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ABSTRACT Genetic studies of multidimensional phenotypes can potentially link genetic variation, gene expression, and physiological
data to create multi-scale models of complex traits. The challenge of reducing these data to specific hypotheses has become
increasingly acute with the advent of genome-scale data resources. Multi-parent populations derived from model organisms provide a
resource for developing methods to understand this complexity. In this study, we simultaneously modeled body composition, serum
biomarkers, and liver transcript abundances from 474 Diversity Outbred mice. This population contained both sexes and two dietary
cohorts. Transcript data were reduced to functional gene modules with weighted gene coexpression network analysis (WGCNA),
which were used as summary phenotypes representing enriched biological processes. These module phenotypes were jointly analyzed
with body composition and serum biomarkers in a combined analysis of pleiotropy and epistasis (CAPE), which inferred networks of
epistatic interactions between quantitative trait loci that affect one or more traits. This network frequently mapped interactions
between alleles of different ancestries, providing evidence of both genetic synergy and redundancy between haplotypes. Furthermore,
a number of loci interacted with sex and diet to yield sex-specific genetic effects and alleles that potentially protect individuals from the
effects of a high-fat diet. Although the epistatic interactions explained small amounts of trait variance, the combination of directional
interactions, allelic specificity, and high genomic resolution provided context to generate hypotheses for the roles of specific genes in
complex traits. Our approach moves beyond the cataloging of single loci to infer genetic networks that map genetic etiology by
simultaneously modeling all phenotypes.
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DERIVING biological models from genetic studies with
multidimensional phenotype data requires analytical

methods that distill the complexity of genetic systems to
specific hypotheses. This challenge has become increasingly
acute with the advent of genome-scale data resources de-
signed to determine how genetic variation affects biological
processes at molecular resolution. Genetic studies of gene
expression (Schadt et al. 2003; Chesler et al. 2005; Hemani
et al. 2014), protein expression (Picotti et al. 2013; Chick et al.

2016), and other panels of quantitative traits (Wolf et al. 2006;
Jia and Jannink 2012) can potentially map the path from
genetic variants to complex physiological states through
dysregulated processes and pathways (Albert and Kruglyak
2015; Civelek et al. 2017). Traits related to metabolic dis-
ease, such as obesity and blood lipid profiles, are examples
of such a system (Schork 1997). Many genetic factors,
which possibly interact, influence multiple traits, including
molecular regulation, serum composition, and health out-
comes. Identifying these genes, and their interactions, will
play a critical role in predicting individual susceptibility to
metabolic disease, and prioritizing drug targets for targeted
treatments (Moore and Williams 2009). However, despite
availability of large-scale studies in multiple human popu-
lations, little is known about the genetic architecture of
metabolic disease. This is likely due to a number of factors,
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including variable environmental exposure and structured
populations (Rosenberg et al. 2002) that affect allele fre-
quencies (Pritchard et al. 2000; Greene et al. 2009). The
analysis of epistatic networks is further complicated by the
fact that epistasis contributes to additive variance (Huang
and Mackay 2016).

Multi-parent populations of model organisms, such as the
Diversity Outbred (DO) mice (Svenson et al. 2012), offer a
powerful alternative for mapping the genetic architecture of
complex traits. This outbred population contains extensive
allelic variation drawn from both classic, and more recently,
wild-derived inbred strains, which is distributed evenly
across the genome (Svenson et al. 2012; Logan et al. 2013;
Philip et al. 2014). The resulting density of polymorphisms
enables a much higher resolution of mapping than typical
intercross populations that share large regions of common
ancestry (Yang et al. 2011). Furthermore, the breeding par-
adigm in the DO is designed to maintain allelic diversity,
reduce linkage disequilibrium, and generate minimal popu-
lation structure (Svenson et al. 2012; Chesler et al. 2016).
The resulting allelic balance allows mapping to narrow ge-
nomic loci, and can potentially power studies of epistasis.
Indeed, although many heritable phenotypes have been
measured in DO mice (Svenson et al. 2012; Bogue et al.
2015), these studies rarely identify a single QTL of excep-
tional effect (Churchill et al. 2012; Logan et al. 2013). The
DO is therefore amenable to genetic analysis, but often too
complex for standard single-trait quantitative trait locus
(QTL) mapping.

The proliferation of expression QTL (eQTL) and similar
studies to link genome-wide molecular traits with genetic
variation has generated new strategies for trait mapping. A
key advance has been the mapping of dimensionally reduced
representations of these data to yield concise associations
between QTL and summary phenotypes. This strategy has
been used to prioritize potential regulator genes based on
genetic association and coexpressed genes (Ghazalpour et al.
2006; Biswas et al. 2008), protein expression (Chick et al.
2016), and correlated phenotypes (Neto et al. 2008). The
precision of these molecular traits has also powered the de-
tection of epistasis, including in human studies (Lappalainen
et al. 2011; Hemani et al. 2014). In total, these studies have
magnified the power of genetic studies to identify the path-
ways and processes that underlie organism-level phenotypes.
This study advances this integrative analysis strategy by in-
ferring epistatic networks of interacting QTL that selectively
influence multiple physiological, serum, and gene module
traits. These QTL, derived from haplotype association, map
how alleles from each inbred founder strain interact with
each other, sex, and diet to affect thesemultiple related traits.
In contrast to similar analyses of intercross data (Tyler et al.
2016), distinctions can be drawn between interstrain and
intrastrain epistasis, which suggest instances of both cross-
strain incompatibilities and within-strain synergy. We used
the network structure to identify candidate genes, and derive
hypotheses of complex trait regulation. Our approach, based

on the combined analysis of pleiotropy and epistasis (CAPE)
(Tyler et al. 2013), is generalizable to all multi-parent pop-
ulations with high dimensional phenotype data.

Materials and Methods

The primary goal of this study was to determine howmultiple
QTL interact to affect complex traits inDOmice. Todo this,we
followed awork flowwith fourmajor phases (Figure 1). First,
we collected data on multiple metabolic traits from mice fed
with chow or high fat diets. Second, physiological traits and
RNA-seq data were batch corrected and further processed to
produce the inputs used for epistasis inference. Third, we
developed and applied a multi-parent version of our previ-
ously described software for combined analysis of pleiotropy
and epistasis (CAPE). This analysis pipeline combines infor-
mation across multiple traits to infer directed epistasis be-
tween genetic variants. Fourth, we further interpreted the
epistatic interactions that formed a connected network be-
tween founder haplotypes. We assessed intra and interstrain
interactions, considered QTL interactions with sex and diet,
and analyzed the overall network structure.

Mice

Micewereobtained fromTheJacksonLaboratory (BarHarbor,
ME) as described in Svenson et al. (2012). The animals were
nonsibling DO mice ranging from generation 4 to 11, and
males and females were represented equally. All animal pro-
cedures were approved by the Animal Care and Use Commit-
tee at The Jackson Laboratory (Animal Use Summary #
06006). Mice were housed in same-sex cages with five ani-
mals per cage as described in Svenson et al. (2012). Animals
had free access to either standard rodent chow (6% fat by
weight, LabDiet 5K52, LabDiet, Scott Distributing, Hudson,
NH), or a high-fat, high-sucrose (HF) diet (Envigo Teklad
TD.08811, Envigo, Madison, WI) for the duration of the
study protocol (26 weeks). Caloric content of the HF diet
was 45% fat, 40% carbohydrates, and 15% protein. Diets
were assigned randomly.

