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Emotion recognition is useful in many applications such as preventing crime or

improving customer satisfaction.Most of currentmethods are performed using

facial features, which require close-up face information. Such information is

di�cult to capture with normal security cameras. The advantage of using

gait and posture over conventional biometrics such as facial features is that

gaits and postures can be obtained unobtrusively from faraway, even in a

noisy environment. This study aims to investigate and analyze the relationship

between human emotions and their gaits or postures. We collected a dataset

made from the input of 49 participants for our experiments. Subjects were

instructed to walk naturally in a circular walking path, while watching emotion-

inducing videos on Microsoft HoloLens 2 smart glasses. An OptiTrack motion-

capturing systemwas used for recording the gaits and postures of participants.

The angles between body parts and walking straightness were calculated

as features for comparison of body-part movements while walking under

di�erent emotions. Results of statistical analyses show that the subjects’

arm swings are significantly di�erent among emotions. And the arm swings

on one side of the body could reveal subjects’ emotions more obviously

than those on the other side. Our results suggest that the arm movements

together with information of arm side and walking straightness can reveal the

subjects’ current emotions while walking. That is, emotions of humans are

unconsciously expressed by their arm swings, especially by the left arm, when

they are walking in a non-straight walking path. We found that arm swings

in happy emotion are larger than arm swings in sad emotion. To the best of

our knowledge, this study is the first to perform emotion induction by showing

emotion-inducing videos to the participants using smart glasses duringwalking

instead of showing videos before walking. This induction method is expected

to be more consistent and more realistic than conventional methods. Our

study will be useful for implementation of emotion recognition applications

in real-world scenarios, since our emotion induction method and the walking

direction we used are designed to mimic the real-time emotions of humans as

they walk in a non-straight walking direction.

KEYWORDS

emotion recognition, gait analysis, motion capturing, smart glasses, non-straight

walking behavior, emotion induction, emotional movies, watching video while

walking
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1. Introduction

Recently, research on emotion recognition and analysis

has gained much popularity due to its usefulness. This

technology makes it possible to implement several types of

applications, which include improving the quality of human-

robot interaction (Yelwande and Dandavate, 2020), evaluating

customer satisfaction (Bouzakraoui et al., 2019), detecting

suspicious behaviors for crime prevention (Anderez et al., 2021),

and assessing student engagement during online classes (Tiam-

Lee and Sumi, 2019).

Due to the popularity of emotion analysis research, a specific

research field called Affective Computing (Picard, 2000) has

emerged. This research field focuses on giving computers the

capability to understand human emotion as well as to generate

human-like affects for various applications. Several affective

computing applications have been proposed in recent years.

For example, in the education field, an affective computing

algorithm can be applied to a program of online exercises by

analyzing students’ emotions and interacting with the students

so they can study more effectively while also improving their

mental health (Tiam-Lee and Sumi, 2019).

In security applications, gait analysis is also useful in crime

prevention. Since CCTV systems and security cameras are

already standard equipment widely installed in many places,

due to the advances in computer vision and machine learning

technology, human gait can be analyzed quickly using on-

board computation devices. Identifying suspicious behaviors can

thus be carried out effectively (Anderez et al., 2021). Smart

Visual Surveillance applications can be implemented using gait

analysis, including re-identification and forensic analysis, since

gaits can be captured at a distance without the awareness or

cooperation of the subjects (Bouchrika, 2018).

Human emotion analysis is also useful for improving the

experience of human-robot interaction. Nowadays, robot usage

is increasing in many tasks and situations including delivery

tasks, warehousing tasks, and so on. Making robots move in

crowded environments without disturbing or annoying humans,

through choosing appropriate paths, remains a vital issue to

tackle. By integrating emotion recognition of humans with robot

movement strategy, a socially aware robot can be achieved.

A socially aware robot can minimize its interference with

humans while improving the user’s quality of life (Yelwande and

Dandavate, 2020).

In the past, emotion prediction could be performed using

human observers (Montepare et al., 1987). However, using

human observers is time consuming and not sufficiently

consistent for use in real-world applications. Automatic emotion

recognition, which is a more suitable and accurate approach,

has thus been developed (Stephens-Fripp et al., 2017). Most

publicly available methods nowadays use facial expressions

as features for emotion analysis and prediction. Emotion

prediction using facial features has good accuracy in some

situations, but it still has limitations (Busso et al., 2004). For

example, in situations such as a noisy environment, facial

features are difficult to obtain, and high-quality facial images

cannot be captured with standard security cameras. In some

cases, if the subject has a mustache, beard, or eyeglasses, these

can interfere with emotion recognition that depends on facial

expressions. Emotion intensity is another important issue, since

some subjects do not express intense feelings on their faces. Due

to these limitations, emotion prediction techniques based on

facial features are suitable for use only in limited situations. If

face images can be clearly captured, such as when the subject is

facing forward near the camera, facial emotion recognition is an

appropriate choice. If the face images cannot be clearly captured,

other features might be better for implementation of emotion

recognition in reality.

Gait and posture are known as movement patterns of the

human body as people walk or perform activities. There are

no requirements for high-resolution images or video. Gait

and posture features can be collected without interfering with

the normal life of humans. Furthermore, gait and posture

data can be collected without the subjects’ awareness. These

features make gait and posture recognition successful in

many applications such as human identification (Khamsemanan

et al., 2017; Limcharoen et al., 2020), human re-identification

(Limcharoen et al., 2021), age estimation (Lu and Tan, 2010;

Zhang et al., 2010; Nabila et al., 2018; Gillani et al., 2020),

and gender recognition (Isaac et al., 2019; Kitchat et al., 2019).

Therefore, human gait and posture are appropriate features for

recognition of human emotions as shown in several previous

studies (Montepare et al., 1987; Janssen et al., 2008; Roether et al.,

2009; Karg et al., 2010; Barliya et al., 2013; Venture et al., 2014;

Li B. et al., 2016; Li S. et al., 2016; Zhang et al., 2016; Chiu et al.,

2018; Quiroz et al., 2018).

The objective of this study is to analyze the differences in

human gaits and postures under different emotions as subjects

walk in a non-straight walking path. Several experiments were

conducted to investigate the differences in body-part movement

under different emotions and to verify whether these differences

in movement could be used to identify the current emotion of a

subject. The participants in our experiments consist of male and

female undergraduate university students. They were asked to

walk with their natural postures in a non-straight walking path

while watching emotional videos. Conventional methods where

videos are shown to the subjects before walking pose the risks

of the induced emotions not being consistent and not lasting

until the end of walking (Kuijsters et al., 2016). Moreover, if

we show videos on a normal screen while the subject walks in

a non-straight path, the subject would need to bend or turn his

or her head to watch the videos on the screen.With the proposed

method, the subjects can see the videos directly on HoloLens 2,

so they can walk in a natural way and watch the video at the same
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time. In addition, the induced emotion will be more consistent

and last until the end of walking. In this study, gait data were

analyzed using one-way and multi-factor Analysis of Variance

(ANOVA) as well as Linear Regression Analysis.

