxidative stress by
reactive oxygen species (ROS), endoplasmic reticulum stress,
mitochondrial dysfunction, and lipid toxicity. NAFL aggravation
may lead to non-alcoholic steatohepatitis (NASH), characterized by
cell death, inflammation, and fibrosis development (Simon et al.,
2020b). Cirrhosis and an increased risk of developing liver cancer
occur at later stages of the spectrum of pathologies associated with
NAFLD/MAFLD (Gao and Tsukamoto, 2016). Altogether, cirrhosis
and liver cancer represent around 3.4% of overall deaths, with 1.7
patients affected worldwide (Saviano and Baumert, 2019).

Additionally, the exposure to toxic compounds such as drugs or
alcohol can induce hepatic pathologies. In this context, ALD has
become the leading cause of liver disease in many countries such as
the United States where alcoholism affects around 61% of its
population with a 10–12% people diagnosed as heavy drinkers
(Hussen et al., 2018). Chronic alcohol consumption of 30–50 g/
day causes ALD, with steatosis in 90% patients who drinkmore than
60 g/day and cirrhosis in 30% of cases (Mathurin and Bataller, 2015).
The exceeded hepatic capacity of metabolizing xenobiotics and the
subsequent exhaustion of antioxidant mechanisms in the hepatocyte
leads to the development of the pathology. This pathology is commonly
characterized by a mitochondrial dysfunction, glutathione depletion
and hepatocyte death (Ramachandran et al., 2018).

Altered hepatic homeostasis during liver pathologies may
promote either the release of several compounds or their
accumulation in the organism (Romero-Gómez et al., 2015).
The systemic circulation can make those compounds reach
other organs leading to perturbations. Considering the existing
liver-brain connection, several neurological disorders have been
widely linked to liver pathologies, in which their presence is often
associated (Beraza & Trautwein, 2008). (Poulose et al., 2017;
Wahl et al., 2019; Popa-Wagner et al., 2020).

2 NEURODEGENERATIVE DISORDERS

Apart from liver diseases, pathologies that affect neural system
present one of the biggest challenges for public health and
current medicine. They account for an elevated worldwide
incidence and prevalence that, like liver pathologies, grow rapidly
due to the long-life expectancy. Neurodegenerative disorders are also
characterized by a progressive, irreversible, and chronic degeneration
of the central and peripheral nervous systems (CNS and PNS,
respectively) (Villemagne et al., 2013; Kalia & Lang, 2015). The
World Health Organization (WHO) has estimated that by 2050
more than 130 million people will be affected by neurodegenerative
illnesses, with Alzheimer’s disease (AD) and Parkinson’s Disease
(PD) as the two most prevalent disorders (Nichols et al., 2019).
Although aging is considered the main risk factor for
neurodegenerative disorders, environmental factor and lifestyle
have also an important influence on the risk of late-onset forms
of the diseases (Wahl et al., 2019; Popa-Wagner et al., 2020).

AD affects approximately 40 million people worldwide and it is
expected to be doubled by 2030. AD is the sixth highest cause of
mortality in the United States, and it is clinically characterized by the
progressive cognitive decline, impaired learning ability and memory
function, as well as mood disturbances (Brodaty et al., 2011; Cheng
et al., 2020). Although the sporadic form is the most prevalent, AD
has a strong genetic component and several research lines have been
focused on identifying genetic causes and risk factors in AD.
Polymorphism in the apolipoprotein E gene seem to be the
major genetic risk factor for the late-onset AD. However, rare
early-onset autosomal dominant forms are also known (König
and Stögmann, 2021). This pathology is considered as
multifactorial, where pathophysiological brain changes are related
to the accumulation of misfolded proteins. Particularly, the
characteristic neuronal loss involves two different molecular
mechanisms: the extracellular insoluble senile plaques mainly
composed by amyloid-β peptide (Aβ) and intraneuronal
neurofibrillary tangles formed by phosphorylated Tau (Gulisano
et al., 2018). Although vascular factors play a role, ROS production
and neuroinflammation are considered as primary contributors to
AD pathogenesis, some evidence points to the liver as a possible
origin of Aβ deposits observed in the disease (Bassendine et al., 2020;
Knopman et al., 2021). Pathological Aβ accumulation observed in
AD may be due to an impaired hepatic Aβ degradation due to
impaired balance featuring accumulation of amyloid fibrils of α-
synuclein (Lam et al., 2021;Maarouf et al., 2018) suggesting that liver
may play a key role in the onset and progression of AD (Section 4).
Conversely, viral infection with Human Herpesvirus 1/2,