Genotyping: Genotyping was performed on tail biopsies
as described in Svenson et al. (2012) using the Mouse
Universal Genotyping Array (MUGA) (7854 markers), and
the MegaMUGA (77,642 markers) (GeneSeek, Lincoln, NE).

Measurement of physiological traits: Physiological traits
were measured as described in Svenson et al. (2012). Blood
was collected retro-orbitally in 10-week old mice after ad-
ministration of local anesthetic. Cholesterol and triglycerides
were measured using the Beckman Synchron DXC600Pro Clin-
ical chemistry analyzer. Leptin was measured in 8-week-old
mice using nonfasted plasma prepared as previously described
(Svenson et al.2012). Leptin levelswere analyzedusing theMeso
ScaleDiscovery electrochemiluminescent systemaccording to the
manufacturer’s recommended protocol (Meso Scale Diagnostics,
Rockville, MD). Body composition (lean mass and total mass)
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were measured in 12-week-old mice by dual X-ray absorptiom-
etry (DEXA) using a Lunar PIXImus densitometer (GE Medical
Systems). Fat mass was calculated as log (total mass 2 lean
mass).

Measurement of transcript abundance: We measured
transcriptome-wide expression levels from whole livers as
previously described (Munger et al. 2014; Chick et al.
2016). We sequenced RNA using single-end RNA-Seq
(Munger et al. 2014), and aligned transcripts to strain-
specific genomes from the DO founders (Chick et al.
2016). We used an expectation maximization algorithm

(EMASE, https://github.com/churchill-lab/emase) to es-
timate read counts. We corrected for the effects of sex, diet,
and batch by normalizing read counts in each sample using
upper-quantile normalization, and applying a rank Z trans-
formation across samples.

Data processing

Founder haplotype inference: The MUGA and MegaMUGA
arrays identify single nucleotide polymorphisms (SNPs) pre-
sent in each individual. We converted the SNP calls from the
arrays to founder haplotypes. We did this using a hidden
Markov model (HMM) (Gatti et al. 2014), which uses the
order of SNPs in an individual mouse to infer transition
points between different DO founder haplotypes. The result
is a probability of each parental haplotype at each SNP po-
sition in the genome (Gatti et al. 2014). We also merged
diplotype probabilities from the MUGA and MegaMUGA to
interpolate markers on an evenly spaced 64,000marker grid
(0.0238 cM between markers). A few samples were unable
to be genotyped using either the MUGA or MegaMUGA.
These samples were genotyped using genotyping by RNA-
sequence (GBRS) (Chick et al. 2016). GBRS reconstructs
individual genotypes from RNA-Seq data without using geno-
typing arrays. The method aligns RNA-Seq reads to a common
pooled transcriptome of all founder strains simultaneously,
and matches the array calls with high fidelity. The mean Pear-
son correlation between GBRS genotypes and array genotypes
is 0.88 (SD 0.03). The software package is freely available at
https://github.com/churchill-lab/gbrs.

Transcript filtering: Because we were interested in epistatic
interactions influencing transcription, we filtered the liver
transcripts to a subset that were likely to be influenced by
multiple loci (Figure 2). To do this, we identified transcripts
that were likely to have both a local (cis) and a distant (trans)
eQTL. First, we used DOQTL (Gatti et al. 2014) to identify
cis-eQTL for all transcripts that were expressed in at least
50 animals (26,875 transcripts). We corrected for sex, diet,
and batch and used hierarchical linear models to correct for
genetic relatedness (Kang et al. 2008). We kept all transcripts
(13,228) with a significant cis-eQTL, which we defined as a
significant eQTL (permutation-based P# 0:05; LOD $ 7:4)
within 2 Mbp of the encoding gene’s transcript. To identify
transcripts with trans effects, we regressed out the effects of
the cis-eQTL for each transcript (Pierce et al. 2014), and
remapped QTL using DOQTL. We kept all (3635) transcripts
with a significant eQTL (permutation-based P value # 0:05;
LOD . ¼ 7:4) at least 10 Mb away from the encoding gene.
To test the robustness of our filtering methods, we reran this
pipeline using P value thresholds of 0.01 (1719 final tran-
scripts), 0.1 (6253 final transcripts), and 0.2 (10,000 final
transcripts). As we describe below, different filtering thresh-
olds yielded similar results.

Transcript clustering:After identifying transcriptswith likely
trans-eQTL, we collapsed the 3635 transcripts into summary

Figure 1 Overview of study work flow. Boxes separate steps into four
themes: mouse experimentation, processing of genotype and phenotype
data, combined analysis of pleiotropy and epistasis (CAPE), and interpre-
tation of network results.
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expression traits using Weighted Gene Co-expression Net-
work Analysis (WGCNA) (Langfelder and Horvath 2008,
2012; R Core Team 2016). This step removes the burden
of interpreting epistatic interactions influencing thou-
sands of individual transcripts by condensing the tran-
scripts into functionally enriched modules representing
transcriptional programs (Fuller et al. 2007; Zhao et al.
2010), for example, immune processes or redox reactions.
Whereas other transcript clustering methods, such as sin-
gular value decomposition (SVD) (Alter et al. 2000), and
independent component analysis (ICA) (Liebermeister
2002; Rotival et al. 2011), group genes purely on the sta-
tistical properties of expression matrices, WGCNA treats
correlations between transcripts as connections in a net-
work, which has been shown to be biologically relevant
(Agrawal 2002; Featherstone and Broadie 2002; Barabási
and Oltvai 2004).

WGCNA was used to cluster hepatic transcripts with
likely trans effects into functional modules. We ranWGCNA
on the 3635 transcripts with likely trans-eQTL using de-
fault settings. The analysis yielded 11 gene modules,
three of which had significantly enriched functions: met-
abolic processes, redox reactions, and immune processes
(P# 0:05;with Benjamini correction for multiple compar-
isons) (Huang et al. 2009a,b) (Supplemental Material,
Table S1). We refer to the modules by their functional
enrichments: the metabolism module, the redox module,
and the immune module. All three modules were recapit-
ulated by WGCNA at significance thresholds of P# 0:1
and P#0:2; both the immune and metabolism modules
were recapitulated for P# 0:01; indicating that the tran-
script clustering is robust to different thresholds used
during transcript filtering. The Pearson correlation (r)
between the original expression modules and the expres-
sion modules at different thresholds ranged from r ¼ 0:85
to r ¼ 0:95: The functional enrichments found here were
similar to those found in previous work using WGCNA to
analyze mouse hepatic transcripts (Liu and Ye 2014).

Following standardpractice,weused themodule eigengene
(first principal component) to represent the three enriched
modules in our analysis. Although these expression traits do
not represent individual transcripts, they represent transcrip-
tional programs that are potentially relevant to the physio-
logical phenotypes we analyzed here.

Combining expression and physiological traits: We com-
bined the transcription modules from WGCNA with our
physiological traits in order to identify genetic interactions
influencing both transcriptional programs and physiological
traits simultaneously (Table S2). We rank Z normalized each
of the physiological traits. Fat mass was log-transformed to
reproduce a more linear relationship with lean mass (Forbes
1987) (Table S3). We then combined the physiological traits
with the transcript module eigengenes from WGCNA and
performed SVD on the trait matrix to obtain eight orthogonal
eigentraits (ETs) (Table S4). The ETs combine common

signals across all traits, and may group functionally related
signals into individual ETs. This concentration of func-
tional effects may improve power to map weak effects that
are distributed across multiple traits. In our analysis effect
sizes of markers influencing ETs were comparable to those
of the individual traits, but identified different significant
QTL (see Results).

