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Abstract: Direct-acting antivirals (DAAs) have recently revolutionized the eradication of chronic
hepatitis C virus (HCV) infection. However, the effects of DAAs on the development of hepatocellular
carcinoma (HCC) remain unknown. Therefore, the present study aimed to investigate immune
responses to HCC influenced by DAAs in HCV-infected patients and elucidate the underlying
mechanisms. We compared immune responses to 19 different HCC-related tumor-associated antigen
(TAA)-derived peptides and host immune cell profiles before and 24 weeks after a treatment with
DAAs in 47 HLA-A24-positive patients. The relationships between the different immune responses
and phenotypic changes in immune cells were also examined. The treatment with DAAs induced four
types of immune responses to TAAs and markedly altered host immune cell profiles. Prominently,
reductions in the frequencies of PD-1+CD4+ and PD-1+CD8+ T cells by DAAs were associated with
enhanced immune responses to TAAs. The HCV F protein was identified as contributing to the
increased frequency of PD-1+ T cells, which may be decreased after eradication by DAAs. DAAs
altered the immune responses of patients to HCC by decreasing the frequency of PD-1-expressing
CD4+ and CD8+ T cells.
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1. Introduction

Hepatocellular carcinoma (HCC) is an aggressive hepatic malignancy with poor prog-
nosis. The chronic progression of hepatitis C virus (HCV) infection, which can develop
into chronic liver disease such as hepatitis and cirrhosis, has been identified as the high
risk for occurrence of HCC [1–3]. Some studies even point out the possibility of its direct
carcinogenic effects [1].

The combination of two or three direct-acting antivirals (DAAs), which are very effec-
tive for viral eradication, has been shown to cure more than 90% of HCV-infected patients,
as well as patients with no response to prior treatment, such as interferon (IFN)-based
therapy [4,5]. Previous reports suggest that DAAs treatment can induce broad phenotypic
change in immune T cells such as the expression of molecular PD-1 and CTLA-4 [6,7].
In recent years, the concept of immunological scarring, which means chronic infection
with HCV might leave lasting effects on the immune system, is being acknowledged [7,8].
These compromised immune mechanisms must interact with the chronic inflammation of
persistent infection, thus susceptibility to malignancy.

In cases where HCV RNA was successfully eliminated by interferon therapy, hep-
atitis subsided and the development of hepatic fibrosis and hepatocarcinogenesis were
suppressed [9]. Although there are some negative reports on whether HCV elimination by
DAAs therapy is as effective as IFN therapy in suppressing hepatocarcinogenesis [10–12],
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there are increasing reports that it is as effective as IFN therapy in suppressing hepatocar-
cinogenesis [13–15]. Therefore, the DAAs might influence and even amplify HCV-induced
immune changes and affect anti-tumor immunity.

However, the detailed mechanism by which viral elimination achieved by DAAs
treatment reduces the risk of developing HCC remains unclear. Furthermore, it has been
reported that changes in cell surface markers of T cells occur after viral elimination [7,16],
but it is not clear how the changes in host immune cells caused by removal of chronic viral
antigen stimulation affect the immune response to HCC.

In the present study, to elucidate the influence of DAAs for the immune response
to HCC in HCV-infected patients and the mechanism underlying it, we performed a
comparative analysis from two aspects: immune responses to HCC-related TAA-derived
peptides and host immune cell profiles before and 24 weeks after treatment.

2. Results
2.1. Patient Profile

To investigate the influence of the treatment with DAAs on immune responses to HCC,
the PBMCs of 47 chronic HCV-infected patients who received ASV and DCV were collected
before and 24 weeks after treatment. The baseline characteristics of these patients before
treatment are listed in Table 1. Of the 47 patients in this study, 6 had a history of HCC prior
to treatment with DAAs.

Table 1. Clinical characteristics of HCV-infected patients before treatment with DAAs.

Participants (N = 47)

Characteristic
DAAs for 24 Weeks

SVR (n = 44) Non-SVR (n = 3) p Value *

Age, years median ± SD 65 ± 9.66 65 ± 6.25 NS
Sex, M/F 15/29 0/3 NS
BMI (kg/m2), median ± SD 22.48 ± 3.48 23.15 ± 0.51 NS
HCV RNA, median ± SD 6.0 ± 0.64 6.2 ± 0.15 NS
IL28B, N (%) NS
Major 22(50) 2(67)
hetero 21(48) 1(33)
minor 1(2) 0(0)
With cirrhosis, N (%) 19(43) 2(67) NS
With HCC, N (%) 6(14) 0(0) NS
L31 (NS5A) (+), N (%) 1(2) 0(0) NS
Y93 (NS5A) (+), N (%) 0(0) 2(67) 0.003
ALT(IU/L) 48.9 ± 34.58 48.67 ± 24.01 NS
AST(IU/L) 53 ± 34.60 38.7 ± 15.04 NS
HCV treatment naive, N (%) 14(32) 1(33) NS

Abbreviations: SVR, sustained virologic response; IL28B, interleukin-28B gene; NS5A, nonstructural protein 5A;
ALT, alanine transaminase; AST, aspartate transaminase; AFP, alpha-fetoprotein; HbA1c, glycated hemoglobin;
(+), mutation; NS, not significant. * The Student’s t-test, chi-squared test (Fisher’s exact test).

All patients were divided into two groups based on the therapeutic outcomes of DAAs:
SVR (N = 44), and non-SVR (N = 3). No significant difference was observed in clinical
features between the two groups, except for the NS5A Y93H mutation. Before treatment,
the NS5A-Y93 mutation was detected in none of the patients in the SVR group, but in two
out of the three patients in the non-SVR group (p = 0.003).

2.2. The Treatment with DAAs Induced Different Immune Responses to TAA-Derived Peptides

To clarify the impact of the treatment with DAAs on immune responses to HCC,
IFN-γ production by HCC-related TAA-specific T cells was measured in all patients before
and after the treatment using the ELISPOT assay. A total of 19 peptides derived from
14 different HCC-related TAAs and 1 peptide derived from CMV pp65 as a control were
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used to examine the immune responses of patients (Figure 1A and Figure S1). Numbers of
patients with a positive T cell response to each peptide were observed in 0 to 12 out of 47
(0.0–25.5%) before treatment and in 1 to 16 out of 47 (2.1–34.0%) after treatment (Figure 1B).
The number of patients with a positive response to each peptide increased after treatment,
except for the peptides MRP3692, hTERT461, NY-ESO-1158, and IMP-3508. Positive responses
were not observed before treatment, but after treatment, 3 and 2 patients showed a positive
response to the peptides GPC3298 and SCCA112, respectively. The number of patients with
a positive response to each peptide after DAAs treatment was significantly higher than that
before (p < 0.01).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 17 
 

 

HbA1c, glycated hemoglobin; (+), mutation; NS, not significant. * The Student’s t-test, chi-
squared test (Fisher’s exact test). 

2.2. The Treatment with DAAs Induced Different Immune Responses to TAA-Derived Peptides 
To clarify the impact of the treatment with DAAs on immune responses to HCC, 

IFN-γ production by HCC-related TAA-specific T cells was measured in all patients be-
fore and after the treatment using the ELISPOT assay. A total of 19 peptides derived 
from 14 different HCC-related TAAs and 1 peptide derived from CMV pp65 as a control 
were used to examine the immune responses of patients (Figures 1A and S1). Numbers 
of patients with a positive T cell response to each peptide were observed in 0 to 12 out of 
47 (0.0–25.5%) before treatment and in 1 to 16 out of 47 (2.1–34.0%) after treatment (Fig-
ure 1B). The number of patients with a positive response to each peptide increased after 
treatment, except for the peptides MRP3692, hTERT461, NY-ESO-1158, and IMP-3508. Posi-
tive responses were not observed before treatment, but after treatment, 3 and 2 patients 
showed a positive response to the peptides GPC3298 and SCCA112, respectively. The 
number of patients with a positive response to each peptide after DAAs treatment was 
significantly higher than that before (p < 0.01). 

