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Advances in Immunotherapy for Glioblastoma Multiforme
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Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Patients with GBM have poor
outcomes, even with the current gold-standard first-line treatment: maximal safe resection combined with radiotherapy and
temozolomide chemotherapy. Accumulating evidence suggests that advances in antigen-specific cancer vaccines and immune
checkpoint blockade in other advanced tumors may provide an appealing promise for immunotherapy in glioma. The future of
therapy for GBMwill likely incorporate a combinatorial, personalized approach, including current conventional treatments, active
immunotherapeutics, plus agents targeting immunosuppressive checkpoints.

1. Introduction

Glioblastoma multiforme (GBM) is the most common
primary malignant brain tumor in adults, accounting for
approximately 60–70% of gliomas [1] and 15% of primary
brain tumors [2].The current standard treatment for patients
with GBM is maximal tumor resection followed by adjuvant
radiotherapy and temozolomide [3]. Although this stan-
dardized treatment has demonstrated efficacy in prolonging
patient survival, the prognosis for patients remains extremely
poor, with a median survival time (MS) of 14.6 months and
an average 5-year survival rate of less than 5% [1, 2, 4]. This
may be partly due to resistance of GBM cells to treatment
and their capacity to spread and invade into surrounding
brain parenchyma. Accordingly, substantial efforts have been
made in developing new approaches for gene therapy, tar-
geted chemotherapeutics, and/or radiotherapeutic modali-
ties. However, the MS for patients with newly diagnosed
GBM have improved only modestly during the past 10 years.

Immunotherapy, harnessing the power of the host’s
immune system by inducing, enhancing, or suppressing
immune responses to reject cancer cells, is rapidly becoming a
pillar of anticancer therapy. Immunotherapeutic approaches
can be classified as active immunotherapy aimed at pro-
moting a Th1 immune response through tumor vaccines,
nonspecific immune stimulants, or cellular vaccines, and
passive immunotherapy, to induce an antitumor effect by
transferring effector immune cells into patients. In 2010, the
first antigen-specific vaccine for castration-resistant prostate
cancer, sipuleucel-T, was approved by the FDA. In 2011,
the first checkpoint inhibitor for advanced melanoma, ipili-
mumab, was also approved. Since then, immunotherapy has
proven effective in the treatment of melanoma, Hodgkin’s
lymphoma, renal cell carcinoma, and non-small-cell lung
cancer (NSCLC) inwhich conventional therapies have gained
limited success [5–9] (Table 1). In this review, we will summa-
rize the application of immunotherapy for GBM and discuss
preclinical data and emerging clinical studies of vaccination,
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Table 1: Stage of clinical development of immunotherapeutics in select cancers.

Cancer type Mechanism Agent Phase
Melanoma Anti-CTLA-4 Ipilimumab FDA approved
Melanoma Anti-PD-1 Nivolumab Phase III
Melanoma Anti-PD-1 Pembrolizumab FDA approved
Melanoma Adoptive cell therapy Phases I-II
Melanoma Peptide Vaccine Melan-A peptides Phases I-II
Melanoma Autologous DC vaccine Phases I-II
Melanoma Whole tumor cell vaccine Phases I-II
NSCLC Peptide vaccine EGFR peptide Phase III
NSCLC Anti-CTLA-4 Ipilimumab Phase III
NSCLC Anti-PD-1 Nivolumab Phase II

immune checkpoint blockade, and adoptive T-cell transfer in
the treatment of this devastating disease.