Combined analysis of pleiotropy and epistasis

We previously developed CAPE to infer directed genetic
interactions by combining information across multiple
phenotypes (Carter et al. 2012; Tyler et al. 2013). For
the analysis in the DO, we adapted CAPE to infer epistasis
in multiparental populations. With these changes, CAPE
can be applied to DO mice as well as other multiparental
populations, including in other model organisms. It can
also be used to analyze interactions between SNPs in hu-
man populations. To adapt CAPE to multiparental popu-
lations, we made two major changes. First, we use an
(n21)-state model, where n is the number of haplotypes,
to estimate individual haplotype effects at each locus. In
the DO, there are eight possible haplotypes, derived from
the eight DO founders, at each locus. We used a seven-state

Figure 2 Overview of methods used to filter transcripts with potential
trans-eQTL and create coexpression modules.

624 A. L. Tyler et al.

http://www.genetics.org/content/genetics/suppl/2017/06/05/genetics.116.198051.DC1/Supplemental_Table_S1_Phenotypes_Raw.csv
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.198051/-/DC1/Supplemental_Table_S2_Phenotypes_Normalized.csv
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.198051/-/DC1/Supplemental_Table_S3_Phenotypes_Eigentraits.csv
http://www.genetics.org/content/genetics/suppl/2017/06/05/genetics.116.198051.DC1/Supplemental_Table_S4_Filtered_Genotype_File.csv


linear model to estimate the effects of each allele using the B6
haplotype as the reference haplotype. Thus, all effects are in
reference to B6, and B6 does not explicitly appear in any QTL
or the epistatic network. The secondmajor changewemade to
CAPE was to specify epistatic interactions in terms of ancestral
haplotype.We report, for example, an interaction between the
A/J haplotype on Chr 9 and the CAST haplotype on Chr 2,
rather than simply an interaction between unlabeled alternate
alleles on Chrs 9 and 2.

For phenotypes, we chose to use the first three ETs. We
considered a range of two to six ETs, and empirically de-
termined that power to detect interactions is roughly equal for
the first three, four, or five ETs. We chose to analyze the first
three to balance variance explained from the individual traits
with information loss in the calculation of interaction param-
eters, which involves reparametrizing interaction coefficients
from linear models across all traits to new parameters
describing the influence of the two loci on each other
(Equation 3). This recasts all epistasis in terms of two inter-
action parameters, and therefore introduces a dimensional
reduction for three or more ETs. By selecting three ETs, we
captured 88.3% of the variance across all eight individual
traits, while minimizing information loss in interaction
reparametrization. Furthermore, the contributions to the
fourth and fifth ETs were primarily from individual traits
(Figure 7A), and their inclusion would limit the scope
addressed by the final CAPE parameters.

Filtering genetic loci for pairwise testing: Because exhaus-
tively testing all marker pairs was computationally infeasible,
we filteredmarkers based on their standardized effects on the
ETs. We used linear regression to test the effect of each
haplotype at each locus on the ETs, and selected the high-
est-effect haplotypes for pairwise testing. The seven-state
linear regression model we used is as follows:

Eji ¼ b
j
0 þ

X2
c¼1

xc;ib j
c|fflfflfflfflfflffl{zfflfflfflfflfflffl}

covariates

þ
X7
h¼1

Pi;hb
j
h|fflfflfflfflfflffl{zfflfflfflfflfflffl}

haplotype  effects

þ e
j
i (1)

The index i is from 1 to number of samples and j is from 1 to
number of ETs. Pi;h is the probability of each haplotype h at
the locus, and xc;i is the presence or absence of each covariate.
In this study, we used sex (female:0,male:1) and diet (chow:0,
HF:1) as additive covariates.

After calculating the effect of each haplotype on each ET,
we filtered the haplotypes to those with the standardized
effect size above a minimum threshold for pairwise testing.
Retainingallmarkers ineachpeakwouldcreate largeblocksof
linked markers, which would inflate the number of selected
markers with redundant information. We thus sampled 10%
of the markers in each peak uniformly at random along with
the marker of maximum effect. We selected a threshold of
standardized effect size of 0.11 that yielded 515 individual
variants (Table S4). Selected haplotypes represented all
seven haplotypes across 17 chromosomes and all three ETs.

Allele effect sizes were comparable across three ETs, and
thus no ET was overly represented by this selection process
(Figure S1A).

This selection method potentially enriches the sampled
marker population for loci with private alleles. This enrich-
ment could be reduced by regressing on SNPs rather than
haplotypes, but this procedure would limit interpretation
based on genetic ancestry. The method will also miss QTL
with interactions that do not yield single-scan main effects,
although our permissive acceptance threshold and multiple
trait analysis allow mitigate this limitation. Although we
enriched the t-statistic distribution for high values, low values
were still well represented (Figure S1B). Thus, we enriched
the marker population for markers most likely to influence
one or more traits, but retained the potential to detect many
interactions in the absence of significant single-scan main
effects.

Pairwise regression

After filtering the haplotypes to a manageable number, we per-
formed pairwise regression on all pairs of haplotypes as follows:

Eji ¼ b
j
0 þ

X2
c¼1

xc;ib j
c|fflfflfflfflfflffl{zfflfflfflfflfflffl}

covariates

þ P1;ib
j
1 þ P2;ib

j
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

maineffects

þ P1;iP2;ib
j
1;2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interaction

þe
j
i

(2)

The index i runs from 1 to number of samples and j runs from
1 to number of ETs. xc;i is the presence or absence of each
covariate. Ej

i is the ET for sample i. P1;i and P2;i are the prob-
abilities of the haplotype at each of two variants for sample i.
P1;iP2;i is the interaction of two variants, b1 and b2 are the
effects of two variants on ETj, and b1;2 is the interaction co-
efficient. To avoid testing pairs of closely linked markers,
which can lead to false positives, we did not test any marker
pair whose Pearson correlation coefficient (r) was .0.5.

Reparametrization: CAPE coefficients, which indicate the
strength and direction of a genetic interaction, are derived
from the pairwise regression coefficients through reparamet-
rization. The first step of this process converts the main effect
and interactionparameters fromthe linearregressionto twonew
parameters (d1 and d2). The d terms can be thought of as the
degree to which one variant influences the phenotypic effects of
the other. For example, a negative d coefficient indicates that
one variant suppresses the effects of the other. If one variant has
a negative phenotypic effect, the presence of the other variant
suppresses this effect. The d terms are computed in terms of
coefficients from pairwise regression as follows:

2
4b1

1 b1
2

b2
1 b2

2
b3
1 b3

2

3
5 �

�
d1
d2

�
¼

2
4b1

12
b2
12

b3
12

3
5 (3)

We then translated the d terms into directed variablesm12 and
m21: Unlike the d terms, m12 and m21 are directional. They
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describe how variant 1 influences the effects of variant 2, and
vice versa. They are derived from the d terms as follows:

m12 ¼ d1
1þ d2

;m21 ¼ d2
1þ d1

(4)

Error propagation and significance testing: Each step in
our calculations compounds errors in the estimated parame-
ters. We thus propagated the errors through standard least-
squares regression, and a second-order Taylor expansion on
the regression parameters (Carter et al. 2012).