 
Figure 1. HCC-related TAA-derived peptide-specific immune responses. (A) Representative imag-
es of IFN-γ ELISPOT assay testing PBMCs stimulating and unstimulating with TAAs (figure 
shows p53161) as well as before and after antiviral therapy. The IFN-γ ELISPOT assay was per-
formed to examine immune responses to 19 TAA-derived and CMV pp65 control peptides in 47 
patients before and after the treatment with DAAs. (B) Dot plot showing the number of patients 
with a positive response to each TAA-derived peptide before and after the treatment with DAAs, 
detected by the IFN-γ ELISPOT assay. The paired t-test was used to calculate p values. (C) Repre-

Figure 1. HCC-related TAA-derived peptide-specific immune responses. (A) Representative images
of IFN-γ ELISPOT assay testing PBMCs stimulating and unstimulating with TAAs (figure shows
p53161) as well as before and after antiviral therapy. The IFN-γ ELISPOT assay was performed to
examine immune responses to 19 TAA-derived and CMV pp65 control peptides in 47 patients before
and after the treatment with DAAs. (B) Dot plot showing the number of patients with a positive
response to each TAA-derived peptide before and after the treatment with DAAs, detected by the
IFN-γ ELISPOT assay. The paired t-test was used to calculate p values. (C) Representative images of
the IFN-γ ELISPOT assay showing significant increase, significant decrease as well as unchanged
response. (D) The number of patients showing four different patterns of changes in the frequency of
T cells specific for TAA-derived peptides after the treatment with DAAs. Patients were categorized
into the following four groups, as described in the Materials and Methods: increased group (n = 11),
mixed group (n = 18), decreased group (n = 9), and unchanged group (n = 9). *** p < 0.001.
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To elucidate the immune responses to peptides influenced by DAAs, we differentiated
the immune responses of patients by individual comparisons of specific spots, which re-
flected the number of activated T cells, before and after the treatment with DAAs (Figure S1).
A significant increase was defined as the number of spots after treatment being ≥10 and
two-fold higher than that before treatment. In contrast, a significant decrease in the number
of spots was defined as a pre-treatment spot count of 10 or more, and a post-treatment spot
count of less than one-half of the pre-treatment spot count (Figure 1C). The results of the
comparison showed that the treatment with DAAs induced different immune responses
to TAA-derived peptides, based on which 47 patients were categorized into four groups:
increased group (n = 11), mixed group (n = 18), decreased group (n = 9), and unchanged
group (n = 9) (Figure 1D). Among the patients analyzed, 29/47 (61.7%) patients, which
were the total of patients belonging to increased and mixed groups, showed an increase
in the number of IFN-γ-producing T cells for at least one TAA-derived peptides after the
treatment. On the other hand, the frequency of T cells specific for the control peptide
increased in only 4/47 (8.5%) patients (Figure S1).

2.3. The Treatment with DAAs Significantly Altered Immune Cell Profiles

We previously reported that the frequency of TAA-derived peptides was associated
with the host immune cell profiles [17,18]. Therefore, we performed a comparative analysis
of T cell and myeloid-derived suppressor cell (MDSC) profiles before and after the treatment
with DAAs using flow cytometry by assessing the expression of 20 different molecules that
potentially affect HCC-specific host T cell responses (Figure 2).

CD4+ T cells were divided into different subpopulations by CD45RA and Foxp3 for
a more detailed analysis: naïve CD4+ T cells (CD4+CD45RA+), naïve non-Treg CD4+
T cells (CD4+CD45RA+Foxp3-), naïve Treg (CD4+CD45RA+Foxp3+), memory CD4+ T
cells (CD4+CD45RA-), memory non-Treg CD4+ T cells (CD4+CD45RA-Foxp3-), and effec-
tor Treg (CD4+CD45RA-Foxp3++) [17]. CD8+ T cells were divided into two subpopula-
tions based on CD45RA: naïve CD8+ T cells (CD8+CD45RA+) and memory CD8+ T cells
(CD8+CD45RA-) (Figure 2A). According to these differentiations, the expression of PD-1,
CTLA-4, CD25, CCR6, CXCR3, CCR4, 4-1BB, OX40, and CD80 was separately analyzed on
the surface of each subpopulation (Figure 2B). Two major subpopulations of MDSCs were
simultaneously identified by the expression of CD14, CD15, CD33, CD11b, and HLA-DR
(Figure 2C). CD14+HLA-DR- MDSCs, labeled as M-MDSC and G-MDSC, were defined as
CD14-, CD15+, CD33+, and CD11b+ cells. PD-L1 expression levels were then assessed in
each subpopulation.

Comprehensive comparisons revealed significant differences in host immune cell
profiles before and after the treatment with DAAs (Figure 3). In all patients, the frequencies
of T cells expressing the tested molecules after treatment mostly showed a significant
decrease (Figure 3A). Consistent with previous findings [6], DAAs treatment induced
broad phenotypic changes.
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Figure 2. Peripheral blood T cell and MDSC profiles. (A) Flow cytometry analysis of CD4+ and CD8+
T cells. Subpopulations of CD8+ T cells were defined by the expression of CD45RA: naïve CD8+ T
cells (CD8+CD45RA+) and memory CD8+ T cells (CD8+CD45RA-), and subpopulations of CD4+
T cells by the expression of CD45RA: naïve CD4+ T cells (CD4+CD45RA+) and memory CD4+ T
cells (CD4+CD45RA-). After the further division of CD4+ T cells by marker Foxp3, naïve non-Treg
CD4+ T cells were defined as CD4+CD45RA+Foxp3-, naïve Tregs as CD4+CD45RA+Foxp3+, memory
non-Treg CD4+ T cells as CD4+CD45RA-Foxp3-, and effector Tregs as CD4+CD45RA-Foxp3++.
(B) The expression of the following molecules was separately analyzed in each subpopulation
of CD4+ or CD8+ T cells: PD-1, CTLA-4, CD25, CCR6, CXCR3, CCR4, 4-1BB, OX40, and CD80.
(C) Subpopulations of MDSCs were also analyzed by flow cytometry. G-MDSC were characterized
by CD14-CD15+CD33+CD11b+, and M-MDSC by CD14+HLA-DR-. PD-L1 expression levels were
measured in each subpopulation. Abbreviations: FSC, forward scatter; SSC, side scatter.
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Figure 3. Changes in T cell and MDSC profiles before and after the treatment with DAAs. (A) Com-
parative analysis of the frequencies of each T cell and MDSC subpopulation before and after the
treatment with DAAs by flow cytometry in all patients (n = 47). (B) Comparison of the frequencies of
each T cell and MDSC subpopulation before and after the treatment with DAAs in the SVR group
(n = 44). (C) Comparison of the frequencies of each T cell and MDSC subpopulation before and
after the treatment with DAAs in the non-SVR group (n = 3). The figure only shows results with a
significant difference. Box plots depict the median value with IQR. The paired t-test was used to
calculate p values. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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2.4. Relationship between Immune Cell Profiles and HCV Eradication