GRAPHICAL ABSTRACT | The role of the liver in the metabolism of
toxic compounds and in Aβ and α-synuclein clearance is related to
neurological disorders such as Alzheimer’s Disease (AD) and Parkinson’s
Disease (PD) development, although the supplementation with certain
compounds may exert a protective effect. The current Western diet and
alterations in the BA profile, whose homeostasis is controlled by the liver, have
been also related to both AD and PD.
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Cytomegalovirus or HCV have also been associated with dementia
and AD in patients who are genetically susceptible (Balin &Hudson,
2018; Bassendine et al., 2020). Otherwise, epidemiological studies
have demonstrated that other pathologies such as metabolic
syndrome (MetS) or type 2 diabetes (T2DM) are also important
risk factors for AD development in aging (Stoeckel et al., 2016; Bello-
Chavolla et al., 2019).

The second most common neuropathy is PD, with a global
prevalence estimated around 2% of the worldwide population
over 60 years and rising to 3% in those over 80 (Tysnes &
Storstein, 2017). Due to the increasing life expectancy, PD
prevalence and incidence are growing and, like AD, expected
to be doubled by 2030 (Lee & Gilbert, 2016). The most diagnosed
cases represent idiopathic or sporadic PD, while familiar or
genetic forms are less frequent, accounting for less than 15%
of total cases (Balestrino & Schapira, 2020). The gradual
dopaminergic degeneration of substantia nigra pars compacta
has been considered to be the main hallmark of PD (Kish et al.,
1988). However, the presence of Lewy bodies composed by α-
synuclein may also damage other brain regions in early stages of
the disease in both patients with PD and animal models (Braak
and Tredici, 2017; Vegas-Suarez et al., 2019; Gómez-Benito et al.,
2020; Paredes-Rodriguez et al., 2020). Adding to this, ROS
production, metabolic alterations and impaired mitochondrial
activity also play a relevant role during PD pathogenesis and the
vulnerability of dopaminergic neurons (Puspita et al., 2017;
Zhang et al., 2018). These processes can be stronger in PD
cases caused by genetic mutations and, glucocerebrosidase
(GBA1) mutations represent the most common genetic risk
factor for PD (Garcia-Sanz et al., 2017; Garcia-Sanz et al.,
2021). Diabetes and PD may share some mechanism. Thus,
increased striatal oxidative stress and altered dopamine
neurotransmission leading to nigrostriatal neurodegeneration
were observed in both diabetic and parkinsonian mice (Pérez-
Taboada et al., 2020). Like AD, infections with either HCV or
other agents such as influenza or pneumonia have also been
related with the onset of the disease as triggers of chronic
microglial inflammation (Alam et al., 2016; Cocoros et al.,
2021). Viral infections (Beatman et al., 2015), alterations in
gut microbiota often linked with liver diseases (Bajaj et al.,
2012; Keshavarzian et al., 2020) or neuroinflammation and
intestinal inflammation, can induce α-synuclein
overproduction with the subsequent microglial over-reactivity.

Considering the link between liver and brain, the present
review aims to highlight the main contributions of this organ to
the development of neuropathies. Moreover, considering the
effect of diet-induced metabolic alterations over chronic liver
pathologies, the relationship between neurological disorders and
food intake is also reviewed in this work.

3 HEPATIC RELEASED COMPOUNDS AND
NEUROLOGICAL DISORDERS

Although the liver maintains nutrient and energy homeostasis in
the organism, the development of liver pathologies is often
accompanied by the release of certain compounds that lead to

associated morbidities. Herein, several metabolites participate in
the development of neurogenerative disorders.

One of the most characterized hepatic compounds is
ammonium, whose excess is produced as an imbalanced
homeostasis by either: An increased glutaminase (GLS)-
mediated production through glutamine degradation (Romero-
Gómez et al., 2009; Simon et al., 2020a) or reduced scavenging by
decreased glutamine synthetase (GLUL) expression (Soria et al.,
2019) or urea cycle activity (De Chiara et al., 2018). In the brain,
astrocytes are the main contributors of glutamine synthesis by
removing the cation from the media, thus leading to a cascade of
neurochemical events that often cause hepatic encephalopathy
(HE) (Butterworth, 2013). Moreover, ammonia accumulation
generates free radicals that promote post-translational
modifications, such as nitrotyrosination or nitrosylation, on
certain brain proteins (Oja et al., 2017). The first one,
nitrotyrosination, often leads to a loss-of-function or the
inhibition of tyrosine phosphorylation (Picón-Pagès et al.,
2019), whereas nitrosylation consists of the binding of a nitric
oxide (NO) molecule that modulates the catalytic activity of the
enzyme (Kumar et al., 2010). Herein, cyclins are the most
frequent protein modified thus inducing cell death (Kumar
et al., 2010).