We estimated the significance of m12 and m21 through
permutation testing. Permutations were run by first shuffling
the ETs relative to the genotypes and rerunning the single-
locus regressions and haplotype selection as we did for the
true parameter estimation. We then reran the pairwise tests
on the permuted ETs. We repeated this process until we had
generated a null distribution from 500,000 marker pair tests
(Tyler et al. 2013). We calculated empirical P values for each
model parameter, and corrected these values using false dis-
covery rate (FDR) (Benjamini and Hochberg 1995).

We report the final results in terms of linkage blocks rather
than individual markers. We determined block boundaries as
described in Tyler et al. (2016). Briefly, for each haplotype,
we used the correlation matrix between variants as an adja-
cency matrix to construct a weighted network, and used the
fast greedy community detection algorithm in R/igraph
(Csardi and Nepusz 2006) to estimate boundaries between
blocks of similar markers.

Interpretation of the epistatic network

We analyzed several features of the epistatic network result-
ing from the CAPE analysis. First, we were interested in the
patterns of haplotype interactions. For example, how many
interactions were between haplotypes from different founder
strains, andhowmanywere betweenhaplotypes froma single
founder strain? We were also interested in examining the
genetic interactionswith the covariates, sex, and diet. Genetic
interactionswith sex could indicate sex-specific risk alleles for
metabolic syndrome, while interactions with diet might in-
dicatealleles that eitherexacerbateorameliorate theeffectsof
the HF diet.

Analysis of variance explained: To estimate the variance
explained by covariates, main effects, and interactions, we
computed the coefficient of determination for stepwise re-
gression models that included variables for sex, diet, signif-
icant main effects, and significant interaction effects added in
order. Parameters were only included if significant in the final
model.

Analysis of network motifs: We assessed the global network
architecture. To investigate network structure, we focused on
network motifs. We defined network motifs as a pair of
interacting haplotypes each with a main effect on a single
phenotype (Figure 3). For example, an A/J and CAST haplo-
type might interact and each influence leptin levels. Motifs
can be described as enhancing (positive interaction), or sup-
pressing (negative interaction), and as coherent (both main
effects are in the same direction), or incoherent (the main
effects are in opposite directions) (Figure 3).

Figure 3 Four types of network motifs. Each motif consists of two
markers interacting to influence one phenotype. The markers can either
have the same-signed (coherent) or opposite-signed (incoherent) main
effects. Their interaction, which can be either enhancing (positive sign)
or suppressing (negative sign), may affect additional phenotypes through
other main effects.

Figure 4 Map of the positions of genes encoding transcripts (y-axis) and
their associated eQTL (x-axis). The effect of each eQTL is conditioned on
the nearest marker, which eliminates diagonal eQTL likely acting in cis.
LOD scores range from 7.4 (P = 0.05) to 300, with darker dots repre-
sents larger LOD scores. A region on distal Chr 11 (arrow) indicates a
potential eQTL hotspot, and may encode a gene that influences many
transcripts.
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Previously, we analyzed a large F2 intercross population
and found that suppressing-coherent motifs and enhancing-
incoherentmotifs were enriched in the epistatic network, and
that these tended to reduce phenotypic variation in the
parental strains (Tyler et al. 2016). Thus individuals carrying
two reference alleles or two alternate alleles had lower phe-
notypic variation than individuals carrying one of each at a
pair interacting loci. Given the diversity of alternate alleles in
this study, we examined these phenotypic effects in the DO
epistatic network.

To do this, we identified all the motifs in the DO epistatic
network, and used linear regression to find the effects of each
individual haplotype, as well as their interaction effect.

y ¼ b0 þ b1 þ b2 þ b1;2 (5)

We subtracted the intercept (b0) from each term (main1 ¼
b1 2b0; main2 ¼ b2 2b0; and int1;2 ¼ b1;2 2b0), and com-
pared the predicted additive effect of the two individual
loci (main1 þmain2) to the actual effect of the full model
ðmain1 þmain2 þ int1;2Þ:

Identification of candidate genes and hypotheses from
genetic interactions: Finally, we used information from
genetic interactions to generate hypotheses about causal
genes in interacting loci. A genetic interaction between loci
implies a functional interactionbetweenelements encodedon
those loci. We therefore used a function-oriented method to
generate hypotheses aboutwhich genes in interacting regions
might be contributing to the epistatic effects inferredbyCAPE.
We first identified all protein coding genes in the interacting
regions using biomaRt (Durinck et al. 2005, 2009). We iden-
tified which of these genes had SNPs corresponding to their
haplotype effects by querying the Sanger SNP database
(Keane et al. 2011; Yalcin et al. 2011) using the R package
SNPTools (Gatti 2015). We further filtered the genes based
on functional annotation. We focused on motifs influencing
the immune module and thus filtered the genes in each re-
gion to those annotated to the Mouse Phenotype (MP) On-
tology (Smith et al. 2005; Smith and Eppig 2012) term
“immune phenotype.” We then looked for the most probable
functional interactions between the groups of genes from

Figure 5 Pearson correlation for all phenotype pairs in this study. Traits tend to be modestly correlated with each other. Physiological traits and
expression traits are positively correlated within their groups, but negatively correlated between groups.
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each chromosomal region using Integrative Multi-species
Prediction (IMP) (Wong et al. 2015). IMP is a Bayesian
network built through integration of gene expression data,
protein–protein interaction data, gene ontology annota-
tions, and other data. It predicts the likelihood that pairs
of genes interact functionally in multiple model organisms
and humans. We used IMP to find the highest likelihood
connected component that contained at least one gene from
each chromosomal region participating in the epistatic in-
teraction. We selected the gene pair with the highest likeli-

hood of interacting functionally as our top candidate gene
pair for the interaction.

Data availability

J:DO mice are available for purchase from The Jackson Labora-
tory (Strain #009376) at https://www.jax.org/strain/009376.
Normalized liver gene expression data are available via Gene
Expression Omnibus at accession numbers GSE45684 and
GSE72759. The physiological phenotypes are described
in File S1, the raw phenotypes are in Table S2 and the

Figure 6 LOD scores for genome scans of all eight phenotypes. A single QTL, at distal Chr 1 for cholesterol, was the only locus at genome wide
significance (P , 0.05; Arrow 1). Although no other loci were genome-wide significant, a potentially pleiotropic QTL on distal Chr 11 is suggestive for
both fat mass and cholesterol (Arrow 2). Horizontal lines denote permutation-based thresholds of P , 0.05 (red, LOD 7.3), P , 0.01 (orange, LOD
6.9), and P , 0.63 (yellow, LOD 5.8).
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normalized phenotypes are in Table S3. The ETs used in the
CAPE pipeline are in Table S4, and the filtered genotypes
used in the pairwise testing in CAPE are in Table S5. The
complete genotype data for all mice and the R data objects
used in all analyses are available at http://do.jax.org (File
S2). We used the Sanger REL-1505 SNPs and structural var-
iants (Keane et al. 2011) and the Ensembl build 82 transcripts
(Yates et al. 2016). The code used to run the CAPE analysis is

in File S2. The code used to run the post-CAPE analyses is in
File S3. A wrapper for the CAPE analysis is in File S5. A full
table of results all interaction and main effect coefficients
from CAPE are in Table S6. The markers included in all link-
age blocks are listed in Table S7, and the genomic coordi-
nates of all linkage blocks are listed in Table S8. Table S1
contains a list of Ensembl IDs for the genes included in each
of the expression modules used in the CAPE analysis. For a
full description of supplemental files see Supplemental_
Files_Legend.rtf.