Next, we investigated whether the removal of HCV by DAAs resulted in phenotypic
changes in T cells and MDSCs. A comparative analysis of changes in T cell and MDSC
profiles in the SVR (n = 44) and non-SVR (n = 3) groups was performed (Figure 3B,C
and Figure S2). In the analysis of the SVR group, the frequencies of T cells and MDSCs
expressing each immune-related molecule varied over a wide range of species, which was
similar to the results of the overall analysis. On the other hand, in the analysis of the
non-SVR group, changes in T cells and MDSCs were limited to some molecules. These
results provided further support for immune cell profiles being altered by the eradication
of HCV after the treatment with DAAs. Among the nine tested T cell surface molecules in
the present study, the frequency of PD-1-expressing T cells decreased after viral clearance
in most phenotypes, including CD4, memory CD4, and CD8. In contrast, in the non-SVR
group, no significant decrease in the frequency of these cells expressing PD-1 was noted,
while an increase of naïve non-Treg CD4+ T cells expressing PD-1 was observed. These
results suggest that HCV eradication by DAAs plays a vital role in inhibiting the PD-
1/PD-L1 pathway. The remarkably decreased frequency of PD-1+ T cells, which play a
fundamental role in T cell activation against tumors, suggests that DAAs might enhance
patients’ immune response to HCC.

2.5. The Treatment with DAAs Enhanced Immune Responses by Decreasing the Frequency of
PD-1-Expressing CD4+ and CD8+ T Cells

To confirm whether T cell responses to TAA-derived peptides were associated with
phenotypic changes in T cells, T cell profiles were comparatively evaluated among the four
groups (Figure 4A, Figures S3 and S4). The variation tendencies of the cell profiles in the four
groups were different, especially between the increased and decreased group (Figure S3).

Interestingly, the frequency of PD-1+CD4+ and PD-1+CD8+ T cells significantly de-
creased after the treatment with DAAs only observed in the increased group (Figure 4A). In
the increased group, the frequency of PD-1-expressing T cells decreased after the treatment
with DAAs in the whole CD4+ or CD8+ T cell and each memory T cell fraction (Figure 4B).
PD-1-expressing CD8+ memory T cells has been shown to be highly capable of producing
IFN-γ in the ELISPOT assay [18]. Taken together, these results suggest that the treatment
with DAAs decreased the frequency of PD-1 expressing T cells in patients to enhance
immune responses to TAA-derived peptides.

2.6. The F Protein Increased the Frequency of PD-1-Expressing CD4+ or CD8+ T Cells

Our previous study identified genes whose expression is altered in peripheral blood
cells, including lymphocytes, during treatment with DAAs for chronic HCV. An RNAseq
analysis revealed that the mRNA expression level of the TbX21 gene increased after the
treatment in many patients with SVR; however, a significant difference was not observed
due to the insufficient number of cases analyzed (Figure S5). TbX21 has been shown to
downregulate the expression of PD-1 in lymphocytes [19], while the expression of TbX21
was downregulated by the F protein produced by HCV [20,21]. F protein, a novel protein,
is the product of an alternative reading frame (ARF) of the HCV polyprotein frame. In HCV
genotype 1b, F protein produced by double frame-shift mechanism of the HCV structural
protein core genomic region [20].
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Figure 4. Relationship between TAA-derived peptide-specific immune responses and the frequency
of immune cells with each immune phenotype. (A) Representative phenotypic variation map before
and after treatment within the four groups classified based on the results of the ELISPOT assay. In
comparisons with before the treatment with DAAs, changes in the frequency of T cells expressing
each molecule after treatment are indicated separately by four different colors. (B) Dot plot displaying
the frequency of PD-1-expressing T cells before (orange circle) and after (green circle) the treatment
with DAAs within the four groups. The paired t-test was used to calculate p values. * p < 0.05.

Based on these findings, we hypothesized that the elimination of HCV by DAAs may
promote a decrease in or the disappearance of the F protein, which may, in turn, restore the
expression of TbX21 in lymphocytes and downregulate that of the PD-1 molecule. To prove
this hypothesis, we attempted to generate the F protein produced by HCV and analyze the
phenotype of T cells after a mixed culture of the F protein and PBMCs.

We synthesized the genotype 1b HCV F protein component in Escherichia coli, con-
sisting of the wild-type HCV core sequence with the first ribosomal frameshift at its codon
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42(+1) and then second one at codon 144(−1) leading to creating a stop codon at 144 with a
histidine tag (Figure 5A). We then confirmed this product by Western blotting using the
direct detection of His-tagged proteins (Figure 5B) and the core protein (Figure 5C).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 17 
 

 

shown to downregulate the expression of PD-1 in lymphocytes [19], while the expres-
sion of TbX21 was downregulated by the F protein produced by HCV [20,21]. F protein, 
a novel protein, is the product of an alternative reading frame (ARF) of the HCV poly-
protein frame. In HCV genotype 1b, F protein produced by double frame-shift mecha-
nism of the HCV structural protein core genomic region [20]. 

Based on these findings, we hypothesized that the elimination of HCV by DAAs 
may promote a decrease in or the disappearance of the F protein, which may, in turn, re-
store the expression of TbX21 in lymphocytes and downregulate that of the PD-1 mole-
cule. To prove this hypothesis, we attempted to generate the F protein produced by 
HCV and analyze the phenotype of T cells after a mixed culture of the F protein and 
PBMCs. 

We synthesized the genotype 1b HCV F protein component in Escherichia coli, con-
sisting of the wild-type HCV core sequence with the first ribosomal frameshift at its co-
don 42(+1) and then second one at codon 144(−1) leading to creating a stop codon at 144 
with a histidine tag (Figure 5A). We then confirmed this product by Western blotting us-
ing the direct detection of His-tagged proteins (Figure 5B) and the core protein (Figure 
5C). 

 
Figure 5. Confirmation of the in vitro synthesized F protein by a Western blot analysis. (A) The 
structure of the HCV F protein expressed in Escherichia coli. It consisted of the wild-type HCV core 
sequence and the HCV F protein that includes a frameshift mutation at 42 and the introduction of 
a histidine tag. This results in the induction of a stop codon at 144, and the overall polyprotein was 
partially shortened. (B) Western blotting images of the purified HCV F protein detected by the His 
tag. The image shows His-tagged bands by a nickel-nitrilotriacetic acid reaction. (C) Western blot-
ting images of purified proteins detected by the HCV core antibody with the epitope located with-
in codons 1–42. The black arrow shows the synthesized HCV-F protein band. M, molecular mark-
er; 1, negative control: empty vector; 2, positive control for the His tag: PA tag-EGFP-6XHis tag; 3, 
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Figure 5. Confirmation of the in vitro synthesized F protein by a Western blot analysis. (A) The
structure of the HCV F protein expressed in Escherichia coli. It consisted of the wild-type HCV core
sequence and the HCV F protein that includes a frameshift mutation at 42 and the introduction of
a histidine tag. This results in the induction of a stop codon at 144, and the overall polyprotein
was partially shortened. (B) Western blotting images of the purified HCV F protein detected by the
His tag. The image shows His-tagged bands by a nickel-nitrilotriacetic acid reaction. (C) Western
blotting images of purified proteins detected by the HCV core antibody with the epitope located
within codons 1–42. The black arrow shows the synthesized HCV-F protein band. M, molecular
marker; 1, negative control: empty vector; 2, positive control for the His tag: PA tag-EGFP-6XHis tag;
3, non-purified F protein; 4, His-tagged purified F protein.