2. CNS Immune Privilege and
Immunosuppression of GBM

The central nervous system (CNS) has been traditionally
viewed as an immune-privileged site, secondary to the blood-
brain barrier (BBB) that prevents free diffusion of cells and
molecules and lack of a conventional lymphatic drainage
system [10–13]. Paradoxically, however, it has been known
for over 20 years that brain tumors have the capacity to elicit
potent antitumor immune responses. Most recently, the dis-
covery of a CNS lymphatic system has provided an explana-
tion for this phenomenon. Using animal bearing intracranial
tumors models, it has been demonstrated that tumor-derived
antigens can be drained from the cerebrospinal fluid into the
cervical lymph nodes to stimulate specific T-cells [14]. After
amplification, these T-cells are able to efficiently migrate into
the CNS and target and kill tumor cells [15]. However, these
so-called tumor-specific T-cells have to exert their function
in a hypoxic environment, where chronic inflammation and
tumor cells can stimulate immunosuppression [16]. In addi-
tion, the inflammatory stimuli introduced by brain tumors
can induce microglial activation and blood-brain barrier
(BBB) disruption. Microglia serve as the main effector cells
of the innate immune system in the CNS and play a critical
role in cytotoxicity against phagocytosis and T-cell activation
through antigen presentation. It has been demonstrated that
microglia can increase GBM cell migration and invasion via
secretion ofmatrix-degrading enzymes andmembrane type I
metalloproteinases (MMPs) [17].The role thatmicroglia plays
in GBM tumor progression was verified by the identification
of protumorigenic Osteoactivin (GPNMB) and Osteopontin
(SP1) expression in profiledGBM tumor-associatedmicroglia
[18]. Disruption of the BBB with injury and disease can
facilitate the presentation of CNS antigens to the cervical
lymph nodes, serving to prime T-cells for homing and
infiltration into the tumor parenchyma [19–21].

InGBM, a high level of vascular endothelial growth factor
(VEGF) expression and pathologically structured microves-
sels can introduce increased permeability of BBB, enhancing

the interaction between tumor cells and the immune system.
GBM cells express high levels of MHC and Fas which play
a role in the adaptive immune response. However, GBM has
been traditionally considered an immunosuppressive tumor,
effective in evading the immune response through a variety
of mechanisms (Figure 1). First, GBM can express various
potent immunosuppressive factors, such as indoleamine 2,3-
dioxygenase (IDO), TGF-𝛽, and STAT3 [22–24]. IDO is
expressed in 96% of resectedGBM, of which the upregulation
is correlating with a poor patient prognosis [25]. IDO1 func-
tions to convert tryptophan into kynurenines, which mediate
apoptosis of effector T-cells and activation of regulatory T-
cells- (Treg-) mediated immunosuppression [26]. Inhibition
of TGF-𝛽/Smads signaling can restore immune surveillance
in glioma models [27] which could inhibit proliferation
through microRNA-182 and platelet-derived growth factor-
𝛽 (PDGF-𝛽). Second, another immunosuppressive pathway
mediated by interactions between programmed death 1 (PD-
1) and programmed death-ligand 1 (PD-L1) contributes to
the inhibition of T-cell activation and proliferation. Exami-
nation of 135 GBM specimens demonstrated that PD-L1 was
positively expressed in 88% newly diagnosed GBM patients
and 72% recurrent GBM patients [28]. Although the PD-
L1 expression in the healthy CNS parenchyma surrounding
GBM is very low, GBM cells express a relatively higher level
of PD-L1 than other tumors (∼30% of melanomas [29] and
25–36% of NSCLC [30]). Moreover, both tumor-infiltrating
macrophages andmicroglia in GBMwere reported to express
high levels of PD-L1, suggesting the need for optimal
immunotherapeutic benefit [31, 32]. A third predominant
and essential pathway contributing to immunosuppression
in GBM is mediation by cytotoxic T-lymphocyte antigen-
4 (CTLA-4), a coinhibitory receptor that outcompetes cos-
timulatory receptor, CD28, for binding to CD80 and CD86
[33, 34]. The inhibitory effects of CTLA-4 occur largely in
naive and resting T-cells and act to inhibit T-cell effector
function and augment the inhibitory activity of Tregs [35].