Microglial and astroglioma cells have also been characterized
to promote phagocytosis and endocytosis under ammonia
accumulation, with subsequent modification in cytokine
secretion and an increased lysosomal hydrolases activity
(Atanassov et al., 1995). The release of hepatic pro-
inflammatory cytokines also promotes the development of
neuropathologies such as HE in patients with cirrhosis (Seyan
et al., 2010). In this context, neuroinflammation is a common
feature that accompanies liver failure, which leads to the reactivity
of microglia and increases the synthesis of other pro-
inflammatory cytokines, promotes the recruitment of
monocytes, and even alters the blood-brain barrier (BBB)
permeability (Butterworth, 2013). The existing interconnection
between liver and gut has also been characterized by many
researchers such as Bajaj and others, who have correlated poor
cognition and endotoxemia in liver disease patients who had
previously developed HE (Bajaj et al., 2012).

Under calorie restriction conditions there is an enhanced β-
oxidation that promotes the synthesis of ketone bodies.
Otherwise, these compounds are also highly produced in
ketogenic diets consisting of a macronutrient distribution of
55–60% fat, moderate proteins, and very low carbohydrates
(Roehl et al., 2019). Interestingly, ketone bodies have been
reported to have an effect over the brain metabolism and
function in the development of neurodegenerative disorders
(Jensen et al., 2020). Ketone bodies can enter the BBB through
the action of monocarboxylate transporters (Pierre and Pellerin,
2005) to be converted into acetyl-CoA in neuronal and glial cells.
Remarkably, a study from Henderson and co-workers has
demonstrated in a clinical study that the supplementation with
the ketogenic compound AC-1202 prevented AD development in
a cohort of 152 (Henderson et al., 2009). Related to this, ketone
bodies might have beneficial effects by improving mitochondrial
efficiency in neuronal cells, supplementing the normal glucose
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reliance of the organ (Henderson, 2008). Moreover, additional
studies point out their relevance in preventing AD as well, by
either promoting hepatic ketogenesis or supplementing the
patients with these metabolites (Thickbroom, 2021).
Particularly, the ketone bodies-mediated inhibition of histone
deacetylases (HDAC) may promote an enhanced antioxidant
production while improving the mitochondrial oxidative
phosphorylation and ROS reduction (Yang et al., 2019).
Herein, Huang and others have characterized that the ketone
body β-hydroxybutyrate exerts if effect over HDAC in microglial
cells (Huang et al., 2018). Otherwise, ketone bodies can be
produced not only in the liver, but also in astrocytes as several
studies highlight. This fact may imply that astrocytes promote
ketogenesis in a cytoprotective way (Guzmán & Blázquez, 2001)
whereas microglial-mediated effect of ketone bodies may also
protect from neuropathologies.

4 DISRUPTED AMYLOID BETA (AΒ)
METABOLISM DURING
HEPATOPATHOLOGIES
The liver plays a key role in the removal of toxic compounds and
exogenous antigens; therefore, liver pathologies affect the
development of neurological disorders such as AD or PD.
Specific virus display neurotropic effects particularly affecting
the substantia nigra and promoting the aggregation of α-
synuclein (Bosanko et al., 2003). The development of liver
pathologies also provokes depletion in the hepatic immune
response that aggravates the phenotype exerted by viral
infections.

Regarding the clearance of Aβ from the system, there are three
main pathways that mediate the efflux of this molecule from the
brain to periphery and accounts for approximately about 50% of
total brain clearance (Bassendine et al., 2020). The brain uptake of
circulating Aβ is mediated by specific receptors in brain
endothelium (Shibata et al., 2000), while lipoprotein receptor
protein-1 (LRP-1) seizes around 70–90% of circulating Aβ in the
liver (Sagare et al., 2007). The reduced Aβ deposits detoxification
during liver pathology increased the circulating levels of the
compound, leading to accumulation in the brain and
promoting the appearance of plaques and derived symptoms
(Estrada et al., 2019). Functional LRP-1 is located in hepatic
endothelial cells from the sinusoid, and it contributes to the rapid
removal of its blood ligands, showing specificity for Aβ. However,
added to the reduced capacity in Aβ clearance, alterations lead to
a breakdown of the BBB function as it also regulates the tight
junction proteins in the endothelial cells in the brain barrier
(Zhao et al., 2016).