The synthetic F protein was approximately 17 kDa and was incubated with PBMCs
collected from three cohorts: a healthy cohort (n = 22), HCV-infected cohort (n = 23), and
SVR-obtained cohort (n = 9). The synthetic F protein significantly increased the frequency
of PD-1-expressing CD4+ or CD8+ T cells in all three cohorts (Figure 6A,B).
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Figure 6. Changes in the frequency of PD-1-expressing CD4+ and CD8+ T cells in PBMCs before and
after the stimulation with the HCV F protein. (A) Representative flow cytometry plots of PD-1+CD4+
T cells and PD-1+CD8+ T cells following an ex vivo stimulation with or without the F protein. Each
incubation was performed in triplicate. The analysis was performed using the PBMCs of a healthy
cohort (n = 22), HCV-infected cohort (n = 23), and SVR-obtained cohort (n = 9). (B) Dot plot displaying
the frequency of PD-1-expressing CD4+ and CD8+ T cells in PBMCs with or without the F protein in
three cohorts. (C) Dot plot displaying the frequency of PD-1-expressing CD4+ or CD8+ T cells in the
PBMCs of 8 paired chronic hepatitis C patients before treatment with DAAs, after treatment without
the F protein stimulation, and after treatment with the F protein stimulation. Statistical analyses were
performed using the paired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

We also compared the frequency of PD-1-expressing T cells in 8 patients for whom
we could obtain sufficient PBMCs before and after the treatment with DAAs (Figure 6C).
After the treatment, the frequency of PD-1-expressing T cells mostly decreased, whereas
a significant increase was observed after the incubation with the F protein. Collectively,
these results indicated that the F protein was positively associated with the frequency of
PD-1-expressing CD4+ or CD8+T cells.
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3. Discussion

To elucidate the influence of HCV eradication by DAAs for the immune response
to HCC in HCV-infected patients and the mechanism underlying it, we first examined
T cell responses to synthetic peptides derived from HCC-related TAAs. The number of
patients with a positive immune response to each peptide was significantly higher after
than before the treatment with DAAs (Figure 1A). There is no significant difference in
immune responses to HCC-specific TAA-derived peptides between patients with and
without a history of HCC and eradication of HCV. Furthermore, positive responses to the
peptides GPC3298 and SCCA112 were newly induced after the treatment. These results
suggest that treatment with DAAs enhances the immune response of T cells against HCC.

We next investigated the mechanisms by which T cell immune responses to HCC were
enhanced. In previous studies, we demonstrated that the T cell profile in peripheral blood
was associated with the immune strength of these cells against HCC-specific TAA-derived
peptides [17,18,22]. To confirm whether different immune responses induced by DAAs are
associated with immune phenotypic changes, we herein compared the expression of surface
molecules on each immune cell before and after treatment. We focused on CD4+ and CD8+
T cells, which play important roles in altering immune responses. After the treatment with
DAAs, the frequency of T cells expressing 6 out of the 9 surface molecules, which were
PD-1, CTLA-4, CD80, OX40, CD25, and CXCR3, changed significantly, suggesting that
the host T cell profiles were extensively altered by the treatment. The frequency of PD-1-
or CTLA-4-expressing CD4+ or CD8+ T cells significantly decreased. PD-1 and CTLA-4
together with their ligands have been shown to play fundamental roles in the inhibition of T
cell activation against tumors [23–25]. Furthermore, changes in T cell surface markers were
more pronounced in patients with SVR than in those with non-SVR. These results indicate
that the treatment with DAAs down-regulated the expression of these immunosuppressive
molecules, particularly PD-1, in order to enhance specific immune responses to HCC.

To clarify the relationship between changes in both peptide-specific immune responses
and the frequency of PD-1-expressing T cells before and after the treatment with DAAs,
immune cell profiles were analyzed within four groups classified by changes in immune
responses to TAA-derived peptides before and after the treatment with DAAs. In contrast
to the decreased, mixed, and unchanged groups, the frequency of PD-1-expressing CD4+
and CD8+ T cells significantly decreased in the increased group only, in which the definite
enhancement of immune responses was observed after treatment. Many studies have
suggested that PD-1 suppresses immune responses by inhibiting T cell activation [24], and
that the upregulated expression of PD-1 in CD4+ or CD8+ T cells is positively associated
with T cell exhaustion and immune evasion [26,27]. Therefore, the significant decrease
observed in the frequency of PD-1-expressing T cells in the increased group in the present
study was consistent with the enhancement of TAA-derived peptide-specific immune
responses. This result supports the treatment with DAAs enhancing the immune responses
of patients to HCC by decreasing the frequency of PD-1-expressing CD4+ and CD8+ T cells.

The HCV-derived F protein has been reported to contribute to the persistence of HCV
infection, which may cause hepatic damage and, ultimately, carcinogenesis [21,28,29] and
through the PD-1/PD-L1 pathway to induce T cell dysfunction: accelerating cell apoptosis
and impairing T cell proliferation [30]. To clarify whether the F protein influences the
expression of PD-1, our synthesized F protein was incubated with PBMCs collected from
three representative cohorts. After the incubation, the frequency of PD-1-expressing CD4+
or CD8+ T cells significantly increased in all three groups. This result suggests that the F
protein plays a role in upregulating the expression of the PD-1 molecule to suppress the
immune responses of patients.

Unexpectedly, in the present study, 2 out of the 3 non-SVR patients were categorized
into the increased group based on their enhanced immune responses. When we examined
the frequency of PD-1-expressing CD4+ T cells in these two patients after the treatment
with DAAs, it was unchanged in one and decreased in the other patient. More importantly,
the frequency of PD-1-expressing CD8+ T cells decreased in both of them. These results
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suggest that despite DAAs treatment did not eliminate HCV, it might downregulate the
expression of PD-1 by decreasing or even eliminating the F protein. This may be one of the
reasons for the enhanced immune response in non-SVR patients.

One limitation of the present study is that the HCV F-protein was not measured in
patient sera before or after the treatment with DAAs. Further studies on the relationships
between F protein levels in patient sera, the intensity of TAA-specific immune responses,
and changes in T cell profiles before and after the treatment with DAAs are warranted to
elucidate the mechanisms underlying the recovery of host immune responses to HCC by
DAAs. Nevertheless, the present results indicate that the treatment with DAAs decreased
the frequency of PD-1-expressing CD4+ and CD8+ T cells and improved immune responses
to HCC-specific TAA-derived peptides, suggesting the involvement of the HCV-derived
F protein.

4. Materials and Methods
4.1. Study Population

Patients diagnosed with chronic hepatitis C and receiving a combination of asunapre-
vir (ASV) (Bristol-Myers Squibb, New York, NY, USA) and daclatasvir (DCV) (Bristol-Myers
Squibb) for 24 weeks were included in the present study. Patients with decompensated liver
cirrhosis and infected with hepatitis B or human immunodeficiency virus were excluded.
Patients received an oral dose of 100 mg ASV twice daily and 60 mg DCV once daily for
24 weeks. During this period, basic liver function indexes, such as ALT and the amount of
HCV RNA, were monitored. Serum HCV RNA levels were measured using a real-time PCR
method with the lower quantification limit of 1.2 log IU/mL (COBAS TaqMan HCV Test
2.0; Roche Diagnostics, Tokyo, Japan). A sustained virologic response (SVR) was defined as
undetectable HCV RNA at 24 weeks post-treatment. The human leukocyte antigen (HLA)
typing of patients was performed using peripheral blood mononuclear cells (PBMCs) and
the PCR–reverse-sequence-specific oligonucleotide method. HLA-A24-positive patients
were included in the present study. All patients provided written informed consent to
participate, and the study protocol conformed to the ethical guidelines of the 1975 Decla-
ration of Helsinki and was approved by the regional Ethics Committee (Medical Ethics
Committee of Kanazawa University, No. 1639).