3. T-Cell Based Vaccine Therapies

Recent expansion in our knowledge of immune-mediated
mechanisms has led to the rapid development of immune-
targeted therapeutic strategies (Table 2). Among anticancer
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CD28

Decreased T-cell activation
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(1) Decreased T-cell activation
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peptide
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Figure 1: Mechanism of CTLA-4 and PD-L1 immune checkpoints. The CTLA-4 immune checkpoint (left figure) occurs early during the
priming phase of the immune response, acting within secondary lymphoid organs. CTLA-4 is a powerful inhibitory T-cell receptor that can
preferentially bind to CD80/CD86 on the surface of APCs, preventing their binding to the T-cell costimulatory receptor CD28, thus leading to
decreased T-cell activation and proliferation in the context of antigen-presenting MHC class I. PD-1 signaling takes place during the effector
phase of the immune responses within the tumor microenvironment. The inhibitory PD-1 T-cell receptor interacts with one of two currently
identified PD-1 ligands: PD-L1 or PD-L2, expressed on the surface of tumor cells. Engagement of PD-1 ligands with the PD-1, in the context
of tumor antigen-presenting MHC class I, can decrease the T-cell tumor lytic capacity and induces T-cell anergy. APC: antigen-presenting
cell.

immunotherapies, the success of tumor vaccines and T-
cell therapies relies on the elicitation of significant numbers
of tumor-specific T-cells to seek and destroy tumor cells.
Adaptation of vaccination strategies in cancer is aiming
at eliciting unproductive immune responses against tumor
cells in the patient by injection of tumor-derived antigens.
The primary requirement for a safe and effective tumor
vaccine is that the antigen target be expressed specifically
in tumor cells but absent in normal cells of the body. In
this regard, tumor-specific antigens (TSAs) that arise from
mutations in the tumor are ideal candidates. An example of a
potential TSA in GBM is epidermal growth factor receptor
variant III (EGFRvIII), which induces the immune system
to act against the tumor by presenting the mutant peptide
to the stimulated immune cells [36]. EGFRvIII is the result

of an in-frame deletion of exons 2–7 on EGFR resulting
in a novel amino acid sequence and a truncated protein
with an altered extracellular domain epitope [37]. Phase II
clinical trials of Rindopepimut�, a 13-amino acid EGFRvIII
peptide vaccine conjugated to adjuvant has demonstrated
vaccine immunogenicity and increased overall survival (OS),
which is correlated with the magnitude of induced tumor
immunity [38–40]. Interestingly, most patients that relapsed
after vaccination had lost the EGFRvIII antigen, demon-
strating at the same time the efficacy of vaccine-induced
immune responses in eradicating tumor cells [38]. Another
phase III ACT IV study involved 700 patients with newly
diagnosed EGFRvIII-positive GBM demonstrated that treat-
ment of Rindopepimut (Rintega) plus temozolomide failed to
improve overall survival (OS) compared with temozolomide
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and a control [41]. However, as reported in a study using
single-cell DNA analysis, only a subset of cells in the tumor
may express EGFRvIII due to the intratumoral heterogeneity,
and expression may be highly variable [42, 43], resulting
in survival and recurrence of the non-EGFRvIII-expressing
cells. Despite these concerns, trials of Rindopepimut have
shown promising results overall, leading to an ongoing phase
III trial in newly diagnosed (NCT01480479) and relapsed
(NCT01498328) GBM. Unfortunately, since EGFRvIII is only
present in 20–30% of newly diagnosed GBM [44], the
identification of alternative GBM TSAs with higher levels of
expression will likely be necessary to achieve higher efficacy.
For example, another clinical trial based on the mutant
isocitrate dehydrogenase type 1 (IDH1) for recurrent grade II
astrocytoma (NCT02193347) has shown greater efficacy [45];
themutant IDH1 is carried bymore than 70% of diffuse grade
II and III gliomas [46].