Results

Transcripts with trans genetic effects cluster into
functionally enriched modules

The filtering of the liver transcriptome resulted in 3635 tran-
scripts that were potentially influenced by trans genetic
loci. The trans-eQTL map of these is shown in Figure 4.
Effects were broadly distributed, with a potential trans
hotspot on distal Chr 11 that influences multiple tran-
scripts. We performed WGCNA, and obtained 11 modules,
three of which were significantly enriched for functional
annotations (Huang et al. 2009a,b) (Benjamini-adjusted
P# 0:05). The significant enrichments were: (1) cellular
metabolic process (metabolism module) (P ¼ 6:33 10217),
(2) oxidation reduction process (redox module) (P ¼
7:73 1027), and (3) immune response (immune module)
(P ¼ 5:23 10215) (Table S1). Modules are referred to
hereafter by their functional annotations. We used the three
corresponding module eigengenes as phenotypes for CAPE
analysis.

Physiological and expression modules are
moderately correlated

The physiological and expression traits in this study were
moderately correlated with each other (Figure 5), which im-
plies that there may be common factors (genetic and/or en-
vironmental) influencing multiple traits as well as unique
information in each phenotype. Correlations (Pearson’s r)
ranged from 20.54 to 0.75. Fat mass and leptin were
the most highly correlated physiological traits (r ¼ 0:75;
P ¼ 2:33 10286), and the metabolism module and redox
module were the most highly correlated expression traits
(r ¼ 0:75; P ¼ 8:53 10286). There were also significant
correlations between the physiological traits and the ex-
pression traits. The most strongly negatively correlated
were lean mass and the metabolism module (r ¼ 2 0:54;
P ¼ 2:93 10237). Triglyceride levels were also negatively
correlated with the redox (r ¼ 2 0:36; P ¼ 1:33 10215)
and immune modules (r ¼ 2 0:28; P ¼ 1:13 1029).

Evidence for pleiotropy influencing physiological and
expression traits

The correlations between traits suggest the possibility of
pleiotropic loci. Since CAPE uses pleiotropy to infer direction-
alityof interactioneffects,weassessed traits forpleiotropy.We

Figure 7 Estimated allele effects of each strain haplotype on Chr 11 for
five traits: log fat mass, cholesterol, leptin, triglycerides, and the redox
expression module. The CAST haplotype on distal Chr 11 has pleiotropic
effects on all traits (Arrow 1). The NZO and A/J haplotypes have indi-
vidual effects on cholesterol (Arrow 2) and leptin (Arrow 3), respec-
tively. All effects are relative to the B6 reference.
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first performed a single-locus QTL analysis using DOQTL
(Gatti et al. 2014). Across all traits, one QTL that influenced
cholesterol reached genome-wide significance (permutation-
based P, 0:01; LOD 8.26) (Figure 6). There were seven
additional suggestive QTL (permutation-based P value
P#0:63) influencing cholesterol, fat mass, leptin, triglyc-
erides, and the metabolism module (See Table S10). Two
suggestive QTL for fat mass and cholesterol were on distal
Chr 11 (Figure 6), potentially indicating a pleiotropic locus.
Examination of allele effects at this locus showed a distinct
CAST effect on fat mass, cholesterol, leptin, triglycerides, and
the redox module (Figure 7). This effect was shared to a
lesser extent by the PWK haplotype in fat mass, leptin, and
triglyceride levels. As with the LOD scores, these effects did

not reach genome-wide significance, but the consistency of
the effects is additional evidence of pleiotropy.

In addition to pleiotropic effects, CAPE requires unique
genetic effects across multiple traits to provide nonredundant
information for inference of epistatic interaction directional-
ity. There was evidence for unique effects across the genome
for all traits. For example, the NZO haplotype on distal Chr 11
had a positive effect on cholesterol and the A/J haplotype had
a positive effect on leptin (Figure 7).

Singular value decomposition concentrates
pleiotropic effects

We used SVD to decompose the trait matrix into eight
orthogonal ETs (Materials and Methods; Figure 8A). This

Figure 8 ETs of combined phentoypes determined by singular value decomposition. (A) Eight orthogonal ETs and their variance content. Proportion of
the total variance captured by each ET (gray bars), and relative contributions of each trait to each ET (heatmap) are shown. The box highlights the three
ETs selected for CAPE analysis. (B) LOD scores for genome scans of the first three ETs. One QTL on distal Chr 11 was suggestive (P , 0.2, arrow) and
may reflect a pleiotropic locus influencing both fat mass and cholesterol. The red and black horizontal lines are at permutation-based thresholds of
P , 0.05 (LOD 7.49) and P , 0.2 (LOD 6.54), respectively. (C) Individual haplotype effects for Chr 11 on the first three ETs. The box highlights the
QTL location for ET2.
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procedure recombines covarying elements of the measured
traits, and potentially concentrates functionally related ef-
fects making them easier to detect. In our subsequent analy-
sis, we used the first three ETs, which captured 88.3% of the
overall variance. The fourth and fifth ET primarily repre-
sented cholesterol and triglyceride phenotypes, respectively,
and their inclusion in CAPE modeling biases models to fit
these variances at the expense of other traits. DOQTL iden-
tified a single locus on distal Chr 11 that influenced ET2
(Figure 8B) (permutation-based P#0:1). From the analyses
of the individual traits, we had identified this region as
potentially pleiotropic, influencing both fat mass and cho-
lesterol, but the locus did not achieve genome-wide signif-
icance in either trait. The greater significance for ET2
suggests that ET2 aggregates signals from fat mass and cho-
lesterol that are influenced by a pleiotropic locus on Chr 11.
This was further supported by the allele effects, in which
CAST showed the greatest influence (Figure 8C). Interestingly,
there were no other significant or suggestive QTL for the
ETs (Table S9).

An epistatic network involving all haplotypes influences
physiological and expression traits

After calculating haplotype effects on the three ETs, we
sampled 515 individual haplotypes with the largest effect
sizes across the genome for pairwise testing (Materials and
Methods). We used CAPE to test these markers for directed
epistatic interactions affecting the first three ETs (Mate-
rials and Methods). The resulting network consisted of
89 significant interactions among 49 loci and two covari-
ates (Figure 9). Significance was based on 500,000 permu-
tations, and set at an FDR-adjusted q value # 0:05: To

determine the robustness of these interactions, we boot-
strapped the standardized effects by sampling the 474 mice in
the experiment with replacement and rerunning the CAPE pipe-
line. Both main effect (Figure S2) and interaction (Figure S3)
standardized coefficients were robust to sampling.

For each trait, we calculated the variance explained by
the significant main effects, the significant interactions, and
by each of the covariates (Figure 10). The total variance
explained ranged from 23% for triglycerides to 66% for the
redox expressionmodule. For all traits, the covariates sex and
diet accounted for the majority of the variance explained.
Main effect loci explained an additional 13% and 19% vari-
ance in lean mass and the metabolism module, respectively.
Relatively little additional variance was explained by interac-
tions. The largest proportions were explained in lean mass
and leptin, which gained a further 1.8 and 1.6% variance
explained, respectively.