4.2. Preparation of Synthetic Peptides and PBMCs

HLA-A24-restricted peptides were synthesized using the amino acid sequences de-
rived from 14 HCC-related TAAs as previously reported (Table 2) [17,31–43]. In addition,
the HLA-A24-restricted peptide derived from cytomegalovirus pp65 (CMV pp65328) was
synthesized [44]. Peripheral blood samples were obtained from 47 patients before treat-
ment with DAAs and 24 weeks after the completion of treatment. PBMCs were isolated
according to a previously described procedure [17], resuspended in Roswell Park Memorial
Institute 1640 medium (RPMI-1640) containing 80% fetal bovine serum (FBS) and 10%
dimethylsulfoxide (Sigma, St. Louis, MO, USA), and cryopreserved until used.

Table 2. The list of TAA-derived peptides analyzed.

Peptide No. Peptide Name Source Reference Amino Acid
Sequence

1 Cyp-B109 Cyp-B [31] KFHRVIKDF
2 SART2899 SART2 [32] SYTRLFLIL
3 SART3109 SART3 [33] VYDYNCHVDL
4 p53161 p53 [34] AIYKQSQHM
5 MRP3765 MRP3 [35] VYSDADIFL
6 MRP3692 MRP3 [35] AYVPQQAWI
7 AFP403 AFP [36] KYIQESQAL
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Table 2. Cont.

Peptide No. Peptide Name Source Reference Amino Acid
Sequence

8 AFP434 AFP [36] AYTKKAPQL
9 AFP357 AFP [36] EYSRRHPQL
10 hTERT167 hTERT [37] AYQVCGPPL
11 hTERT461 hTERT [37] VYGFVRACL
12 hTERT324 hTERT [37] VYAETKHFL
13 WT-1235 WT-1 [38] CYTWNQMNL
14 EZH2291 EZH2 [39] KYDCFLHPF
15 GPC3298 GPC3 [40] EYILSLEEL
16 NY-ESO-1158 NY-ESO-1 [41] LLMWITQCF
17 SCCA112 SCCA [42] TYLFLQEYL
18 IMP-3508 IMP-3 [17] KTVNELQNL
19 Hsp70136 Hsp70 [43] GYPVTNAVI
20 CMV pp65328 CMV pp65 [44] QYDPVAALF

Abbreviations: Cyp-B, cyclophilin B; SART, squamous cell carcinoma; MRP3, multiple drug resistance protein 3;
AFP, alpha-fetoprotein; hTERT, human telomerase reverse transcriptase; WT1, Wilms tumor 1; EZH2, enhancer
of zeste homolog 2; GPC3: glypican-3; NY-ESO-1: New York esophageal squamous cell carcinoma-1; SCCA:
squamous cell carcinoma antigen; IMP-3: insulin-like growth factor II mRNA-binding protein 3; Hsp70, 70-kDa
heat shock protein; CMV, cytomegalovirus.

4.3. IFN-γ ELISPOT Assay

ELISPOT assays were performed as previously described [17]. Specific spots were
calculated by subtracting average spots of control wells from the average spots of each
peptide treated duplicate wells. Responses for peptides were considered positive if the
number of specific spots was ≥10 and at least two times that of spots in the control group.
The pattern of changes in the frequency of T cells specific for TAA-derived peptides after
the treatment with DAAs was classified as following. A significant increase was defined as
the number of specific spots was ≥10 after treatment and two-fold higher than that before
treatment. In contrast, a significant decrease in the number of specific spots was defined
as a pre-treatment spot count of 10 or more, and a post-treatment spot count of less than
one-half of the pre-treatment spot count.

Based on the pattern of changes in the frequency of T cells specific for TAA-derived
peptides after the treatment with DAAs, patients were classified into four groups. Patients
who showed an increased frequency of T cells specific for at least one TAA-derived peptide
and no decrease in the frequency of T cells specific for other peptides after treatment were
classified into the increased group. Patients who showed a decrease in the frequency of T
cells specific for at least one TAA-derived peptide and no increase in the frequency of T cells
specific for other peptides were classified into the decreased group. Patients who showed a
mixed frequency of increases and decreases in T cells specific for TAA-derived peptides
were classified into the mixed group. Patients who did not show an increase or decrease in
the frequency of T cells specific for any peptide were classified into the unchanged group.

4.4. Multicolor Fluorescence-Activated Cell Sorting Analysis

To examine differences in cell profiles before and after the treatment with DAAs,
a flow cytometry analysis was performed. Isolated PBMCs, which were the same as
the samples used for the ELIPOST assay, were stained by different antibodies and then
examined using flow cytometry with the Becton Dickinson FACSAria II system. Based on
previously reported data, a FACS analysis was performed using the following antibodies:
anti-CD45RA, Foxp3, CD3, CD4, CD8, PD-1, CTLA-4, CD25, CCR6, CXCR3, CCR4, 4-1BB,
OX40, and CD80 (BD Biosciences, Franklin Lakes, NJ, USA) [7,8,17,22]. The antibody
CD45RA was used to divide CD4 or CD8 into naïve and memory T cells. Intracellular
staining with anti-Foxp3 was conducted to characterize regulatory T cells (Tregs). In
addition, the cell profiles of MDSCs were analyzed using anti-CD14, CD15, CD33, CD11b,
HLA-DR, and PD-L1.
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4.5. Expression and Purification of the HCV F Protein

The process of F protein expression was performed as previously described [45].
Briefly, the synthetic HCV F protein component consisted of the wild-type HCV core
sequence and the HCV F protein, which included a ribosomal frameshift mutation located
at codon 42 and stop codon at codon 144 of the core sequence. Overall, the polyprotein was
partially shortened. Purified F PCR products were cloned into the cold shock expression
system, the pCold I DNA vector (Takara, Japan) upstream of the six-His-tagged tail. The
combined plasmid and empty vector as a negative control was transformed into BL21 cells
and transformants were selected on an agar plate containing ampicillin that was shaken
with 5 mL LB medium at 37 ◦C until OD600 reached 0.4–0.8. The culture was quickly
cooled to 15 ◦C using ice water and left to stand for 30 min. IPTG was added at a final
concentration of 0.2 mM and the culture was shaken at 15 ◦C for 24 h. Pelleted bacteria
(5000 rpm, 10 min) were resuspended in xTractorTM buffer Kit (Takara, Japan) containing
8M urea, disrupted by sonication, and incubated at 4 ◦C overnight. The lysate was then
centrifuged at 8000 rpm at 4 ◦C for 1 h. The Capturem™ His-Tagged Purification Kit
(Takara, Japan) was used to purify the F protein. The concentration of the purified F protein
was 12 ug/uL. The recombinant F protein was verified by a Western blot analysis and
the direct detection of His-tagged proteins using Nickel-NTA conjugates. The protein
synthesized from the empty vector was a negative control and the 29 kDa protein PA tag
(carboxy-terminal)-EGFP-6×His tag (Wako, Japan) was a positive control.

The purified F protein was incubated with PBMCs isolated from three cohorts: a
healthy cohort (n = 22), HCV-infected cohort (n = 23), and SVR-obtained cohort (n = 9), at a
final concentration of 12 µg/mL for 24 h, and the frequency of PD-1 expressed on CD4+ or
CD8+ T cells was examined by FACS. Each incubation was performed in triplicate.