As aforementioned, the hepatic capacity in eliminating toxic
substances is decreased in liver pathologies causing the
aggravation of neurological disorders such as AD (Estrada
et al., 2019). Under a hepatic pro-inflammatory state
frequently observed in liver pathologies, the reduced LRP-1-
mediated Aβ uptake is correlated with increased serum IL-6
levels and circulating Aβ (Wang et al., 2017). AD development
is inversely correlated to the peripheral metabolism of Aβ (Lam

et al., 2021) but directly related to the amount of circulating
plasma lipoproteins, with triglyceride-rich in particular. Indeed,
the possibility of formatting triglyceride-rich lipoprotein-Aβ
complexes and their extravasation may lead to cerebral
capillary amyloid angiopathies (Matsubara et al., 2004). Thus,
the number of circulating triglycerides and cholesterol is
correlated with Aβ levels rather than other liver markers such
as transaminases (Bosoi et al., 2021). Amyloidosis is also
accelerated in atherogenic diets in an animal model of pre-
symptomatic AD consisting of amyloid precursor protein/
presenilin 1 (APP/PS1) mice. The parenchymal retention of
triglyceride-rich lipoprotein-Aβ complexes promote a pro-
inflammatory phenotype that exacerbates AD (Ettcheto et al.,
2016). Supporting this concept, PD could start to be considered as
a systemic amyloidosis featuring accumulation of amyloid fibrils
of α-synuclein rather than localized amyloidosis as it might
happen in AD (Araki et al., 2019). Cholesterol may be also
involved in the pathogenesis of PD. Thus, previous studies
from our laboratory have shown that N370S GBA1 mutation
alters the lysosomal enzymatic activity leading the accumulation
of glucosylceramide and of cholesterol which are related to the
expression of multilamellar bodies in fibroblasts derived from
patients with PD (García-Sanz et al., 2017; García-Sanz et al.,
2021).

Regarding AD, Bossio and others recently demonstrated that a
high-fat diet (HFD) modulates hepatic Aβ and cerebrosterol
metabolism using a triple transgenic mouse model of AD
(Bosoi et al., 2021). Cerebrosterol is the principal way of
eliminating brain cholesterol and once produced in brain, the
liver is the main organ responsible for cerebrosterol
glucuronidation or sulfation by eliminating it through bile
acids and urine (Björkhem, 2006). The shift that occurs during
HFD from lipogenesis towards glucose production leads to a
disruption of the metabolism of both Aβ and brain cholesterol
(Tang et al., 2016).

5 WESTERN DIETS: LIVER METABOLISM
AND NEURODEGENERATIVE DISORDERS

The study from Bosoi highlights the liver as the main organ
responsible for systemic metabolic homeostasis. Therefore, and
considering the relationship between liver and neurologic
pathologies, it is expected that dietary habits have an impact
over both type of diseases. Neural circuits that are involved in
feeding pattern show a precise coordination with brain centers
that modulate the energy homeostasis and the cognitive function
(Gómez-Pinilla, 2008). The ingestion of food triggers the release
of peptide hormones such as insulin or glucagon-like peptide 1
(GLP-1) (McNay, 2007) that regulate system metabolism.
Particularly, GLP-1 reaches the hypothalamus and
hippocampus in order to activate signal-transduction pathways
that promote synaptic activities and contribute to learning and
associative and spatial memories (During et al., 2003).
Nourishment habits and physical activity have also an impact
over the brain-derived neurotrophic factor (BDNF) and insulin-
growth factor-1 (IGF-1) production. BDNF is related to
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metabolism and synaptic plasticity, whereas IGF-1 supports
nerve growth differentiation, synaptic plasticity and
neurotransmitter synthesis and release. The development of
hyperglycemia and insulin resistance, which often have a
metabolic origin due to bad dietary habits, leads to a
reduction of IGF-1 production and an impairment of cognitive
function (Anlar et al., 1999; Gómez-Pinilla, 2008; Torres Aleman,
2012; Herrero-Labrador et al., 2020).