Considering that heterogeneity of TSAs in the patient
population as a potentially limiting factor in treatment
efficacy, tumor-associated antigens (TAAs), which are not
tumor exclusive but are relatively overexpressed compared to
normal tissues, may be a more viable target in tumor vac-
cines. Clinical trials in GBM patients, using peptide-pulsed
dendritic cells or peptides alone in adjuvant, demonstrated
that TAA-based vaccine could elicit T-cell responses without
collateral autoimmunity, showing benefit in some patients
[47–50]. Early results were exciting, prompting initiation of
more clinical trials, such as applying the vaccine in patients
with lower-grade glioma, oligodendroglioma, oligoastrocy-
toma, and ependymoma (NCT01795313). On the other hand,
peptide elution from GBM cells was demonstrated capable
of identifying 10 novel GBM-associated antigens, brevican,
chitinase 3-like 2, Chondroitin sulphate proteoglycan, fatty
acid-binding protein 7, insulin-like growth factor 2messenger
RNA-binding protein 3, neuroligin 4, X-linked, neuronal cell
adhesion molecule, protein tyrosine phosphatase, receptor-
type, Z polypeptide, tenascin C, were overexpressed in 80–
100% of GBM patients, making a peptide vaccine possible
[51]. In this study, researchers found >6000 HLA-bound
peptides from HLA-A∗02+ glioblastoma, of which over 3000
were restricted by HLA-A∗02. They prioritized investigation
of these 10 glioblastoma-associated antigens, to which GBM
patients showed no T-cell tolerance. Moreover, researchers
demonstrated that these 10 peptides were highly immuno-
genic not only in healthy individuals but also in GBM
patients, 9 of which were being developed in a multipeptide
therapeutic vaccine designated IMA950. Moreover, peptide
elution from GBM cells identified 10 novel GBM-associated
antigens which are overexpressed in 80–100% of GBM
patients, making a peptide vaccine a potential reality [51].
Three trials that incorporate these well-characterized TAAs
(called the IMA950 antigens) are underway (NCT01403285,
NCT01920191, NCT01222221), using CD8+ T-cell epitopes
with different adjuvants. Other trials aiming at eliciting
both CD4 and CD8 T-cell responses use whole proteins as
immunogen to construct the TAA vaccines (NCT00626483,
NCT01522820, NCT00390299).

Vaccines that target single antigens are restricted to the
relatively small subset of patients with tumors that express

those TSAs and TAAs. Moreover, the heterogeneity of tumor
cells in expressing such antigens may also potentially limit
the utility and efficacy of these single-antigen vaccines.
Accordingly, alternative vaccine approaches have been cre-
ated to target a broad range of antigens. Among these, heat-
shock protein (HSP) peptide complexes (HSPPC-96) have
generated particular interest. HSPPC-96 is a primary resident
chaperone of the endoplasmic reticulum and binds various
client proteins that are involved in the antigen-presenting
pathway [52]. When conjugating to tumor peptides, intra-
cellular and extracellular HSPs coordinate to mediate the
internalization of HSPPC-96 into APCs for efficient class
I and II MHC-mediated presentation of tumor peptides
[53].Thus,HSPPC-96-tumor peptide complexes can generate
potent tumor-specific immune responses. In a phase II trial
for surgically resectable recurrent GBM, in which HSPPC-
96-loaded antigens were extracted from patient-derived
glioma tissue to use as a personalized antiglioma vaccine,
the median OS was increased to an impressive 42.6 weeks,
a substantial survival benefit when compared to historical
controls [54]. However, immunotherapeutic approaches may
be complicated by immunogenic side effects profiles, for
example, HSPPC-96 stimulation of both cytotoxic T lympho-
cytes (CTLs) and Tregs, especially at higher doses [55], and
lymphopenia [54].

4. Alternative Immune-Mediated Vaccines

The concept of vaccine immunotherapy involves priming
antigen-presenting cells (APCs) with tumor-derived antigens
in order to accelerate the eradication of tumor cells [56]
(Figure 1). Of the three types of professional APCs, dendritic
cells (DCs) are the most powerful and efficient in activating
T-cells, making DCs attractive candidates for therapeutic
antitumor strategies [57]. DCs express high levels of cell
surface markers MHC class I, MHC class II, and CD86 [58]
and are involved in both innate and adaptive immune systems
[59]. Compared to other APCs, DCs process antigens more
slowly generating a longer andmore sustainedT-cell response
[60]. Autologous DCs exposed to GBM-associated antigens
to take up and process the antigens as peptides on their cell
surface in the context ofMHCs are injected back into patients
as a vaccine therapy. Not only can the T-cells of patients be
activated by DCs-based vaccines via recognition of MHC
class I or II molecule, but natural killer (NK) and natural
killer T (NKT) cell function can be improved, both of which
can also elicit a powerful antitumor effect [61]. The efficacy
of DC-based vaccine for GBM utilizing pulsed autologous
DCs with tumor lysate is currently tested in a phase III
trial for newly diagnosed GBM patients (NCT00045968).
A preclinical study demonstrated that modulation of CMV-
specific DCs with tetanus/diphtheria (Td) preconditioning
could increase DC migration to vaccine site-draining lymph
nodes (VDLNs) [62]. This DC migration could also be
enhanced by exogenous administration of chemokine CCL3
in a mouse model with normal CD4 T-dependent immune
responses. The investigators propose CCL3 as a novel and
important mediator to increase DC migration to VDLNs.
In this study, researchers found that Td-treatment could