4.6. Western Blotting

Proteins were separated on a 15% SDS-PAGE gel (Wako, Japan) and then were trans-
ferred to a PVDF membrane (Millipore, Burlington, MA, USA). To detect His-tagged
proteins, the membrane was blocked by complete immersion in 1X Detector Block Solution
(HisDetectorTM Western Blot Kit, HRP Colorimetric) at room temperature for 1 h. After
blocking, the HisDetector Nickel-AP, which was used to detect His-tag protein, was diluted
to 1/1000 directly in blocking solution and then incubated at room temperature for one
hour. After that, 1X PBST was used to wash the membrane 3 times. The membrane was
then incubated in BCIP/NBT and allowed to develop for 5–15 min. The membrane was
rinsed for 10–30 s in reagent quality water to stop the reaction. To detect the core protein,
the membrane was blocked with 5% skim milk solution (Wako, Japan) for 1 h and then incu-
bated with a Hepatitis C Virus Core Antigen Monoclonal Antibody (C7-50) (Thermo Fisher
Scientific, Rockford, IL, USA) diluted 1:1000 overnight. The membrane was subsequently
incubated for 1 h with anti-mouse IgG second antibody (Cell Signaling Technology, Dan-
vers, MA, USA) diluted 1:1000. The enhanced chemiluminescent HRP substrate detection
kit (Bio-Rad, Hercules, CA, USA) was used to visualize reactive protein bands.

4.7. Statistical Analysis

Data were expressed as the median and IQR. Statistical analyses were performed with
GraphPad Prism 9.0.0 (GraphPad Software, San Diego, CA, USA). In the present study,
the Student’s t-test and chi-squared test were used. The Student’s paired t-test was used
to compare data between before and after the treatment with DAAs and with or without
the synthetic F protein incubation. p < 0.05 was considered to be significant. Asterisks
were used to indicate significance as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, and
**** p < 0.0001.
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5. Conclusions

In conclusion, the present results suggest that the treatment with DAAs enhances the
immune responses of patients to HCC, and these changes contribute to the prevention of
hepatocarcinogenesis after DAAs treatment.
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Author Contributions: S.L., K.K., M.M. and M.N. performed FACs, ELISPOT assay, and F protein
expression experiments. K.K. and E.M. contributed to experiments design. S.L. and E.M. wrote the
manuscript, while E.M. edited the manuscript. T.S., K.A., T.Y. (Taro Yamashita), Y.S., T.Y. (Tatsuya
Yamashita), M.H. and S.K. provided technical assistance. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by research grants from the Ministry of Education,
Culture, Sports, Science and Technology of Japan (21H02899).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Medical Ethics Committee of Kanazawa University (2014-037).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data will be made available upon request.

Acknowledgments: The authors thank Kazumi Fushimi, Masayo Baba, and Nami Nishiyama for
technical assistance.

Conflicts of Interest: The authors report no conflict of interest.

Abbreviations

DAA, direct-acting antiviral; TAA, tumor-associated antigen; HLA, human leukocyte antigen;
IFN, interferon; PBMC, peripheral blood mononuclear cell; ELISPOT, enzyme-linked immunospot;
MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; PD-1, programmed cell death 1;
CTLA-4, cytotoxic T-lymphocyte-associated protein 4.

References
1. Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn,

R.S.; et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7. [CrossRef]
2. Hajarizadeh, B.; Grebely, J.; Dore, G.J. Epidemiology and natural history of HCV infection. Nat. Rev. Gastroenterol. Hepatol. 2013,

10, 553–562. [CrossRef]
3. Zhao, P.; Malik, S.; Xing, S. Epigenetic Mechanisms Involved in HCV-Induced Hepatocellular Carcinoma (HCC). Front. Oncol.

2021, 11, 677926. [CrossRef]
4. Kumada, H.; Suzuki, Y.; Ikeda, K.; Toyota, J.; Karino, Y.; Chayama, K.; Kawakami, Y.; Ido, A.; Yamamoto, K.; Takaguchi, K.

Daclatasvir plus asunaprevir for chronic HCV genotype 1b infection. Hepatology 2014, 59, 2083–2091. [CrossRef]
5. Wang, H.L.; Lu, X.; Yang, X.; Xu, N. Effectiveness and safety of daclatasvir plus asunaprevir for hepatitis C virus genotype 1b:

Systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017, 32, 45–52. [CrossRef]
6. Shrivastava, S.; Bhatta, M.; Ward, H.; Romani, S.; Lee, R.; Rosenthal, E.; Osinusi, A.; Kohli, A.; Masur, H.; Kottilil, S.; et al.

Multitarget Direct-Acting Antiviral Therapy Is Associated With Superior Immunologic Recovery in Patients Coinfected With
Human Immunodeficiency Virus and Hepatitis C Virus. Hepatol. Commun. 2018, 2, 1451–1466. [CrossRef]

7. Tonnerre, P.; Wolski, D.; Subudhi, S.; Aljabban, J.; Hoogeveen, R.C.; Damasio, M.; Drescher, H.K.; Bartsch, L.M.; Tully, D.C.; Sen,
D.R.; et al. Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving
functional T cell memory. Nat. Immunol. 2021, 22, 1030–1041. [CrossRef]

8. Hensel, N.; Gu, Z.; Sagar; Wieland, D.; Jechow, K.; Kemming, J.; Llewellyn-Lacey, S.; Gostick, E.; Sogukpinar, O.; Emmerich, F.;
et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 2021, 22,
229–239. [CrossRef]

9. Hsu, C.S.; Chao, Y.C.; Lin, H.H.; Chen, D.S.; Kao, J.H. Systematic Review: Impact of Interferon-based Therapy on HCV-related
Hepatocellular Carcinoma. Sci. Rep. 2015, 5, 9954. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms231911623/s1
https://www.mdpi.com/article/10.3390/ijms231911623/s1
http://doi.org/10.1038/s41572-020-00240-3
http://doi.org/10.1038/nrgastro.2013.107
http://doi.org/10.3389/fonc.2021.677926
http://doi.org/10.1002/hep.27113
http://doi.org/10.1111/jgh.13587
http://doi.org/10.1002/hep4.1258
http://doi.org/10.1038/s41590-021-00982-6
http://doi.org/10.1038/s41590-020-00817-w
http://doi.org/10.1038/srep09954


Int. J. Mol. Sci. 2022, 23, 11623 16 of 17

10. Conti, F.; Buonfiglioli, F.; Scuteri, A.; Crespi, C.; Bolondi, L.; Caraceni, P.; Foschi, F.G.; Lenzi, M.; Mazzella, G.; Verucchi, G.; et al.
Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J.
Hepatol. 2016, 65, 727–733. [CrossRef]

11. Kozbial, K.; Moser, S.; Schwarzer, R.; Laferl, H.; Al-Zoairy, R.; Stauber, R.; Stättermayer, A.F.; Beinhardt, S.; Graziadei, I.;
Freissmuth, C.; et al. Unexpected high incidence of hepatocellular carcinoma in cirrhotic patients with sustained virologic
response following interferon-free direct-acting antiviral treatment. J. Hepatol. 2016, 65, 856–858. [CrossRef] [PubMed]

12. Bielen, R.; Moreno, C.; van Vlierberghe, H.; Bourgeois, S.; Mulkay, J.-P.; Vanwolleghem, T.; Verlinden, W.; Brixco, C.; Decaestecker,
J.; de Galocsy, C.; et al. The risk of early occurrence and recurrence of hepatocellular carcinoma in hepatitis C-infected patients
treated with direct-acting antivirals with and without pegylated interferon: A Belgian experience. J. Viral Hepat. 2017, 24, 976–981.
[CrossRef]