Experiments and analyses in this study were conducted to

prove two hypotheses. The first hypothesis is that different

emotions have different effects on body-part movements while

subjects walk, so the emotions of subjects can be recognized

from their walking postures. The second hypothesis is that the

movements of the left and right body parts are not symmetric if

the subjects walk in a non-straight path, causing one side of the

body to reveal the current emotion of a subject better than the

other side. Since our study focuses on human gait analysis while

the subjects walk in a non-straight walking path, it is dissimilar

to most other conventional studies that analyze human gait only

when the subjects walk in a straight walking path (Janssen et al.,

2008; Michalak et al., 2009; Roether et al., 2009; Karg et al., 2010;

Gross et al., 2012; Barliya et al., 2013; Destephe et al., 2013;

Venture et al., 2014; Li B. et al., 2016; Li S. et al., 2016; Sun et al.,

2017).

In short, our experiments and analyses show that human gait

and posture are different under different emotions, especially

with left arm-swing movements.

This article is organized as follows. Section 2 gives an

overview of other works related to ours. Section 3 explains the

method, equipment and materials we used to collect data for

our analysis. Section 4 shows the detailed procedure of how

we preprocessed the data we collected. Section 5 describes the

method we used to extract gait features. Section 6 describes the

statistical methods used to analyze our gait data and the results

of each method. Section 7 discusses and analyzes the results we

found from statistical analyses. Finally, Section 8 summarizes

everything we have accomplished in this study.

2. Related works

Studies on emotion recognition are very popular, and several

research projects on this topic have been proposed in recent

years due to its potential usefulness. Most of the proposed

emotion recognition methods are based on facial expression.

These techniques can achieve accurate results for specific

applications. However, emotion recognition using facial features

still have limitations in some real-world usages, as mentioned

in Section 1. We found that fewer studies focusing on emotion

recognition have used gait and posture features than facial

features. In this study, related works that are useful and relevant

to our study are reviewed.

Xu et al. (2020) conducted a survey to investigate many

studies on gait analysis. They found that gait analysis could

be used not only for identification of subjects but also for

the prediction of subjects’ current emotions. They found

that humans walking under different emotions show different

characteristics. By using this information, automatic emotion

recognition can be achieved. There are several advantages to

using gait compared with traditional biometrics such as facial

features, speech features, and physiological features. Gait can be

observed from far away without a subject’s awareness. Gait is

difficult to imitate. Gait can also be obtained without a subject’s

cooperation. Due to these advantages, gait is a very effective

type of expression that can be used for automatic emotion

recognition. Gait can be recorded using many types of devices.

For example, a force plate can be used for recording velocity

and pressure data (Janssen et al., 2008). Infrared light barrier

systems also perform well in recording velocity data (Lemke

et al., 2000; Janssen et al., 2008). Motion capturing systems, e.g.,

Vicon, can capture coordinate data accurately using markers

attached to the body (Michalak et al., 2009; Roether et al., 2009;

Karg et al., 2010; Gross et al., 2012; Barliya et al., 2013; Destephe

et al., 2013; Venture et al., 2014). Microsoft Kinect is another

efficient tool that can capture the human skeleton by processing

a depth image with a color image to predict the position of

body joints (Li B. et al., 2016; Li S. et al., 2016; Khamsemanan

et al., 2017; Sun et al., 2017; Kitchat et al., 2019; Limcharoen

et al., 2020, 2021). An accelerometer sensor on a wearable

device such as a smartphone or smart watch can also record

the movement data for gait analysis (Zhang et al., 2016; Chiu

et al., 2018; Quiroz et al., 2018). After gait data collection, there

are several preprocessing steps that can be used. For instance,

a low-pass Butterworth filter (Destephe et al., 2013; Kang and

Gross, 2015, 2016) or sliding window Gaussian filtering (Li B.

et al., 2016; Li S. et al., 2016). Data transformation from the

time domain to others such as Discrete Fourier Transform (Li B.

et al., 2016; Li S. et al., 2016; Sun et al., 2017) or Discrete Wavelet

Transform are also widely used (Ismail and Asfour, 1999; Nyan

et al., 2006; Baratin et al., 2015). Gait features are categorized

into Spatiotemporal Features, such as stride length, velocity,

step width, and step length, and Kinematic Features, such as

coordinate data, joint angles, and angular range of motion.

Some approach involves dimension reductions of gait features

such as Principal Component Analysis (Shiavi and Griffin, 1981;

Wootten et al., 1990; Deluzio et al., 1997; Sadeghi et al., 1997;

Olney et al., 1998). Finally, the emotion recognition phase can

be performed using many popular techniques, e.g., Multilayer

Perceptrons (Janssen et al., 2008), Naive Bayes (Karg et al., 2010;

Li B. et al., 2016; Li S. et al., 2016), Nearest Neighbors (Karg et al.,

2010; Ahmed et al., 2018), Support Vector Machine (Karg et al.,

2010; Li B. et al., 2016; Li S. et al., 2016; Zhang et al., 2016; Chiu

et al., 2018), and Decision Tree (Zhang et al., 2016; Ahmed et al.,

2018; Chiu et al., 2018). As for the results, useful findings were

derived from many of the studies they surveyed. For happiness,

the subject steps faster (Montepare et al., 1987), strides are longer

(Halovic and Kroos, 2018), arm movement increases (Halovic

and Kroos, 2018), and joint angle amplitude increases (Roether
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et al., 2009). For sadness, the arm swing decreases (Montepare

et al., 1987), torso and limb shapes contract (Gross et al., 2012),

and joint angles are reduced in amplitude (Roether et al., 2009).

Many gait analysis studies have been proposed in recent decades.

Several applications can be achieved by analyzing human gait.

The following examples are illustrative: human identification or

re-identification (Khamsemanan et al., 2017; Limcharoen et al.,

2020, 2021), gender prediction (Isaac et al., 2019; Kitchat et al.,

2019), emotion prediction (Janssen et al., 2008; Xu et al., 2020),

and mental illness prediction (Lemke et al., 2000; Michalak

et al., 2009). Several of the above methods collected gait data

by such means as a force plate, a light barrier, a motion-

capturing system, a video camera, or an accelerometer. We focus

only on methods that extract 3-dimensional coordinates, binary

silhouette, and body part angles as gait features, since these gait

features are sensitive to walking patterns. Most current studies

propose using a straight walking path in their experiments

to achieve high-quality gait data (Sadeghi et al., 1997; Lemke

et al., 2000; Janssen et al., 2008; Michalak et al., 2009; Roether

et al., 2009; Barliya et al., 2013; Venture et al., 2014; Kang

and Gross, 2015, 2016; Li B. et al., 2016; Li S. et al., 2016;

Sun et al., 2017; Chiu et al., 2018). However, a few studies

have used a free-style walking path, where subjects can choose

any walking pattern they want instead of straight walking

(Khamsemanan et al., 2017; Kitchat et al., 2019; Limcharoen

et al., 2020, 2021). By developing methods for free-style walking

data, there are greater opportunities to implement the proposed

methods in a real-world scenario, in which humans walk without

awareness of being observed in public spaces. Such methods are

also motivated by the difficulty of obtaining adequate straight-

walking data in noisy environments compared with free-style

walking data.