To determine strain contributions to this network, we
assessed how frequently individual haplotypes were involved
in genetic interactions. We found that each haplotype partic-
ipated in at least one interaction (Figure 11A). WSB alleles
were involved in the greatest number of interactions (32),
while NZO alleles participated in the fewest (8). The total
number of interactions for each haplotype was marginally
correlated with its representation in the 515 markers se-
lected for analysis (Figure 11A) (P ¼ 0:1). Most haplotypes
were balanced in terms of source and target in the directed
interactions. However, the 129 haplotype was a target of
interactions about four times more frequently than it
was a source, while the NZO haplotype was a source about
twice as many times as it was a target (Figure 11A). The
covariates, sex and diet, were both much more frequently
sources of interactions than they were targets (Figure 11A),
suggesting that these factors commonly modify genetic
effects, and that their broad effects are less commonly ad-
justed by genetic factors.

We next determined how frequently haplotypes inter-
acted in order to compare cross-strain, and within-strain

Figure 9 The pleiotropic QTL interaction network derived from CAPE.
Main effects, colored by haplotype, appear in the concentric circles. Sex
and diet main effects are shown in brown or blue to denote positive and
negative effects, respectively. Arrows between chromosomal regions de-
note genetic interactions that indicate an enhancing effect (brown) or a
suppressing effect (blue).

Figure 10 Variance explained by covariates, main effects, and interac-
tions. Bars show the proportion of variance of each trait explained by the
covariates, sex (light blue) and diet (dark blue), the main QTL effects (light
green), and by the CAPE-derived genetic interactions (dark green).
Numbers in the left margin report the number of significant main ef-
fects (# Main) and the number of significant interactions (# Int) influ-
encing each trait.
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interaction frequencies (Figure 11B). For the seven founder
haplotypes, there were seven possible intrahaplotype inter-
actions and 21 possible interhaplotype interactions. We
found seven intrastrain interactions and 61 interstrain in-
teractions. This excess of cross-strain interactions (nine time
more common than intrastrain interactions or three times
expectation) suggests functional mismatches between hap-
lotypes are more frequently observed than subnetworks of
alleles from a single founder. Five of the seven intrastrain
interactions were between WSB alleles, which is potentially
due to the greater number of WSB markers meeting the
testing criteria. Interstrain interactions were concentrated
among 129, WSB, NZO and A/J alleles, which are all mem-
bers of the Mus musculus domesticus subspecies. CAST,
M. musculus castaneus, interacted with each of the other
strains relatively evenly, while PWK, M. musculus, was the
most isolated strain, and did not interact at all with the NZO
or NOD haplotypes.

Epistatic network hub overlaps trans-eQTL hotspot

A minority of QTL were involved in multiple genetic interac-
tions. The genetic locus participating in the largest number of
interactions (nine) was a CAST haplotype on Chr 11. This
haplotype (98.2–117.5 Mbp) coincided with the pleiotropic
CAST haplotype influencing fat mass, cholesterol, leptin, tri-

glycerides, and the redox module (Figure 7), as well as an
apparent trans-eQTL hotspot (Figure 4). Taken together,
these results suggest that the multiple traits influenced here
are related to each other through redox related transcrip-
tional programs, and that this locus may contain a master
regulator that influences blood lipid profiles and body com-
position, in part through redox related transcription.

Sex interacted with diet and QTL from all
founder haplotypes

We observed multiple interactions between sex and QTL,
suggesting that sex modifies genetic effects or, conversely,
some genetic effects are sex-specific. As previously observed,
sex had significant effects on all physiological traits except
leptin levels (Eppig et al. 2015). This effect was positive for
all phenotypes, such that males had higher log fat mass
(males 1.9 g, females: 1.7 g, P ¼ 5:73 1022), lean mass
(males: 25.1 g, females: 18.3 g, P, 23 10216), cholesterol
(males 110.4 mg/dl, females: 93.8 mg/dl, P ¼ 4:33 10210),
and triglycerides (males: 156.0 mg/dl, females: 115.0 mg/dl,
P ¼ 7:63 10214). All expression modules were significantly
lower in males (all P, 23 10216).

The majority of genetic interactions with sex (12 of 15)
involved a suppression of allele effects by sex, indicating that
the alleles had larger effects in females than in males. At least

Figure 11 Frequency of haplotype partici-
pation in genetic interactions. (A) The num-
ber of times haplotypes of each ancestry
was the source or target of an interaction,
sorted by total number of interactions.
The final two columns indicate how many
candidate markers were tested for pair-
wise interactions, and the total number
of chromosomes containing the markers.
Shading highlights higher counts. (B) A
detailed count of the interactions by an-
cestry and covariate. Darker squares rep-
resent higher counts, and counts of 0 are
represented by dashes for clarity.

Figure 12 Examples of QTL-sex and sex-
diet interactions. (A) The CAST (CST)
haplotype at a Chr 11 QTL had a nega-
tive effect on the metabolism module rel-
ative to all non-CAST haplotypes (—),
and interactively enhanced the effect of
the male sex. Thus, in males with the
CAST haplotype, the metabolism module
was lower than expected from the addi-
tive model. (B) The WSB (WS) haplotype
at a Chr 17 QTL had a positive effect
on cholesterol relative to all non-WSB al-
leles (—). Males also have higher choles-

terol than females. The WSB allele suppressed this effect in males, however, and males with the WSB allele had lower cholesterol than expected from
the additive model. (C) The HF diet had a negative effect on triglyceride levels relative to the chow diet (Ch), and males had higher triglycerides than
females. However, males on the HF diet had higher triglyceride levels than expected from the additive model. Diet enhanced the positive effect of the
male sex (M) which, in turn, overcame the negative marginal effect of diet. In (A) and (B) bars show mean phenotype values for animals partitioned by
sex and genotype. In (C), bars show phenotype means for animals partitioned by sex and diet. Error bars denote SEs.
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oneQTL fromeach founder strainwas affected. In three cases,
the effects of sex were modified by a QTL or HF diet. Since
these are cases inwhich aQTLbroadly affectedmany traits via
its influenceonall sexeffects,weconsider theminmoredetail.
First, aCASTallele at aChr11QTLenhanced theeffects of sex,
illustrated with the metabolism module (Figure 12A). Both
the CAST allele and male sex reduced this module pheno-
type, and the joint effect was greater than the additive ex-
pectation. Thus these factors act synergistically to affect the
module. The second interaction is aWSB allele on Chr 17 that

suppresses sex effects, and can be illustrated with cholesterol
as a phenotype (Figure 12B). Both the WSB allele and the
male sex increase cholesterol levels, but the joint phenotype
is lower than expected from an additive model due to the
QTL reducing the sex effect. Finally, phenotypic effects of
male sex were enhanced by diet, suggesting that males were
more susceptible to the effects of a HF diet (Figure 12C).
The HF diet slightly reduced triglyceride levels, while males
had greater triglycerides than females. However, males on
the HF diet had greater triglyceride levels than expected
from the additive model. Diet enhanced the positive effect
of the male sex, overriding the negative marginal effect of
diet.

Diet interacted with QTL from a subset of
founder haplotypes

In addition to its interactionwith sex, diet also interactedwith
multiple genetic loci. On its own, diet significantly increased
log fat mass (chow: 1.6 g, HF: 2.1 g, P, 23 10216), choles-
terol (chow: 85.8 mg/dl, HF: 119.1 mg/dl, P, 23 10216), and
leptin (chow: 7.7 mg/dl, HF: 19.7 mg/dl, P,23 10216), and
significantly decreased triglyceride levels (chow: 146.7 mg/dl,
HF: 124. 3 mg/dl, P ¼ 13 1024). It also significantly de-
creased all expression modules (all P, 0:001). Similar to
sex, the majority of genetic interactions with diet (five of
seven) were those in which HF diet suppressed genetic effects.
That is, the genetic loci had greater phenotypic effect in
chow-fed mice than mice on the HF diet. These QTL may

Figure 13 Counts of each different motif type in the QTL-QTL network
for each phenotype. Darker shading indicates higher counts.