13. Calvaruso, V.; Cabibbo, G.; Cacciola, I.; Petta, S.; Madonia, S.; Bellia, A.; Tinè, F.; Distefano, M.; Licata, A.; Giannitrapani, L.; et al.
Incidence of Hepatocellular Carcinoma in Patients With HCV-Associated Cirrhosis Treated With Direct-Acting Antiviral Agents.
Gastroenterology 2018, 155, 411–421.e4. [CrossRef] [PubMed]

14. Kamp, W.M.; Sellers, C.M.; Stein, S.; Lim, J.K.; Kim, H.S. Impact of Direct Acting Antivirals on Survival in Patients with Chronic
Hepatitis C and Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 3–10. [CrossRef] [PubMed]

15. Singal, A.G.; Rich, N.E.; Mehta, N.; Branch, A.D.; Pillai, A.; Hoteit, M.; Volk, M.; Odewole, M.; Scaglione, S.; Guy, J.; et al.
Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection Is Associated With Increased Survival in Patients With a History
of Hepatocellular Carcinoma. Gastroenterology 2019, 157, 1253–1263.e2. [CrossRef]

16. Smits, M.; Zoldan, K.; Ishaque, N.; Gu, Z.; Jechow, K.; Wieland, D.; Conrad, C.; Eils, R.; Fauvelle, C.; Baumert, F.T. Follicular T
helper cells shape the HCV-specific CD4+ T cell repertoire after virus elimination. J. Clin. Investig. 2020, 130, 998–1009. [CrossRef]

17. Inada, Y.; Mizukoshi, E.; Seike, T.; Tamai, T.; Iida, N.; Kitahara, M.; Yamashita, T.; Arai, K.; Terashima, T.; Fushimi, K.; et al.
Characteristics of Immune Response to Tumor-Associated Antigens and Immune Cell Profile in Patients With Hepatocellular
Carcinoma. Hepatology 2019, 69, 653–665. [CrossRef]

18. Mizukoshi, E.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Ueda, T.; Arihara, F.; Kagaya, T.; Yamashita, T.; Fushimi, K.; Kaneko,
S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma.
Hepatology 2013, 57, 1448–1457. [CrossRef]

19. Kao, C.; Oestreich, K.J.; Paley, M.A.; Crawford, A.; Angelosanto, J.M.; Ali, M.A.; Intlekofer, A.M.; Boss, J.M.; Reiner, S.L.;
Weinmann, A.S.; et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific
CD8+ T cell responses during chronic infection. Nat. Immunol. 2011, 12, 663–671. [CrossRef]

20. Zhu, D.Y.; Deng, X.Z.; Jiang, L.F.; Xiao, W.; Pei, J.P.; Li, B.J.; Wang, C.J.; Zhang, J.H.; Zhang, Q.; Zhou, Z.X.; et al. Potential Role
of Hepatitis C Virus Alternate Reading Frame Protein in Negative Regulation of T-Bet Gene Expression. Inflammation 2015, 38,
1823–1834. [CrossRef]

21. Mohamadi, M.; Azarbayjani, K.; Mozhgani, S.H.; Bamdad, T.; Alamdary, A.; Nikoo, H.R.; Hashempour, T.; Yaghoobi, M.H.;
Ajorloo, M. Hepatitis C virus alternative reading frame protein (ARFP): Production, features, and pathogenesis. J. Med. Virol.
2020, 92, 2930–2937. [CrossRef] [PubMed]

22. Seike, T.; Mizukoshi, E.; Yamada, K.; Okada, H.; Kitahara, M.; Yamashita, T.; Arai, K.; Terashima, T.; Iida, N.; Fushimi, K.; et al.
Fatty acid-driven modifications in T-cell profiles in non-alcoholic fatty liver disease patients. J. Gastroenterol. 2020, 55, 701–711.
[CrossRef]

23. Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008,
26, 677–704. [CrossRef] [PubMed]

24. Carter, L.L.; Fouser, L.A.; Jussif, J.; Fitz, L.; Deng, B.; Wood, C.R.; Collins, M.; Honjo, T.; Freeman, G.J.; Carreno, B.M. PD-1:PD-L
inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol. 2002, 32, 634–643. [CrossRef]

25. Huang, H.W.; Chang, C.C.; Wang, C.S.; Lin, K.H. Association between Inflammation and Function of Cell Adhesion Molecules
Influence on Gastrointestinal Cancer Development. Cells 2021, 10, 67. [CrossRef] [PubMed]

26. Saito, H.; Kuroda, H.; Matsunaga, T.; Osaki, T.; Ikeguchi, M. Increased PD-1 expression on CD4+ and CD8+ T cells is involved in
immune evasion in gastric cancer. J. Surg. Oncol. 2013, 107, 517–522. [CrossRef]

27. Kim, H.D.; Song, G.W.; Park, S.; Jung, M.K.; Kim, M.H.; Kang, H.J.; Yoo, C.; Yi, K.; Kim, K.H.; Eo, S.; et al. Association Between
Expression Level of PD1 by Tumor-Infiltrating CD8+ T cells and Features of Hepatocellular Carcinoma. Gastroenterology 2018, 155,
1936–1950.e17. [CrossRef]

28. Dalagiorgou, G.; Vassilaki, N.; Foka, P.; Boumlic, A.; Kakkanas, A.; Kochlios, E.; Khalili, S.; Aslanoglou, E.; Veletza, S.; Or-
fanoudakis, G.; et al. High levels of HCV core+1 antibodies in HCV patients with hepatocellular carcinoma. J. Gen. Virol. 2011, 92,
1343–1351. [CrossRef]

29. Komurian-Pradel, F.; Rajoharison, A.; Berland, J.-L.; Khouri, V.; Perret, M.; van Roosmalen, M.; Pol, S.; Negro, F.; Paranhos-Baccalà,
G. Antigenic relevance of F protein in chronic hepatitis C virus infection. Hepatology 2004, 40, 900–909. [CrossRef]

30. Xiao, W.; Jiang, L.F.; Deng, X.Z.; Zhu, D.Y.; Pei, J.P.; Xu, M.L.; Li, B.J.; Wang, C.J.; Zhang, J.H.; Zhang, Q.; et al. PD-1/PD-L1 signal
pathway participates in HCV F protein-induced T cell dysfunction in chronic HCV infection. Immunol. Res. 2016, 64, 412–423.
[CrossRef]

http://doi.org/10.1016/j.jhep.2016.06.015
http://doi.org/10.1016/j.jhep.2016.06.009
http://www.ncbi.nlm.nih.gov/pubmed/27318327
http://doi.org/10.1111/jvh.12726
http://doi.org/10.1053/j.gastro.2018.04.008
http://www.ncbi.nlm.nih.gov/pubmed/29655836
http://doi.org/10.1038/s41598-019-53051-2
http://www.ncbi.nlm.nih.gov/pubmed/31745132
http://doi.org/10.1053/j.gastro.2019.07.040
http://doi.org/10.1172/JCI129642
http://doi.org/10.1002/hep.30212
http://doi.org/10.1002/hep.26153
http://doi.org/10.1038/ni.2046
http://doi.org/10.1007/s10753-015-0160-y
http://doi.org/10.1002/jmv.26091
http://www.ncbi.nlm.nih.gov/pubmed/32470157
http://doi.org/10.1007/s00535-020-01679-7
http://doi.org/10.1146/annurev.immunol.26.021607.090331
http://www.ncbi.nlm.nih.gov/pubmed/18173375
http://doi.org/10.1002/1521-4141(200203)32:3&lt;634::AID-IMMU634&gt;3.0.CO;2-9
http://doi.org/10.3390/cells10010067
http://www.ncbi.nlm.nih.gov/pubmed/33406733
http://doi.org/10.1002/jso.23281
http://doi.org/10.1053/j.gastro.2018.08.030
http://doi.org/10.1099/vir.0.023010-0
http://doi.org/10.1002/hep.20406
http://doi.org/10.1007/s12026-015-8680-y