In our study, we show emotion-inducing videos to subjects

using Microsoft HoloLens 2 smart glasses while they walk.

We were also concerned whether human gait could suffer

from interference due to watching videos using smart glasses.

These concerns were related to studies that measured gait

performance of subjects while using smart glasses in performing

attention-demanding tasks while walking, and there are some

findings on this that should be considered. For example, level-

walking performance was not affected in comparison to using a

paper-based display and baseline walking. In addition, subjects

walked more conservatively and more cautiously when crossing

obstacles (Kim et al., 2018). Unfortunately, adverse impacts such

as walking instability can occur when using smart glasses, but the

stability issue was not as significant as when using a smartphone

and a paper-based system (Sedighi et al., 2018, 2020).

Based on these related studies, we decided to use Microsoft

HoloLens 2 for displaying emotional videos to our participants

while they walked in the recording area, despite the possibility

that some adverse effects, such as walking instability, could

occur when using smart glasses while walking. We coped with

this issue by asking the participants to take one rehearsal

walk through the walking area without wearing HoloLens 2

to make them familiar with the walking space and another

rehearsal walk while wearing HoloLens 2 without displaying

anything to make them familiar with walking while wearing

smart glasses at the same time. For the walking pattern, straight

walking should result in cleaner gait data but it has more

limitations when implemented in real-world scenarios. On the

other hand, walking freely without any path guidance would

be difficult for the subjects. Since they have to concentrate

on the video content shown by HoloLens 2 while walking, if

they also need to determine the walking path at the same

time, they cannot focus well on the video content and their

gait can be affected by interference. Therefore, we decided

to use a lax circular walking path for our experiments. By

walking circularly in clockwise or counter-clockwise direction

without marking the path line on the floor, we can have both

straight walking and non-straight walking data in a single

walking trial.

3. Data collection

In most previous studies in the fields of emotional

recognition and analysis, participants were asked to walk

in a straight line after watching emotional movies or asked

to walk in a straight line while thinking about personal

experiences. Various issues arise in these settings. In cases

where participants were asked to walk after watching

emotional videos, it is possible that some participants

do not sustain the same emotions toward the end of

the walk or do not have the same emotion at all after

watching the videos. These conditions can lead to inaccurate

relationships between gaits and emotions. In cases where

participants were asked to feel certain ways using their personal

experiences, it is also possible that some participants cannot

recall their feelings well enough for them to be reflected

in their body movements. These problems can lead to

faulty information.

To eliminate the above issues leading to faulty information

and inaccurate relationships between gaits and emotions, our

experiments are designed so that participants are constantly

exposed to emotion-inducing videos while walking. We used

the latest smart glasses technology, i.e., Microsoft HoloLens 2,

to show videos to subjects while they were walking. To

the best of our knowledge, no currently proposed study has

ever used this kind of emotion induction method. By using

HoloLens 2 for viewing videos, subjects can see the room

environment and the videos at the same time. Because we

show emotional videos to participants while they walk, the

results are closer to real-life situations when a subject sees

certain events and feels a certain emotion due to those
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events. In other words, we attempted to simulate the real-

time emotions of the participants by showing emotion-inducing

videos while they were walking. Moreover, the intensity of the

induced emotions should be more consistent than with previous

methods that showed emotional videos to subjects prior to

walking trials.

3.1. Equipment for data collection

Currently, there are two main types of motion-capturing

equipment: marker-less and marker-based devices. Marker-less

devices are more convenient to use in real-life situations because

there is no need to attach any equipment to the subject’s body.

Coordinates of body parts are calculated by image processing

technology using depth data recorded by an infrared camera

together with RGB images from a color camera. For the marker-

based type, several markers must be attached to the subject’s

body at the desired positions, such as on the head, hand,

or elbow. A marker-based device is more complex to set up

because it requires several cameras to capture the infrared

reflection from the markers attached to the subject’s body for

reconstruction of the markers’ coordinates in 3-dimensional

space. However, the body-tracking accuracy of a marker-less

device is lower than that of a marker-based type because a

marker-less system predicts the position of each body part while

a marker-based system uses the actual position obtained from

several cameras.

In this study, we used OptiTrack, a well-known marker-

based motion-capturing system, for our data collection.

Fourteen OptiTrack Flex 3 cameras were used in our

experimental design. We used the baseline marker set of 37

markers, which is the standard configuration for human skeleton

tracking. With this baseline marker set configuration, the 37

markers were attached to each subject’s body. The names of the

markers are listed in Table 1, and the positions of the markers

are shown in Figure 1. Figure 2 shows an image of how these

OptiTrack cameras were installed.

3.2. Recording environment

We marked a rectangle on the floor for use as the walking

area that can be captured by the OptiTrack motion tracking

system, using black tape as shown in Figure 3. Fourteen

OptiTrack Flex 3 motion-capture cameras were installed on

seven camera stands. That is, two cameras were mounted on

each stand at different heights as shown in Figure 2. The seven

camera stands were placed around the walking area as illustrated

in Figure 4. The size of the walking area is 2.9 by 3.64 m.

TABLE 1 List of OptiTrack baseline markers.

HeadTop

HeadFront

HeadSide

BackTop

Chest

Back Left

Right

WaistFront Left

Right

WaistBack Left

Right

ShoulderBack Left

Right

ShoulderTop Left

Right

ElbowOut Left

Right

UpperArmHigh Left

Right

WristOut Left

Right

WristIn Left

Right

HandOut Left

Right

ThightFront Left

Right

KneeOut Left

Right

Shin Left

Right

AnkleOut Left

Right

ToeOut Left

Right

ToeIn Left

Right

3.3. Materials for data collection

We selected three videos as stimuli for emotion induction.

These videos were shown to the subjects using HoloLens 2 as

they walked through the recording area.

• Neutral video:

The nature landscape video from YouTube named
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FIGURE 1

Position of front and back markers (original human figure source: dox012 on Sketchfab1).

Spectacular drone shots of Iowa corn fields uploaded by the

YouTube user named The American Bazaar.2

• Negative video:

An emotional movie selected from the LIRIS-ACCEDE

database named Parafundit by Riccardo Melato.

• Positive video:

An emotional movie selected from the LIRIS-ACCEDE

database named Tears of steel by Ian Hubert and Ton

Roosendaal.

A neutral video was selected from landscape videos on

YouTube, based on the assumption that it would not induce any

emotion.