https://clinicaltrials.gov/ct2/show/NCT01480479
https://clinicaltrials.gov/ct2/show/NCT01498328
https://clinicaltrials.gov/ct2/show/NCT02193347
https://clinicaltrials.gov/ct2/show/NCT01795313
https://clinicaltrials.gov/ct2/show/NCT01403285
https://clinicaltrials.gov/ct2/show/NCT01920191
https://clinicaltrials.gov/ct2/show/NCT01222221
https://clinicaltrials.gov/ct2/show/NCT00626483
https://clinicaltrials.gov/ct2/show/NCT01522820
https://clinicaltrials.gov/ct2/show/NCT00390299
https://clinicaltrials.gov/ct2/show/NCT00045968
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Table 3: Representative clinical trials of immune checkpoint blockade in glioma.

Registration number New/recurrent/metastatic Mechanism Therapy Number of patients Phase

NCT02017717 Recurrent Anti-PD1, anti-CTLA4 Nivolumab, ipilimumab,
bevacizumab 𝑛 = 440 Phase III

NCT02336165 New + recurrent Anti-PDL1 MEDI4736,
Bevacizumab, 𝑛 = 84 Phase II

NCT02311920 New + recurrent Anti-PD1, anti-CTLA4 TMZ, nivolumab,
ipilimumab 𝑛 = 42 Phase I

NCT02337491 Recurrent Anti-PD1 Pembrolizumab,
bevacizumab 𝑛 = 79 Phase II

NCT01952769 Recurrent Anti-PD1 Pidilizumab 𝑛 = 30 Phase I/II

not only increase the PSF and OF in GBM patients but
also suppress the tumor growth in their established mouse
model. Accordingly, strategies aiming at modulating the DC
migration may be a promising therapeutic option. However,
the modification of autologous DCs is an expensive, time-
consuming, and labor-intensive process that must be carried
out in specialized facilities. In addition, the variability of some
antigens in inducing immune responses may also result in
variable and inconsistent effects. Tumor-specific proteins and
peptides that represent these proteins have then been used as
antigens to enhance tumor-specific cytotoxicity [63].

Another approach uses an immunotherapeutic strategy
to target glioma stem cells (GSCs). With their more active
DNA repair mechanisms and highly expressed multidrug
resistance genes, GSCs may play a role in mediating the
resistance of GBM to radiotherapy and chemotherapy and
contribute to local immunosuppression in theGBMmicroen-
vironment [64–66]. Several studies have demonstrated that
GSC-antigens-loaded DC vaccines could induce immune-
reactivity and a survival benefit in rodent orthotopic GBM
models [67, 68]. Another study showed that immunization
with GLAST peptides, a neural stem cell marker that is highly
expressed in the plasma membrane of GSCs, could efficiently
prevent the tumor progression in a glioma GL261 mouse
model [69]. Clinically, a DC vaccine (ICT-107) loaded with
six synthetically processed GBM-associated peptides, four of
which (HER2, TRP-2, AIM-2, and IL13R𝛼2) are considered
GSC-associated, has shown promising results in phase II trial
for newly diagnosed GBMpatients [70]. Another phase I trial
found that median PFS and OS in newly diagnosed GBM
patients were 16.9 and 38.4 months, which were correlated
with expression of the GSCs associated antigens in tumors
before vaccination [47]. Accordingly,GSC-antigens, however,
may be ideal for vaccination for their capability of stimulating
T-cells to induce tumor-specific cytotoxicity against GBM
cells when loaded to DCs [71].