Figure 14 Phenotypic effects of enhancing-incoherent (left) and suppressing-coherent (right) network motifs. Main1 and Main2 denote the average
deviation from population mean in normalized phenotype for animals carrying the alternate haplotype at the two QTL. Marker 1 and marker 2 are
sorted such that marker 1 always has the lesser effect. Additive is the predicted additive effect determined by the sum of Main1 and Main2. Actual is
the observed deviation from the population mean of animals carrying the alternate haplotype at both markers. Lines are drawn to connect dots from
individual interactions. Blue and brown lines indicate motifs that bring phenotypes closer and further to the population mean than predicted by the
additive model, respectively. Red lines indicate a subset of motifs that exhibit phenotypes more extreme than would be predicted by any additive
model.
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therefore mimic a HF diet in their effects on their targeted
phenotypes. There was one locus, the CAST allele on Chr 2,
that enhanced the effects of diet, indicating that animals
carrying this haplotype were more susceptible to all effects
of the HF diet. The effects of diet were also enhanced by sex,
as mentioned above, indicating that males in this population
were more susceptible to the effects of the HF diet than
females.

Network motifs reveal both redundant and synergistic
genetic interactions

To better understand the overall influence of genetic interac-
tions on traits, we performed network motif analysis (Tyler
et al. 2016). Network motifs were defined as one interaction
between two loci that each had a main effect on one pheno-
type (Figure 3). The interaction was either suppressing or
enhancing, and the two main effects affected the phenotype
in either the same direction (coherent), or opposing (inco-

herent), directions. Here, we investigated the effects of net-
work motifs on traits in the DO, and compared the results to
the F2 intercross in Tyler et al. (2016). Only enhancing-
incoherent and suppressing-coherent motifs were present in
the DO epistatic network (Figure 13). These were the most
common class of interactions in the F2 intercross, in which
instances of both motifs tended to reduce trait variability in
founder strains. That is, animals with the same parental
haplotype at two interacting loci had lower trait variation
than animals with one of each parental haplotype. Thus
haplotypes from different strains had incompatible effects,
destabilizing traits by driving them to extreme values
(Tyler et al. 2016). Here we found that, in the DO popula-
tion, 70% of suppressing-coherent interactions tended to
stabilize traits as they did in the F2 intercross. On the other
hand, 72% of enhancing-incoherent interactions had syn-
ergistic effects, and tended to destabilize traits. A substan-
tial fraction (28%) of enhancing-incoherent interactions

Figure 15 Gene prioritization for interacting QTL Chr9.2 and Chr2.4. (A) Both the A/J haplotype at Chr9.2 and the CAST haplotype at Chr2.4 have
negative effects on the immune module. Together, they have an effect similar to that of the CAST haplotype at Chr 2.4. Error bars show SE. (B)
Functional connections between Il1b and Casp4 from the IMP network. The two proteins are predicted to interact functionally with high confidence. (C)
The transcripts of Casp4, in Chr9.2, and Il1b, in Chr2.4, are both correlated with the immune module. The transcripts are also correlated with each
other.
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had extreme synergistic effects, driving traits past additive
predictions from any QTL pair (Figure 14). Less than 1% of
the suppressing-coherent motifs had this effect. In a two-
parent cross there is only one alternative strain, so epis-
tasis denotes interaction between two alternative alleles
derived from the same parent. In contrast, a multiparental
population like the DO enables epistasis between alleles
from multiple founder lines. The majority of interactions
involved alleles from different founders for both the en-
hancing-incoherent (72%) and suppressing-coherent (96%)
motifs.

Discussion

Traits related to metabolic disease, such as cholesterol levels
and body fat mass, have complex genetic architecture. Here
we used CAPE to identify an epistatic network influencing
of body composition, serum biomarkers, and hepatic gene
expression inDOmice.Thenetwork linkedgenetic loci to each
other, as well as to sex and diet, providing an overview of the
complexity of these related traits. The network also serves a

scaffold that canbeused togenerate specifichypotheses about
genes influencing individual traits.

Although our study is likely underpowered, our CAPE
analysis found that epistasis is abundant inDOmice. Pervasive
epistasis has been observed in many different organisms and
in different experimental paradigms (Mackay 2014) includ-
ing flies (Horn et al. 2011), nematodes (Lehner et al. 2006;
Byrne et al. 2007), mice (Shao et al. 2008; Pavlicev et al.
2010), yeast (Tong et al. 2001; Segrè et al. 2005; Snitkin
and Segrè 2011), maize (Ma et al. 2007), and Arabidopsis
(Rowe et al. 2008). CAPE has been previously used to identify
epistatic networks in mice (Tyler et al. 2016), Drosophila
(Carter 2013), and yeast (Carter et al. 2012). From these
studies, we found that the structure of the networks across
organisms is similar, with pervasive epistasis and balanced
numbers of suppressing and enhancing interactions. Al-
though varying definitions of epistasis make direct compar-
ison between studies difficult, both positive epistasis and
negative epistasis have been similarly detected in systems
ranging from yeast (Tong et al. 2001; Segrè et al. 2005) to
mammalian models (Pavlicev et al. 2010).

Figure 16 Gene prioritization for interacting QTL Chr2.2 and Chr9.2. (A) The NOD haplotype at Chr2.4 and the A/J haplotype at Chr9.2 affect the
immune module positively and negatively, respectively. Together, they have a negative effect similar to that of the A/J haplotype at Chr9.2. Error bars
show SE. (B) Functional connections between Src and Casp4 from the IMP network. The two proteins are predicted to interact functionally by operating
in related, but distinct pathways. (C) The transcripts of Src, in Chr 2.2, and Casp4, in Chr 9.2, are both correlated with the immune module. The
transcripts are also correlated with each other.
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The interaction effects in the epistatic network tended tobe
weak (standardized effect mean: 2.18, SD: 0.4) relative to
main effects (standardized effect mean: 4.55, SD: 0.47), and
account for only marginal trait variance (Figure 10). This is
consistent with epistasis previously found in intercross and
outbred populations (Shao et al. 2008;Mackay 2014;Mackay
and Moore 2014; Bloom et al. 2015). However, this does not
imply that the interactions are unimportant, as they may be
critical in predicting phenotypes in individuals (Nadeau
2003; Shao et al. 2008; Nadeau and Dudley 2011; Mackay
and Moore 2014; Forsberg et al. 2016). For example, genetic
interactions explained only 1.0% of the variance of the im-
mune module when averaged across the entire population.
However, using additive models to predict immune module
levels in animals with epistatic alleles leads to large errors. In
animals carrying the CAST allele on Chr 2 and the A/J allele
on Chr 9, immunemodule levels are dramatically higher than
predicted by the additivity (Figure 15A). As shown in the
motif analysis (see Results section), many of the genetic in-
teractions in the network result in extreme trait values.
Extending these observations to humans, identifying individ-
ual genetic interactions may be critical to predicting disease
risk in individuals (Nadeau 2003; Nadeau and Dudley 2011;
Mackay andMoore 2014), even if they explain relatively little
trait variance across the population (Hill et al. 2008).