Neutral video is the nature view of a corn field located in

Des Moines, Iowa, USA. It was recorded by a drone camera so

it contains the aerial view of the corn field which has mostly

green color for the entire video. This video does not have any

sound. Because of these reasons, we thought it would not induce

any emotion. Positive (inducing happy emotion) and negative

(inducing sad emotion) videos were selected from the public

annotated movie database LIRIS-ACCEDE3 published by Baveye

et al. (2015). This database contains many Creative Commons

1 https://sketchfab.com/3d-models/man-

5ae6bd9271ac4ee4905b96e5458f435d (last accessed April 6, 2022).

2 https://www.youtube.com/watch?v=4R9HpESkor8 (last accessed:

April 6, 2022).

3 https://liris-accede.ec-lyon.fr/ (last accessed: April 6, 2022).

movies and their emotional annotations. In this study, we used

the Continuous LIRIS-ACCEDE collection that contains 30

movies and emotion annotations in Valence-Arousal ranking.

Most movies contain both positive and negative valence in the

same movie. We carefully selected one movie that has positive

valence for the entire movie and one movie that has negative

valence for the entire movie to design a complete walking trial

that contains only one emotion.

The negative video we selected is a short movie named

Parafundit. This movie is the story of a man living alone. He

commits suicide at the end of the movie using a gun. In addition

to the valence score which is negative for the entire movie, we

thought the mood and tone of this video are very suitable for

inducing sadness. For positive video, we selected a movie named

Tears of steel which is a short science fiction movie. The main

idea of this movie is a group of scientists attempts to save the

world from destructive robots. The attempt has been successful

at the end of this movie. Therefore, we chose this movie as the

movie to induce happiness as well as the valence score from

the LIRIS-ACCEDE annotation is positive for the entire movie.

We were also concerned about the length of each video, so

we decided that none of the videos used would exceed 15 min

in length. The lengths of the neutral video, negative movie,

and positive movie are 5:04, 13:10, and 12:14 min, respectively.

Audio of negative and positive videos contain music, sound

effects, and conversation in English. Subjects could hear the

videos’ sound from the HoloLens 2 built-in speakers as they

walked. The neutral video does not contain any sound to ensure

that it does not induce any emotion.
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FIGURE 2

Two OptiTrack Flex 3 cameras installed on one camera stand at

di�erent heights.

3.4. Methods for data collection

The procedures of our data collection are shown in

Figure 5. First, each participant was asked to answer the health

questionnaire and sign the consent form before participating

in our experiments. The health questionnaire consists of the

following questions.

1. Do you have any neurological or mental disorders?

2. Do you have a severe level of anxiety or depression?

3. Do you have hearing impairment that cannot be corrected?

4. Do you have any permanent disability or bodily injury that

affects your walking posture?

FIGURE 3

Rectangular walking area marked with black tape on the floor.

FIGURE 4

Dimensions of walking area and position of recording

equipment (OptiTrack Flex 3).

5. Do you feel sick now? (e.g., fever, headache, stomachache)

6. If you have any problem with your health condition, please

describe it.

Based on the answers to this questionnaire, a subject could

be excluded from participation in our experiment if he or she

had any health issue. In this study, we found that all subjects

were healthy, so all of them could participate in our experiment.

After we confirmed that the subject was physically and mentally

healthy, the subject was asked to walk in a circular pattern inside

the recording area marked by black tape on the floor as shown

in Figure 3. All participants could select the direction they

wanted to walk, between clockwise or counter-clockwise, inside

the walking area. In addition, the subjects could switch their

walking direction from clockwise to counter-clockwise or vice

versa whenever they wanted for an unlimited number of times.
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FIGURE 5

Data collection process.

Before performing the actual recording, each subject was

asked to walk naturally in the recording area for 3 min without

wearing HoloLens 2 as Rehearsal Walk #1 to make the subject

feel familiar with the walking space. Then, each subject was

asked to wear the HoloLens 2 while it did not show anything

and walk again for 3 min as Rehearsal Walk #2 to make the

subject feel familiar with walking while wearing HoloLens 2. In

this walk, the HoloLens 2 is just a pair of transparent smart

glasses showing no content at all. As we found in previous

studies, including Kim et al. (2018), Sedighi et al. (2018), and

Sedighi et al. (2020), if the participants never experienced

using smart glasses while walking, adverse effects could occur

and gait performance could be unstable. Our attempt to cope

with this issue was to ask all subjects to take the rehearsal

walks with and without wearing HoloLens 2 before performing

actual recording.

To perform actual recording, the Neutral Video was

displayed on HoloLens 2. Each subject was asked to walk and

watch the video at the same time. The goal of this experiment

is to capture a Neutral Walk. Participants started walking when

the video started playing and stopped walking when the video

ended. Then, we performed recording for the first Emotional

Walk using a similar method as that used for Neutral Walk. In

this experiment, each subject was asked to walk while watching

the Positive Video or Negative Video selected from the LIRIS-

ACCEDE database as mentioned in Section 3.3. After finishing

the first Emotional Walk, each subject was asked to leave the

experiment room to take a 10-min break as a reset of the

induced emotion back to normal condition. After the break, we

performed the second Emotional Walk experiment by showing

another emotional video on HoloLens 2 while the subjects

walked. If the first emotional walk was done using Positive Video,

the second emotional walk was done using Negative Video. The

order of Negative Walk and Positive Walk was swapped for

the next subject. Hence, if the first emotional walk was done

usingNegative Video, the second emotional walk was done using

Positive Video. Note that each subject was asked to answer the

self-reported emotion questionnaire before and after walking

and watching each video. These questions appeared as follows.

1. Please choose your current feeling: Happy, Sad, Neither (Not

Sad and Not Happy)

2. How intense is your feeling: 1 (Very Little) to 5 (Very Much).

3.5. Collected dataset

There were 49 participants in this dataset: 41 male and 8

female subjects. The average age of participants was 19.69 years.

The standard deviation of participants’ ages was 1.40 years. The

average height was 168.49 cm. The standard deviation of height

was 6.34 cm. The average weight was 58.88 kg, and the standard

deviation of weight was 10.84 kg. The variance of subjects’

ages was not large since all participants were undergraduate
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TABLE 2 Comparison of expected emotion from stimuli and reported

emotion from self-reported questionnaire.

Stimuli\reported emotion Happy Sad Neither

Positive movie 12 23 14

Negative movie 13 19 17

Neutral movie 19 2 28

university students. We also made separate statistics for male

and female subjects as follows.

For female subjects:

• Number of subjects: 8 participants

• Average/SD of Age: 19.25/0.89 years

• Average/SD of Height: 160.38/3.58 cm

• Average/SD ofWeight: 51.25/3.28 kg.

For male subjects:

• Number of subjects: 41 participants

• Average/SD of Age: 19.78/1.47 years

• Average/SD of Height: 170.07/5.51 cm

• Average/SD ofWeight 60.37/11.18 kg.

Each subject walked and watched three videos including

Neutral Video, Negative Video, and Positive Video. In all, a total

of 147 walking trials were conducted.

For the order of videos shown to the subjects, 24 subjects

watched Negative Video before Positive Video, and 25 subjects

watched Positive Video before Negative Video.