Int. J. Mol. Sci. 2022, 23, 11623 17 of 17

31. Gomi, S.; Nakao, M.; Niiya, F.; Imamura, Y.; Kawano, K.; Nishizaka, S.; Hayashi, A.; Sobao, Y.; Oizumi, K.; Itoh, K. A cyclophilin
B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J. Immunol. 1999, 163, 4994–5004.
[PubMed]

32. Mizukoshi, E.; Fushimi, K.; Arai, K.; Yamashita, T.; Honda, M.; Kaneko, S. Expression of chondroitin-glucuronate C5-epimerase
and cellular immune responses in patients with hepatocellular carcinoma. Liver Int. 2012, 32, 1516–1526. [CrossRef] [PubMed]

33. Kaji, K.; Mizukoshi, E.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Fushimi, K.; Nakagawa, H.; Yamada, K.; Terashima, T.; Kitahara,
M.; et al. Cellular immune responses for squamous cell carcinoma antigen recognized by T cells 3 in patients with hepatocellular
carcinoma. PLoS ONE 2017, 12, e0170291. [CrossRef]

34. Umano, Y.; Tsunoda, T.; Tanaka, H.; Matsuda, K.; Yamaue, H.; Tanimura, H. Generation of cytotoxic T cell responses to an
HLA-A24 restricted epitope peptide derived from wild-type p53. Br. J. Cancer 2001, 84, 1052–1057. [CrossRef] [PubMed]

35. Mizukoshi, E.; Honda, M.; Arai, K.; Yamashita, T.; Nakamoto, Y.; Kaneko, S. Expression of multidrug resistance-associated protein
3 and cytotoxic T cell responses in patients with hepatocellular carcinoma. J. Hepatol. 2008, 49, 946–954. [CrossRef] [PubMed]

36. Mizukoshi, E.; Nakamoto, Y.; Tsuji, H.; Yamashita, T.; Kaneko, S. Identification of α-fetoprotein-derived peptides recognized by
cytotoxic T lymphocytes in HLA-A24+ patients with hepatocellular carcinoma. Int. J. Cancer 2006, 118, 1194–1204. [CrossRef]

37. Mizukoshi, E.; Nakamoto, Y.; Marukawa, Y.; Arai, K.; Yamashita, T.; Tsuji, H.; Kuzushima, K.; Takiguchi, M.; Kaneko, S. Cytotoxic
T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology 2006, 43,
1284–1294. [CrossRef]

38. Tsuboi, A.; Oka, Y.; Udaka, K.; Murakami, M.; Masuda, T.; Nakano, A.; Nakajima, H.; Yasukawa, M.; Hiraki, A.; Oji, Y.; et al.
Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding
residues. Cancer Immunol. Immunother. 2002, 51, 614–620. [CrossRef]

39. Ogata, R.; Matsueda, S.; Yao, A.; Noguchi, M.; Itoh, K.; Harada, M. Identification of polycomb group protein enhancer of zeste
homolog 2 (EZH2)-derived peptides immunogenic in HLA-A24+ prostate cancer patients. Prostate 2004, 60, 273–281. [CrossRef]

40. Komori, H.; Nakatsura, T.; Senju, S.; Yoshitake, Y.; Motomura, Y.; Ikuta, Y.; Fukuma, D.; Yokomine, K.; Harao, M.; Beppu, T.;
et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of
hepatocellular carcinoma. Clin. Cancer Res. 2006, 12, 2689–2697. [CrossRef]

41. Korangy, F.; Ormandy, L.A.; Bleck, J.S.; Klempnauer, J.; Wilkens, L.; Manns, M.P.; Greten, T.F. Spontaneous tumor-specific humoral
and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin. Cancer Res. 2004, 10, 4332–4341. [CrossRef]

42. Homma, S.; Harada, M.; Yano, H.; Ogasawara, S.; Shichijo, S.; Matsueda, S.; Komatsu, N.; Shomura, H.; Maeda, Y.; Sato, Y.; et al.
Identification of squamous cell carcinoma antigen-derived peptides having the capacity of inducing cancer-reactive CTLs in
HLA-A24+ cancer patients. Int. J. Oncol. 2006, 29, 577–587. [CrossRef] [PubMed]

43. Okochi, M.; Hayashi, H.; Ito, A.; Kato, R.; Tamura, Y.; Sato, N.; Honda, H. Identification of HLA-A24-restricted epitopes with high
affinities to Hsp70 using peptide arrays. J. Biosci. Bioeng. 2008, 105, 198–203. [CrossRef]

44. Kuzushima, K.; Hayashi, N.; Kimura, H.; Tsurumi, T. Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific
CD8+ T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 2001, 98, 1872–1881. [CrossRef]
[PubMed]

45. Kong, J.; Deng, X.; Wang, Z.; Yang, J.; Zhang, Y.; Yu, J. Hepatitis C virus F protein: A double-edged sword in the potential
contribution of chronic inflammation to carcinogenesis. Mol. Med. Rep. 2009, 2, 461–469. [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/10528204
http://doi.org/10.1111/j.1478-3231.2012.02853.x
http://www.ncbi.nlm.nih.gov/pubmed/22830596
http://doi.org/10.1371/journal.pone.0170291
http://doi.org/10.1054/bjoc.2000.1715
http://www.ncbi.nlm.nih.gov/pubmed/11308253
http://doi.org/10.1016/j.jhep.2008.05.012
http://www.ncbi.nlm.nih.gov/pubmed/18619700
http://doi.org/10.1002/ijc.21468
http://doi.org/10.1002/hep.21203
http://doi.org/10.1007/s00262-002-0328-9
http://doi.org/10.1002/pros.20078
http://doi.org/10.1158/1078-0432.CCR-05-2267
http://doi.org/10.1158/1078-0432.CCR-04-0181
http://doi.org/10.3892/ijo.29.3.577
http://www.ncbi.nlm.nih.gov/pubmed/16865273
http://doi.org/10.1263/jbb.105.198
http://doi.org/10.1182/blood.V98.6.1872
http://www.ncbi.nlm.nih.gov/pubmed/11535524
http://www.ncbi.nlm.nih.gov/pubmed/21475851

	Introduction 
	Results 
	Patient Profile 
	The Treatment with DAAs Induced Different Immune Responses to TAA-Derived Peptides 
	The Treatment with DAAs Significantly Altered Immune Cell Profiles 
	Relationship between Immune Cell Profiles and HCV Eradication 
	The Treatment with DAAs Enhanced Immune Responses by Decreasing the Frequency of PD-1-Expressing CD4+ and CD8+ T Cells 
	The F Protein Increased the Frequency of PD-1-Expressing CD4+ or CD8+ T Cells 

	Discussion 
	Materials and Methods 
	Study Population 
	Preparation of Synthetic Peptides and PBMCs 
	IFN- ELISPOT Assay 
	Multicolor Fluorescence-Activated Cell Sorting Analysis 
	Expression and Purification of the HCV F Protein 
	Western Blotting 
	Statistical Analysis 

	Conclusions 
	References