Our network motif analysis highlighted the importance of
identifying individual epistatic interactions in outbred pop-
ulations.We found that suppressing-coherentmotifs tended
to reflect redundancy, while the enhancing-incoherent mo-
tifs often drove traits to extreme values. This is in contrast to
our previous findings in a mouse intercross (Tyler et al.
2016), in which both types of motifs tended to stabilize
traits near the population mean. This is potentially due to
within-strain accumulation of alleles that maintain trait
homeostasis; as more same-strain alleles are combined,

the trait is stabilized. In contrast, the phenotype destabili-
zation we observed in the DO may be related to novel
haplotype combinations from the eight founders. Novel re-
combinations of alleles from multiple strains may combine
incompatible molecular strategies for maintaining homeo-
stasis and drive traits to the extreme values we observed.
Alternatively, it has been observed that genetic architecture
can be trait-specific (Shao et al. 2008; Snitkin and Segrè
2011), and it is possible that the difference in the traits
analyzed in the DO and intercross studies accounts for the
differences in genetic architecture.

While identification of genes in QTL is challenging due to
multiple positional candidates, the generation of molecular
hypotheses can be augmented by combining the functional
information in epistasis with gene annotations. We chose
two candidate interactions to illustrate examples of hypoth-
esis generation. First, we considered a suppressive interac-
tion between the A/J haplotype on Chr 9 locus 2 (Chr9.2:
5–36 Mb) and the CAST haplotype on Chr 2 locus 2
(Chr2.2: 123–133 Mb). Both haplotypes had a negative main
effect on the immune module, and their combined effect
exhibited genetic redundancy (Figure 15). Data integration
(see Materials and Methods) identified Casp4 in Chr9.2 and
Il1b in Chr2.2 as the most likely candidate genes. Support-
ing this hypothesis, the abundance of both transcripts
are correlated with the immune module (Casp4: r2 ¼ 0:48;
P ¼ 2:63 10228; Il1b: r2 ¼ 0:49; P ¼ 1310230), and with
each other (r2 ¼ 0:32; P ¼ 7:43 10213) (Figure 15C). Casp4,
also known as Casp-11, is a member of the cysteine-aspartic
acid protease family, and is essential for IL1B secretion, and
mice with homozygous mutations of Casp4 have decreased
levels of circulating IL1B (Wang et al. 1998). These findings
are consistent with the redundant genetic interaction we
observed between Chr9.2 and Chr2.2. Redundant interac-
tions are hypothesized to occur between variants encoding

Figure 17 Evidence supporting a role of the 129 haplotype of Sorbs1 increasing triglyceride levels through increased transcription. (A) eQTL mapping of
the Sorbs1 transcript across Chr 19. The upper panel shows LOD scores for Sorbs1 transcript levels, with the position of the Sorbs1 gene marked with a
vertical gray line. The lower panel shows haplotype effects for Sorbs1 transcript levels. (B) Transcript levels of Sorbs1 in male and female DO mice (a.u.,
arbitrary units). (C) Correlation between triglyceride levels and Sorbs1 expression (r ¼ 1:7; P,23 10216). Female and male mice are shown in blue and
green, respectively.
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genes within a single pathway (Avery andWasserman 1992;
Lehner 2011). Each variant had a similar effect on the path-
way but, because pathway function can be disrupted only
once, the combination of the two variants did not have a
further effect despite inheritance from different founder
strains.

Next, we examined an enhancing interaction between the
sameA/Jhaplotype inChr9.2andadistinctQTLonChr2.This
second locus, Chr 2 locus 4 (Chr2.4: 165–171 Mb) repre-
sented an effect of the NOD haplotype, and did not overlap
the CAST-driven QTL Chr2.2 above. The A/J Chr9.2 and the
NOD Chr2.4 loci influenced the immune expression module
in opposite directions, and together, they drove the trait to be
slightly more negative than predicted by the additive model
(Figure 16A). Our gene prioritization identified Casp4
again for the Chr9.2 A/J locus, and Src as a likely interact-
ing partner in the Chr2.4 NOD locus (Figure 16B). Tran-
scripts for both genes are significantly correlated with the
immune module (Casp4: r ¼ 0:47; P ¼ 6:33 10228; Src:
r ¼ 0:47; P ¼ 3:7310227), and with each other (r ¼ 0:21;
P ¼ 3:23 1026) (Figure 16C). In the IMP network Casp4
and Src occupy two lobes of a connected graph, suggesting
that they are less directly functionally related than Casp4
and Il1b. The Casp4 region of the network is enriched for
genes involved in inflammasome pathways (P ¼ 2:93 1026)
(Motenko et al. 2015), while the Src subnetwork is
enriched for EGFR signaling (P ¼ 2:73 1024) (Motenko
et al. 2015). The IL-1 and EGF families of proteins are
upregulated in human keratinocytes during wound heal-
ing and in psoriasis, and they have been shown to interact
synergistically in upregulating transcripts involved in an-
timicrobial defenses (Johnston et al. 2011). These obser-
vations suggest that the A/J allele of Casp4, and the NOD
allele of Src may interact to influence immune-related
expression in mice.

In addition to epistasis between genetic loci, we identified
numerous QTL-sex and QTL-diet interactions. Most loci
interacting with sex had effects suppressed by sex, show-
ing greater effects in females than males. For example, the
129 allele at the Chr19.4 QTL had positive effects on
triglycerides and the metabolism module. This locus pos-
sibly contains a gene that increases triglycerides through
gene expression differences inmetabolic pathways.Within
this region, there are six genes known to influence triglyc-
erides and one of these, Sorbs1, had a cis 129-specific
effect increasing Sorbs1 expression (Figure 17A). Sorbs1
was furthermore expressed more highly in females (P ¼
0:002) (Figure 17B), and was significantly correlated with
triglyceride levels in the DO mice (r2 ¼ 0:17; P, 23 10216).
Previous work has shown that mice with homozygous
deletions of this gene have reduced triglyceride levels
(Lesniewski et al. 2007). Increased expression due to the
gain-of-function 129 allele is consistent with increased tri-
glycerides in carriers, and therefore the 129 haplotype
of this gene may increase risk for elevated triglyceride
levels in female mice. Like sex, diet is an important factor

in determining risk of metabolic disease and its related
phenotypes. Diet enhanced the effects of sex suggesting
that males in the DO population were more susceptible to
the effects of the diet than females. This is consistent with
indications that inbred male B6 mice gain more weight,
and have higher blood lipid profiles, when fed a HF diet
(Hwang et al. 2010). Multiple studies have shown inter-
actions between genes and diet influencing factors related
to traits associated with metabolic disease (for review, see
Ordovas 2006). We found two QTL-diet interactions in
which genetic effects on lean and/or log fat mass were sup-
pressed in animals on the HF diet. Our results suggest that
the effects of these variants are suppressed by the HF diet.
Since these interactions were suppressing-coherent and,
therefore, suggest redundancy, these QTL potentially
phenocopy some of the effects of a HF diet.

In summary, we have integrated information in physio-
logical and transcriptional phenotypes to detect numerous
genetic interactions in a relatively small DO population.
Although these interactions areweak, when averaged across
the entire population, they can lead to large phenotypic
effects in individual animals. These large phenotypic effects
may be the result of incompatible recombinations between
founder alleles, indicating that epistasismay bemore readily
detectable in multiparental populations than in traditional
intercross designs between two inbred strains. By expanding
the genetic diversity, multiparental populations extend the
possible genetic architectures that can be studied for clini-
cally relevant complex traits.
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