According to the answers from the self-reported emotion

questionnaire completed after subjects finished walking and

watching each video, we had 44 Sad walking trials, 44 Happy

walking trials, and 59 Neither walking trials. These emotion

tags (Reported Emotion) were used in our analysis instead of

the emotion tags of the videos (Expected Emotion) because not

all subjects felt Happy after watching Positive Video and not all

subjects felt Sad after watchingNegative Video. Table 2 shows the

numbers of subjects who felt Happy, Sad, and Neither from the

self-reported emotion questionnaire for each video stimulus.

Sample images of a subject walking in circular patterns in the

recording area while watching a video on HoloLens 2 are shown

in Figure 6, and a photo of a subject wearing the OptiTrack

Motion Capture Suit with 37 markers and HoloLens 2 is shown

in Figure 7.

From a total of 147 walking trials, one was corrupted

during recording, so we had 146 usable walking trials. For the

direction of walking, we had 99 counter-clockwise walking trials,

21 clockwise walking trials, and 26 walking trials with both

clockwise and counter-clockwise directions in one walk.

4. Data preprocessing

After extracting 3-dimensional coordinates of 37 body

markers captured by OptiTrack, we performed preprocessing

steps to clean up the data and remove unusable data and noise

as follows.

First, we removed 1 min from the beginning and 1 min

from the end of each walking trial’s data. Since the OptiTrack

motion-capturing system can capture marker coordinate data at

100 frames per second, the first 6,000 frames and the last 6,000

frames from each walking trial were removed.

In the feature extraction process, we extracted Walking

Straightness and Body Part Angles. The feature extraction process

is explained in Section 5. However, Walking Straightness and

Body Part Angles have different preprocessing steps as shown

in Figure 8. Therefore, the preprocessing steps of Walking

Straightness and Body Part Angles are explained separately below.

After removing the first 6,000 and the last 6,000 frames, for

Walking Straightness feature extraction, we used the position of

Left Foot and Right Foot. Therefore, we checked each frame for

whether the coordinate data of LeftAnkleOut and RightAnkleOut

were available. If these two markers’ data were missing in any

frame, we excluded that frame from the straightness calculation.

For Body Part Angles feature extraction, in addition to

removing the first and last 6,000 frames, we also removed any

frame that contained armmovement that was not part of natural

walking. Examples of these movements are when subjects raised

their arms to check the time on their watch, subjects tried to

adjust the position of the HoloLens 2 smart glasses, or subjects

scratched their head while walking. This preprocessing step was

done by checking the Y-coordinates of arm-related markers, i.e.,

left and right HandOut, WristOut, WristIn, and ElbowOut. For

each arm-relatedmarker, we calculatedmean value and standard

deviation value of its Y-coordinate for each walking trial. If the

Y-coordinate in any frame was less than Mean − 2 × SD or

more than Mean + 2 × SD, we removed that frame from the

angle calculation.

5. Feature extraction

After the preprocessing of coordinate data, there were some

missing frames between the walking trials. This made the

walking trial no longer continuous. Before we could proceed to

the next step, we coped with this issue by splitting a walking

trial into multiple chunks based on the missing frames. If there

were more than 25 contiguous missing frames, we spit the trial

into new walking chunks. If the length of missing frames was

less than 25 frames, we still kept the next available frames in

the same chunk. A diagram showing chunk splitting is given in

Figure 9. However, if a chunk was smaller than 50 frames (0.5 s),

we discarded that chunk since it was too small and not usable.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2022.989860
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jianwattanapaisarn et al. 10.3389/frai.2022.989860

FIGURE 6

Sample images of walking subject while watching video on HoloLens 2.

To calculate the straightness of a walking trial, we detected

the steps of a walk first. For each chunk, we calculated distance

between left foot and right foot in the top-view for all frames.

That is, we calculated Euclidean distance between the X and

Z coordinates of left foot and right foot. Then, we performed

data smoothing by Savitzky-Golay filter before detecting the

peaks of distance value from each chunk. By finding the peaks

of distance between two feet, we could detect walking steps.

If any chunk has less than three steps, we also discarded

that chunk.

We calculated straightness of walking in each chunk by

using three consecutive walking steps. An example diagram of

straightness calculation from three consecutive steps is shown

in Figure 10. In this figure, Step #1 to Step #2 is left step, and

Step #2 to Step #3 is right step. Therefore, the first straightness

value for Step #1 to Step #3 is the angle between the vector

of left step (Step #1 to Step #2) and right step (Step #2 to

Step #3). The detailed process of straightness calculation is

as follows.

1. If Step #1 to Step #2 is left step, define the left step vector

vleft12 as a vector from (X,Z) point of Step #1 to (X,Z) point

of Step #2

2. Define the right step vector vright23 as a vector from (X,Z)

point of Step #2 to (X,Z) point of Step #3

3. Calculate angle θ13 of vleft12 to vright23
4. Define the next left step vector vleft34 as a vector from (X,Z)

point of Step #3 to (X,Z) point of Step #4

5. Calculate angle θ24 of vleft34 to vright23
6. Define the next right step vector vright45 as a vector from

(X,Z) point of Step #4 to (X,Z) point of Step #5

7. Calculate angle θ35 of vleft34 to vright45
8. If Step #1 to Step #2 is right step, the vector from (X,Z)

point of Step #1 to (X,Z) point of Step #2 is vright12, and

the vector from (X,Z) point of Step #2 to (X,Z) point of

Step #3 is vleft23. This rule applies to all consecutive steps,

i.e., θ13 is angle between vright12 and vleft23, θ24 is angle

between vright34 and vleft23 and θ35 is angle between vright34
and vleft45.
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FIGURE 7

A subject wearing HoloLens 2 and OptiTrack motion capture suit

with 37 markers.

9. Continue calculating the angle between left and right vector

until each chunk is finished

10. Angle between left and right step vector is used as

straightness value of the frames having these steps.

After obtaining the walking straightness of each of

the three consecutive steps, we assigned the straightness

values to all frames consisting of the corresponding steps.

Now all frames have their own straightness values. Then,

for each frame, the angles between the three body parts’

positions were calculated. These include, for example, the

angle between LeftShoulderBack and LeftUpperArmHigh

and LeftShoulderBack and BackLeft, the angle between

BackTop and BackLeft and BackTop and HeadTop, and so

forth. In total, we calculated 24 angles from each of the

three markers. All angles we used in this study are listed

in Table 3.

Next, a frame that consists of 24 angles was grouped into

seven straightness groups based on the straightness value of that

frame. Our straightness groups include one group for straight

walking and six groups for curved walking as listed below. Every

frame in a walking trial was grouped using its straightness value.