The development of liver pathologies impairs hepatic Aβ
clearance so that liver diseases, especially chronic ones, are
often linked to neuropathologies. Particularly NAFLD is
associated with a lower cognitive performance and affecting
several types of memory (Celikbilek et al., 2018), where the
metabolic perturbations that occur imply an imbalance
between lipid-clearing and –increasing mechanisms. Herein,
fatty acid composition has reported to have an effect over
cerebral functionality of plasma-derived apolipoprotein B
(ApoB)-containing lipoproteins (Takechi et al., 2010).
Moreover, nutritional changes have been widely reported to
have an impact over NAFLD development (Perdomo et al.,
2019). Macronutrient composition of a diet associated with
NAFLD often show common features: Higher saturated fatty
acids (SFA) and lower polyunsaturated fatty acids (PUFA), fiber
and vitamins C and E (Musso et al., 2003). Among PUFA, omega-
6-rich diets promote NAFLD development (Cortez-Pinto et al.,
2006) whereas omega-3, together with other nutrients such as
vitamins C and K or folates, inversely correlates to NAFLD (Han
et al., 2014). It is evident that an excessive calorie intake promotes
obesity development and a subsequent increased risk for NAFLD,
while glucose or other simple sugars consumption also promote
hepatic lipogenesis causing steatosis and triggering NAFLD
(Wehmeyer et al., 2016).

Furthermore, current WD often avoid the recommended
nutrients to prevent hepatopathologies: MUFAs, omega-3
PUFAs, vegetable proteins, pre- and pro-biotics, resveratrol,
coffee, taurine, and choline (Perdomo et al., 2019). Current
WD may be the main contributor of the increasing incidence
of NAFLD, which has been additionally pointed out as another
possible trigger of AD (Wiȩckowska-Gacek et al., 2021a;
Więckowska-Gacek et al., 2021b). Although WD-associated
nourishment pattern does not have a unified list of the
components, current different WDs share a SFA content
around 35–60% and elevated amounts of simple sugars such
as sucrose or fructose. Ultra-processed food, refined ingredients
and simple carbohydrates are other common features of this diet.
The existing gut-liver-brain axis is also affected byWD, as the gut
functionality is altered by reducing the correct absorption of some
required nutrients and vitamins (McMillin et al., 2015). Related to
the brain and nervous system, hippocampal functionality can be
perturbed by the fat and sugar present in WD. Hippocampal-
dependent learning and memory are reduced with a high-SFA
and sugar-containing diet in both rodents (Abbott et al., 2019)
and patients (Attuquayefio et al., 2017) which are characterized
by a reduction in long-term potentiation (Jena et al., 2018).
Additionally, the size of hippocampus has been reported to be
decreased underWD in 60–64 old men, showing a higher amount
of phosphorylated Tau proteins associated to neurofibrillary

pathologies such as AD (Xu et al., 2017). WD also accelerates
the appearance of Aβ (Wiȩckowska-Gacek et al., 2021a), while
synaptic plasticity may be also reduced by the WD-associated
reduction in acetylcholine, dopamine, gephryin, serotonin,
synaptophysin, or BDNF (Jena et al., 2018).

Moreover,WD also induces a lipid accumulation in adipocytes
that meanwhile induces a pro-inflammatory state that further
aggravates neuropathologies. There is an increased secretion and
activity of peripheral pro-inflammatory cytokines by adipocytes
(Ali et al., 2020), while gut dysbiosis of gut microbiome triggered
by WD contributes to further enhancing the inflammation
(Dabke et al., 2019). Related to this, the composition of
circulating free fatty acids is of relevance as they can activate
pro-inflammatory toll-like receptors TLR-2 and TLR-4 to activate
inflammation pathways and promote the secretion of cytokines:
tumor necrosis factor (TNF), interleukin 1β and 6 (IL-1β and IL-
6) or macrophage chemoattractant protein-1 (MCP-1) among
others (Więckowska-Gacek et al., 2021b).

6 BILE ACIDS IN BRAIN FUNCTION

Bile acids (BA) are mainly synthesized in the liver in two
pathways by the different cytochrome P450 isoforms (CYP)
and using cholesterol as substrate. The classic pathway implies
the action of CYP7A1 which catalyzes cholesterol hydroxylation
into 7-α-hydroxycholesterol, being further hydroxylated by:
CYP8B1 producing cholic acid (CA) as product or CYP27A1
producing chenodeoxycholic acid (CDCA) as final product. The
other pathway involves CYP27A1 and CYP7B1 for CDCA
formation. Furthermore, there is an additional extra-hepatic
neural pathway that converts brain cholesterol by the action of
CYP46A1 and CYP39A1 (Lorbek et al., 2012).