Several studies have demonstrated that GSC-antigens-
loaded DC vaccines could induce immune-reactivity and
a survival benefit in rodent orthotopic GBM models [69,
70]. Clinically, a DC vaccine (ICT-107) loaded with six
synthetically processed GSC-associated peptides has shown
promising results in phase II trials for newly diagnosed GBM
patients [47]. Accordingly, GSC-antigens, however, may be
ideal for vaccination for their capability of stimulating T-cells

to induce tumor-specific cytotoxicity against GBMcells when
loaded to DCs [71].

5. Immune Checkpoint Inhibition

It has been recognized that coinhibitory receptors on T-cells
play an essential role in attenuating the strength and dura-
tion of T-cell-mediated immune responses. These inhibitory
receptors are referred to as immune checkpoint molecules
responsible for maintaining self-tolerance and preventing
autoimmune reactions [72, 73]. To date, the two most
intensely investigated coinhibitory molecules are CTLA-4
(that acts early in T-cell activation) and PD-1 (that blocks T-
cells at later stages of the immune response) [74]. It has been
demonstrated that blockade of CTLA4 and PD1 could induce
tumor regression and promote long-term survival in mouse
glioma models (Table 3) [35, 75]. Clinically, ipilimumab, a
humanized CTLA-4 antibody and the first FDA-approved
immune checkpoint inhibitor, has been demonstrated to
improve OS in a phase III clinical trial for metastatic
melanoma patients [76], however, with only a complete
response observed in 2% patients. In phase I and II trials
of solid tumors, ipilimumab improved PFS [77, 78] but with
severe immune adverse effects [79]. However, another CTLA-
4 antibody, tremelimumab, failed to show significant survival
benefit in phase III trial for metastatic melanoma patients
[74]. In GBM, robust antitumor immunity introduced by
CTLA-4 mAb was only observed in at the preclinical stage
[75] and the clinical utility of ipilimumab may be limited to
only a small subset of GBM patients.

Conversely, efforts aimed at inhibiting the PD-1/PDL1
pathway have shown more promising results. In a preclinical
study using the GL261 glioma mouse model, combination
of anti-PD-1 antibodies and radiotherapy doubled median
survival and elicited long-term survival in 15–40% of mice
compared with either treatment alone [75]. Clinically, pem-
brolizumab, a PD-L1 antibody, has been approved by the
FDA to apply in the treatment of metastatic melanoma
and NSCLC. In GBM, nivolumab, another PD-1 antibody,
developed for GBM patients is being tested, with two clini-
cal trials currently recruiting GBM patients (NCT02337491,
NCT02336165). The most promising results have been
achieved in a randomized control trial with combinatorial

https://clinicaltrials.gov/ct2/show/NCT02017717
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CTLA-4/PD-(L)1 blockade for advancedmelanoma, inwhich
combination of CTLA-4 and PD-1 blockade demonstrated an
improved objective response rate (ORR) of 58%, compared
to monotherapy of anti-CTLA-4 (19%) and monotherapy
of anti-PD-1 (44%) [80]. A randomized phase III study
aimed at testing nivolumab versus bevacizumab in recur-
rent GBM patients will also test combination therapy of
nivolumab and ipilimumab (NCT02017717). Another two
phase I/II trials will analyze the effectiveness of combinatorial
pembrolizumabwith bevacizumab (NCT02337491) and com-
binatorial pembrolizumab with MRI-guided laser ablation
(NCT02311582) in recurrent GBM patients. In addition,
MEDI4736, a humanized PD-Ll mAb, is currently being
tested in clinical trials for GBM patients combined with
radiotherapy and bevacizumab (NCT02336165).

However, relatively high frequency of immune-related
adverse effects, such as endocrinological, hepatic, gastroin-
testinal, and dermatological toxicities, have limited enthu-
siasm for immune checkpoint blockade as a immunother-
apeutic strategy against cancer [81]. These adverse effects
were considered to be associated with aberrant infiltration
of stimulated CD4+ and CD8+ T-cells into normal tissues in
company with elevated levels of proinflammatory cytokines
[82]. Recently, newer agents targeting PD-1 ligands (PD-
lLs) have now been tested in renal cell cancer, NSCLC, and
melanoma (NCT00729664). These agents have shown the
capability of inducing durable tumor regression with less
grade 3 or 4 adverse events compared with CTLA-4mAb and
PD-1 mAb [83]. Overall, the combination of various immune
checkpoint modulators have shown promising effectiveness
in the treatment of some solid tumors. The application of
combinatorial checkpoint modulators in GBM and other
tumors therefore requires further investigation into the inter-
play of costimulatory and coinhibitory molecules.