Because we used three consecutive steps to calculate a

straightness value, the frames of connecting steps for each group

of three consecutive steps had two straightness values, and in this

case, the average of the two straightness values for those frames

was used. For example, the straightness value of Step #1 to Step

#3 is the angle between Step #1 and Step #2 and Step #2 and Step

#3, and the straightness value of Step #2 to Step #4 is the angle

between Step #2 and Step #3 and Step #3 and Step #4; in this

case, the frames of Step #2 to Step #3 had two straightness values.

Therefore, the average straightness value of Step #1 to Step #3 and

Step #2 to Step #4 was assigned to those frames.

After grouping frames into seven straightness groups, the

mean value and standard deviation value of each angle in each

group were calculated for each walking trial.

• −35◦ to−25◦ (Large Curved Walking - Clockwise)

• −25◦ to−15◦ (Moderate Curved Walking - Clockwise)

• −15◦ to−5◦ (Small Curved Walking - Clockwise)

• −5◦ to 5◦ (Straight Walking)

• 5◦ to 15◦ (Small Curved Walking - Counter-Clockwise)

• 15◦ to 25◦ (Moderate Curved Walking - Counter-

Clockwise)

• 25◦ to 35◦ (Large Curved Walking - Counter-Clockwise).

We also checked the walking direction of each walking trial,

since subjects were instructed to walk in a circular path inside

the recording area but there was no designated path. Each

subject chose his or her own path to walk inside the recording

area, and we found that some subjects walked in an extremely

curved pattern while other subjects walked in a very straight

pattern. Consequently, there were multiple walking curvatures

in one walking trial, e.g., straight walking part and non-straight

(curved) walking part. Samples of walking trajectories for six

subjects are shown in Figure 11, which reveals various walking

trajectories. The walking paths of the first two subjects are curvy

and closer to an oval shape, whereas the walking paths of the

next two subjects are very straight for most of the parts, with

some curved part only when they turned. These walking paths

look more like a rounded-rectangle shape. However, for the

last two subjects, their walking paths were very random but

still in a circular pattern. In other words, these two subjects

walked in a very random circle size with random trajectories.

According to our dataset, we found that the walking paths of

most participants are quite regular like the first four examples.

Very few subjects had highly random walking paths like the

last two examples. Therefore, our dataset consists of many

walking trajectories and curvatures. We can say that our dataset

is direction-free, since the participants had the freedom to

choose their walking path as they wished between clockwise and

counter-clockwise directions.
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FIGURE 8

Preprocessing steps for straightness and body part angles.

FIGURE 9

Splitting a walking trial into chunks for straightness and angle calculation.
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FIGURE 10

Finding angles between left and right vector to calculate

straightness.

6. Statistical analysis of gait features

The following analyses were performed on the mean and

standard deviations of each angle.

6.1. One-way analysis of variance (1-way
ANOVA)

6.1.1. Methodology

We performed 1-way ANOVA to check whether emotion

differences affect the movements of each body part. Both

Expected Emotion, which is the emotion label from annotated

videos we used as stimuli, and Reported Emotion, which is the

emotion label from self-reported questionnaire answers, were

used in this analysis.

• Factor to test: Expected Emotion (Positive, Negative,

Neutral) and Reported Emotion (Happy, Sad, Neither)

• Dependent variable: Mean value and SD value of each

angle in each straightness group.

TABLE 3 List of angles for each group of 3 markers.

Angle

index

Terminal point #1 Initial point Terminal point #2

1 LeftAnkleOut LeftKneeOut WaistLeftFront

2 RightAnkleOut RightKneeOut WaistRightFront

3 LeftShin LeftKneeOut LeftThigh

4 RightShin RightKneeOut RightThigh

5 LeftKneeOut LeftThigh WaistLeftFront

6 RightKneeOut RightThigh WaistRightFront

7 LeftThigh WaistLeftFront Chest

8 RightThigh WaistRightFront Chest

9 WaistLeftFront Chest LeftShoulderTop

10 WaistRightFront Chest RightShoulderTop

11 LeftKneeOut WaistLeftBack BackLeft

12 RightKneeOut WaistRightBack BackRight

13 WaistLeftBack BackLeft LeftShoulderBack

14 WaistRightBack BackRight RightShoulderBack

15 LeftShoulderBack BackTop HeadTop

16 RightShoulderBack BackTop HeadTop

17 BackLeft BackTop HeadTop

18 BackRight BackTop HeadTop

19 BackLeft LeftShoulderBack LeftUpperArmHigh

20 BackRight RightShoulderBack RightUpperArmHigh

21 BackTop LeftShoulderBack LeftUpperArmHigh

22 BackTop RightShoulderBack RightUpperArmHigh

23 LeftUpperArmHigh LeftElbowOut LeftWristOut

24 RightUpperArmHigh RightElbowOut RightWristOut

Mean and SD values of all angles for the two types of

emotions, Expected Emotion and Reported Emotion, were

compared separately according to their straightness groups in

this analysis.

6.1.2. Results

One-way ANOVA was used for checking the effects of

Expected Emotions and Reported Emotions on the movements

of body parts. Detailed results of the ANOVA test on mean and

SD of each angle in each straightness group are shown in Table 4

for Expected Emotion and Table 5 for Reported Emotion. If the

mean or SD value of any angle in any straightness group is

significantly different among emotions, we performed a Tukey

test with that mean or SD of that angle to find the pair of

emotions that has significant effects on body movements, e.g.,

Happy vs. Sad or Neither vs. Sad. Tukey test results for Expected

Emotion and Reported Emotion are shown in Table 6.

As shown in Tables 4, 6, in all straightness groups, the

difference of Expected Emotion only affected the SD of one

angle, that is, RightShoulderBack-BackTop-HeadTop in the 25◦
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FIGURE 11

Sample of walking path from six subjects in this dataset,

including oval-shaped walking, rounded-rectangular walking,

and random circular walking.

to 35◦ walking straightness group. In addition, the pair that

has a significant effect is Negative Video vs. Neutral Video. In

other words, only a high curvature walk in the counter-clockwise

direction has a different magnitude of head movement between

Negative Video and Neutral Video.

For Reported Emotions analysis, according to Table 5, there

are many mean or SD values of angles that are significantly

different among the different reported emotions. We also

performed the Tukey test with each mean or SD of an angle

to check the pairs of emotions that have a significant effect on

body movements. Table 7 shows the results from the Tukey test

of each mean or SD of an angle. We found that all walking

straightness groups have at least one mean or SD of an angle

that was affected significantly by happy emotion compared with

sad emotion. However, there is only one SD of body part

angle that is significantly affected by the emotional differences

between happy and sad regardless of walking straightness, i.e.,

the SD of BackLeft-LeftShoulderBack-LeftUpperArmHigh, which

can be interpreted as Left Arm Swing Magnitude. This angle is

illustrated in Figure 12.