During WD there are dysregulated BA homeostasis and
dysbiosis that contribute to systemic inflammation, microglial
reactivity, and reduced neuroplasticity. In the previously cited
work from Jena and others in 2018 a reduction in Bdnf mRNA
expression and postsynaptic density protein 95 (PSD-95),
markers of brain functionality, were found reduced in both
brain and microglia (Jena et al., 2018). BA also take part in
the clearance of circulating Aβ, whose uptake is realized by the
LRP-1 and the low-density lipoprotein receptor (LDLR) that are
highly expressed in hepatocytes (Kanekiyo and Bu, 2014).
However, perturbations in BA have an effect over
neuropathologies as lithocholic acid (LCA) has been detected
in brain during an experimental model of multiple sclerosis
(Naqvi et al., 1969), whereas elevations in of serum BA have
been linked to neuropathological states such as HE. They have
been also found in brain tissue and cerebrospinal fluid (Bron
et al., 1977). Other bile acids (CA, DCA, and CDCA) modulate
neurotransmitters such as N-methyl D-aspartate (NMDA) or γ-
amino-butyric acid (GABA), acting through ligand-gated ion
channels for inhibiting their action (Schubring et al., 2012).
CA, CDCA and LCA decrease respiratory timing while DCA
influences respiratory patterns (C. Zhao et al., 2014). Under
elevated BA there is a inhibition of hepatic glucocorticoid
clearance and this causes a significant disruption in the
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hypothalamic-pituitary-adrenal (HPA) axis (McNeilly et al.,
2010). The opening of the BBB leads BAs to enter the brain
via the bile acid transporter apical-sodium dependent bile acid
transporter (ABST) and, related to this, TCA and CDCA have
been reported to activate the glucocorticoid receptor (GR) in
neurons (McMillin and DeMorrow, 2016). In the context of BA
metabolism, the signaling of foresaid X-receptor (FXR) is
essential, as its deletion impairs memory and motor
coordination leading to changes in GABA; glutamate,
norepinephrine and serotonin neurotransmission (F. Huang
et al., 2015).

BA have been widely linked to neurological disorders such as
AD or PD. In the context of AD, an altered profile has been found
in mild cognitive impairments that happen prior to AD (Nho
et al., 2019). Surprisingly, the supplementation with certain
compounds has appeared to alleviate the pathology. The
administration of tauroursodeoxycholic acid (TUDCA) and
ursodeoxycholic acid (UDCA) have been reported to suppress
Aβ-induced apoptosis in neurons by modulating the E2F-1/P53/
BAX pathway (Rodrigues et al., 2000). The determination of
glycoursodeoxycholic acid (GUDCA) could be of interest for the
prediction of the onset of AD or amnesic mild cognitive
impairment (Mapstone et al., 2014). Similarly, the
metabolomics profiling of BA also seems to be a potential
biomarker for PD (Graham et al., 2018). Metabolic alterations
have been found in plasma of patients with familiar and
idiopathic PD (Yakhine-Diop et al., 2020), where under a BA
disruption microbiota converts them into toxic derived
compound that promote PD pathogenesis (Li et al., 2021). The
supplementation of UDCA reduces the development of the
disease in preclinical models of PD (Mortiboys et al., 2015).
Finally, BA have been also linked to other neurological disorders
such as HE, cerebrotendinous xanthomatosis, traumatic brain
injury, stroke, and amyotrophic lateral sclerosis (McMillin &
DeMorrow, 2016).

7 CONCLUSION

This work evidences the involvement of liver diseases in the
development and progression of neurodegenerative disorders.
The release of toxic compounds by the liver aggravates both AD
and PD development, whereas ketogenesis may lead to their
prevention. The role that the liver has in the metabolism of toxic
compounds is of relevance in Aβ clearance, as liver dysfunction
promotes the circulating levels of this compound. The
maintenance of the BBB integrity is also crucial for
protecting the nervous system against degeneration, as
impairments in the barrier are related to the presence of

certain compounds in the brain. In this context, brain BA are
related to neurological disorders although the supplementation
with certain compounds has been demonstrated to exert a
protective effect. Finally, the nourishment habits are of
relevance as they may alter liver physiology thus promoting
the appearance of pathologies such as NAFLD, contributing to
neurological disorders.
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