6. Adoptive T-Cell Therapy

While previously described therapeutic strategies endeavored
to induce endogenous T-cell responses, adoptive T-cell ther-
apies provide an alternative strategy: in vitro amplification
of tumor-specific autologous T-cells followed by venous
infusion into the same individual. Adoptive T-cell therapy
has evolved during the past two decades in concert with
the development of genetic engineering, resulting in the
generation of high avidity tumor-specific T-cells. Tumor-
reactive T-cells are often achieved by transducing the patient’s
autologous T-cells with vectors encoding T-cell receptors
(TCR) or chimeric antibody receptors (CAR) [84]. Although
TCR engineering has not yet been applied in glioma, several
preclinical studies of CARs targeting proteins (IL-13 receptor
[85, 86], Her2 [87, 88], EphA2 [89], and EGFRvIII [90, 91])
have shown promising results. Clinically, adoptive T-cell
therapy has demonstrated its effectiveness with CAR-based
treatment for CD19C B-cell malignancies [92]. A clinical trial
for 11 recurrent GBM patients has demonstrated infusions of
autologous adoptively transferred human cytomegalovirus-
(CMV-) specific T-cells increased OS to of >57 weeks,
with 4 patients maintaining no progression throughout the

study period [93]. Another clinical trial concerning CMV
adoptive T-cell therapy is ongoing (NCT00693095). The
next step of adoptive T-cell therapy for GBM patients will
likely involve transducing autologousT-cells withCAR.CAR,
which consist of the antigen-binding region of a mono-
clonal antibody fused with a T-cell cytoplasmic signaling
domain, acts independently of MHC I expression on tumors
[94]. Clinical trials investigating CAR targeting EGFRvIII
(NCT02209376, NCT01454596), HER2 (NCT01109095), and
IL-13R𝛼2 (NCT02208362) are underway, and therapeutic
benefits without unacceptable toxicity are anticipated.

7. Conclusions

Current open clinical trials of immunotherapy predomi-
nantly focusing on DC vaccines and antibodies targeting
immunosuppressive checkpoints have achieved promising
immune activity and clinical responses (see Tables 1 and 2 for
summary).However, durable and sustained responses remain
rare, highlighting the need for novel promising approaches
including gene therapy and combinatorial immunothera-
peutic treatment. Immunogenic side effect profiles underlie
the need for next-generation immunotherapies with non-
immunosuppressive and/or anti-inflammatory approaches.
Current obstacles for immune therapy for GBM lie in (1)
finding drugs to penetrate the BBB; (2) identifying spe-
cific, suitable, and immunogenic tumor antigens; and (3)
identifying appropriate pre- and posttherapeutic biomark-
ers. Other challenges include the limited number of GBM
patients eligible to join particular clinical studies and a
deep understanding of various regulatory and stimulatory
factors in the immune system and GBM microenvironment.
Considering that the brain tumors will ultimatelymetastasize
outside the CNS, one future direction of immunotherapy is
to design immunotherapies to obtain sufficient functional
antitumor T-cell in the CNS, with no other sites to be
targeted. If so, one challenge will be determining tolerable
levels of inflammation to occur without damage to the brain.
Additionally, there remains a need for standardized and
validated assays to measure the immune response. However,
increased efforts have been dedicated to establishing reliable
biomarkers to improve the assessment of clinical efficacy
to guide therapeutic decision-making [95]. Immune therapy
for GBM requires an integrated effort, with combinations
of vaccines, cell therapy, and molecules targeting the tumor
environment, trying as well to exploit the beneficial aspects
of radio- and chemotherapy. This will serve to improve
and promote the development of an optimal personalized
therapeutic strategy for the treatment of GBM.
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