When subjects walk circularly, one arm’s side is inside and

the other arm’s side is outside of the walking path. We also check

the relationship between behavior of left and right arm swings

in each emotion with the inside-outside status of that arm and

the walking curvatures of the subjects. The inside and outside

status of left and right arm can be determined by the walking

direction. That is, the left arm is outside and the right arm is

inside when subjects are walking in the clockwise direction, and

in the counter-clockwise direction, the left arm is inside and the

right arm is outside. Additionally, the curvature level can be

determined from the straightness group. For example, if the

angle of straightness is between −35◦ to −25◦ or 25◦ to 35◦,

it can be considered large curved walking, and −5◦ to 5◦ can be

considered straight walking. For the direction,minus sign means

clockwise, while plus sign means counter-clockwise. A list of all

curvature levels and walking directions is also shown in Section

5. We plot the arm swing magnitude of the left arm and right

arm in all emotions together with its curvature level and its

inside-outside status in Figures 13, 14, respectively.

Figure 13 shows the left arm swing magnitude with its

inside-outside status and the curvature level. We can see from

this figure that when the arm is outside in high curvature

walking, the difference between happy and sad is quite obvious.

Although the difference between happy and sad is reduced when

the curvature decreases, the difference is still large enough to

distinguish these emotions. For inside-outside status, we found

that when the arm is inside, the difference between happy and

sad is smaller than when the arm is outside.

The right arm swing magnitude according to its inside-

outside status and the walking curvature are shown in Figure 14.

For right arm swing, the differences between happy and sad are

smaller than left arm swing at all curvature levels. However,

when the subject walks at a high curvature level and the right

arm is outside, the arm swing is still higher than when the subject

walks in a smaller curvature and the right arm is inside.

6.2. Multi-factor analysis of variance
(n-way ANOVA)

6.2.1. Methodology

Based on the results of 1-way ANOVA, Reported Emotion

shows more differences in body part movements between

emotions than does Expected Emotion. Results of Expected

Emotion are listed in Table 6, and only one straightness group

has a significantly different mean or SD of angle. In Table 7,

Reported Emotion has one or more significantly different mean

or SD of angle in all straightness groups. Therefore, we focused

on the analysis of Reported Emotion only.

In one-way ANOVA analysis of Reported Emotion, some

straightness groups had multiple mean or SD values of angle

affected by the emotional difference between happy and sad,

while other straightness groups had only one mean or SD value

affected. The results in Table 7 show that only the left arm swing

magnitude (BackLeft-LeftShoulderBack-LeftUpperArmHigh) was

affected by emotional difference regardless of curvature level and

inside-outside status of the arm. In multi-factor ANOVA, we

tested several factors including Reported Emotion, Curvature,

Angle Side, and combinations of these factors to find the
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TABLE 4 Results of 1-way ANOVA for mean and SD of each angle in each straightness group (factor: expected emotion).

Angle name Type
Degrees of
freedom

−35◦ to −25◦
−25◦ to −15◦

−15◦ to −5◦
−5◦ to 5◦ 5◦ to 15◦ 15◦ to 25◦ 25◦ to 35◦

F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value

LeftAnkleOut-LeftKneeOut-

WaistLeftFront

Mean 2 0.6987 0.5019 0.0630 0.9390 0.5669 0.5691 0.4628 0.6305 0.7150 0.4911 0.4281 0.6527 0.0274 0.9730

SD 2 1.4229 0.2503 0.7884 0.4596 0.2048 0.8151 1.1753 0.3119 0.7593 0.4701 0.6692 0.5140 0.0619 0.9400

RightAnkleOut-RightKneeOut-

WaistRightFront

Mean 2 0.0400 0.9608 0.2012 0.8183 0.2380 0.7887 0.2609 0.7707 0.1876 0.8292 0.0528 0.9486 0.1438 0.8662

SD 2 0.3288 0.7213 0.5030 0.6074 0.5824 0.5604 0.4580 0.6335 0.3936 0.6754 0.2081 0.8124 0.3454 0.7086

LeftShin-LeftKneeOut-LeftThigh Mean 2 0.3689 0.6933 0.0266 0.9738 0.0402 0.9606 0.1281 0.8799 0.0466 0.9545 0.0124 0.9877 0.0645 0.9376

SD 2 0.9747 0.3841 0.8820 0.4196 0.0043 0.9957 0.1084 0.8973 0.2077 0.8127 0.1842 0.8320 0.1457 0.8645

RightShin-RightKneeOut-RightThigh Mean 2 0.0961 0.9086 0.5365 0.5878 0.1823 0.8336 0.0654 0.9367 0.2214 0.8017 0.0934 0.9109 0.0191 0.9811

SD 2 0.2366 0.7901 0.7163 0.4930 0.2288 0.7959 0.4617 0.6312 0.2421 0.7854 0.0345 0.9661 0.2518 0.7778

LeftKneeOut-LeftThigh-WaistLeftFront Mean 2 0.1162 0.8905 0.0672 0.9351 0.3171 0.7290 0.1885 0.8285 0.1517 0.8594 0.1323 0.8762 0.0731 0.9296

SD 2 0.3972 0.6742 0.5685 0.5696 0.1123 0.8939 0.1519 0.8592 0.0871 0.9167 0.2593 0.7720 0.1770 0.8380

RightKneeOut-RightThigh-

WaistRightFront

Mean 2 0.0272 0.9732 0.2478 0.7814 0.3318 0.7184 0.0409 0.9599 0.0489 0.9523 0.0056 0.9944 0.0342 0.9664

SD 2 0.0176 0.9826 0.4165 0.6614 0.0561 0.9455 0.5370 0.5857 0.1358 0.8732 0.0396 0.9612 0.2599 0.7716

LeftThigh-WaistLeftFront-Chest Mean 2 0.0575 0.9442 0.2484 0.7809 0.0225 0.9777 0.0505 0.9508 0.0442 0.9568 0.0635 0.9385 0.0796 0.9235

SD 2 0.7141 0.4944 0.7336 0.4847 0.0286 0.9719 0.0578 0.9439 0.5089 0.6023 0.4121 0.6632 0.2039 0.8158

RightThigh-WaistRightFront-Chest Mean 2 0.0019 0.9981 0.0953 0.9093 0.3291 0.7204 0.0359 0.9647 0.0404 0.9605 0.0015 0.9985 0.0004 0.9996

SD 2 0.2227 0.8011 0.3880 0.6802 0.6301 0.5346 0.2490 0.7799 0.3234 0.7243 0.5774 0.5629 0.7637 0.4682

WaistLeftFront-Chest-LeftShoulderTop Mean 2 0.0673 0.9350 0.1955 0.8230 0.0322 0.9684 0.0839 0.9196 0.0410 0.9598 0.0633 0.9387 0.0654 0.9367

SD 2 0.4684 0.6286 1.2575 0.2923 0.4890 0.6147 0.4218 0.6567 0.6656 0.5157 0.6061 0.5471 0.8730 0.4203

WaistRightFront-Chest-

RightShoulderTop

Mean 2 0.0326 0.9679 0.0055 0.9945 0.1610 0.8515 0.0369 0.9638 0.0259 0.9744 0.1441 0.8660 0.1333 0.8753

SD 2 0.9598 0.3897 1.2461 0.2955 0.3207 0.7264 0.1894 0.8277 0.2634 0.7688 0.1474 0.8631 0.4252 0.6546

LeftKneeOut-WaistLeftBack-BackLeft Mean 2 0.1133 0.8931 0.0771 0.9259 0.4082 0.6660 0.3419 0.7110 0.0088 0.9913 0.0080 0.9920 0.0221 0.9782

SD 2 0.6723 0.5149 0.7105 0.4958 0.1871 0.8296 0.1079 0.8978 0.2782 0.7576 0.1335 0.8752 0.0226 0.9776

RightKneeOut-WaistRightBack-

BackRight

Mean 2 0.0326 0.9680 1.0470 0.3577 0.0834 0.9200 0.5913 0.5550 1.0922 0.3385 0.5290 0.5906 0.3380 0.7139

SD 2 0.4738 0.6253 0.3182 0.7287 0.8494 0.4307 1.9243 0.1500 1.9279 0.1496 1.1144 0.3314 0.2577 0.7732

WaistLeftBack-BackLeft-

LeftShoulderBack

Mean 2 0.0055 0.9945 0.0524 0.9490 0.0588 0.9430 0.1206 0.8864 0.1133 0.8930 0.1484 0.8622 0.1787 0.8366

SD 2 0.2455 0.7832 0.0746 0.9282 0.1165 0.8902 0.5529 0.5766 0.3701 0.6914 0.1270 0.8808 0.2624 0.7696

(Continued)

F
ro
n
tie

rs
in

A
rtifi

c
ia
lIn

te
llig

e
n
c
e

1
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frai.2022.989860
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


J
ia
n
w
a
tta

n
a
p
a
isa

rn
e
t
a
l.

1
0
.3
3
8
9
/fra

i.2
0
2
2
.9
8
9
8
6
0

TABLE 4 (Continued)

Angle name Type
Degrees of
freedom

−35◦ to −25◦
−25◦ to −15◦

−15◦ to −5◦
−5◦ to 5◦ 5◦ to 15◦ 15◦ to 25◦ 25◦ to 35◦

F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value

WaistRightBack-BackRight-

RightShoulderBack

Mean 2 0.0164 0.9837 0.2105 0.8108 0.2754 0.7599 0.1907 0.8266 0.4627 0.6306 0.1733 0.8411 0.1627 0.8501

SD 2 0.6988 0.5018 0.8341 0.4396 0.7722 0.4647 1.9541 0.1457 1.8371 0.1634 1.8335 0.1643 0.9480 0.3904

LeftShoulderBack-BackTop-HeadTop Mean 2 0.1003 0.9048 0.0646 0.9375 0.0058 0.9942 0.0909 0.9131 0.1221 0.8851 0.0539 0.9475 0.0722 0.9304

SD 2 0.5386 0.5868 0.1024 0.9028 0.6025 0.5494 1.8318 0.1641 1.9491 0.1465 2.0333 0.1353 2.4667 0.0891

RightShoulderBack-BackTop-

HeadTop

Mean 2 0.2849 0.7533 0.3381 0.7146 0.1859 0.8307 0.7313 0.4832 0.4392 0.6455 0.3593 0.6989 0.3400 0.7125

SD 2 0.3272 0.7224 0.0465 0.9546 1.6002 0.2069 2.3775 0.0967 1.5533 0.2154 1.8237 0.1658 3.6983 0.0276

BackLeft-BackTop-HeadTop Mean 2 0.1957 0.8229 0.1944 0.8239 0.2522 0.7776 0.3959 0.6739 0.4448 0.6419 0.2402 0.7869 0.2648 0.7678

SD 2 0.9232 0.4037 0.2502 0.7795 0.1858 0.8307 1.7377 0.1799 1.1061 0.3339 1.1375 0.3240 1.0224 0.3628

BackRight-BackTop-HeadTop Mean 2 0.1226 0.8849 0.1470 0.8637 0.1691 0.8447 0.0811 0.9221 0.3629 0.6964 0.2208 0.8022 0.3136 0.7314

SD 2 1.2557 0.2934 0.1276 0.8805 0.6979 0.5000 1.3334 0.2670 1.4269 0.2438 1.9193 0.1511 1.3109 0.2734

BackLeft-LeftShoulderBack-

LeftUpperArmHigh

Mean 2 1.0053 0.3730 0.7051 0.4984 0.6048 0.5482 0.0536 0.9478 0.0696 0.9328 0.1110 0.8951 0.0803 0.9229

SD 2 0.8814 0.4203 1.2342 0.2989 0.7095 0.4943 0.8023 0.4505 0.6222 0.5384 0.8106 0.4470 1.5265 0.2215

BackRight-RightShoulderBack-

RightUpperArmHigh

Mean 2 0.1877 0.8294 0.1031 0.9022 0.7849 0.4590 0.4870 0.6156 0.2734 0.7612 0.2687 0.7648 0.1749 0.8397

SD 2 1.0834 0.3460 1.3641 0.2640 0.4045 0.6684 0.5204 0.5955 0.5944 0.5534 0.4766 0.6220 0.4526 0.6370

BackTop-LeftShoulderBack-

LeftUpperArmHigh

Mean 2 0.8956 0.4146 0.8612 0.4282 0.2046 0.8153 0.2388 0.7879 0.1776 0.8375 0.1046 0.9007 0.1015 0.9036

SD 2 0.4737 0.6254 0.4183 0.6602 0.1621 0.8506 1.0618 0.3487 1.5991 0.2060 1.4489 0.2389 0.4938 0.6115

BackTop-RightShoulderBack-

RightUpperArmHigh

Mean 2 0.3612 0.6986 0.4943 0.6126 0.2053 0.8148 0.7697 0.4652 0.5401 0.5840 0.3806 0.6843 0.3361 0.7152

SD 2 0.3637 0.6969 0.7683 0.4686 0.0051 0.9949 0.5426 0.5825 0.6985 0.4992 1.1292 0.3267 1.9275 0.1500

LeftUpperArmHigh-LeftElbowOut-

LeftWristOut

Mean 2 1.4454 0.2450 0.6532 0.5243 0.8158 0.4452 0.5184 0.5967 0.4014 0.6702 0.4382 0.6462 0.3603 0.6982

SD 2 0.2067 0.8139 0.3699 0.6925 0.5952 0.5533 0.6584 0.5194 0.8055 0.4491 1.0016 0.3703 1.0944 0.3380

RightUpperArmHigh-RightElbowOut-

RightWristOut

Mean 2 0.2920 0.7480 0.5579 0.5756 0.1339 0.8748 0.1503 0.8606 0.0079 0.9922 0.7635 0.4683 1.0489 0.3535

SD 2 0.5626 0.5731 1.2252 0.3015 0.8732 0.4208 0.9758 0.3796 1.1729 0.3127 0.9895 0.3747 0.5837 0.5594
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TABLE 5 Results of 1-way ANOVA for mean and SD of each angle in each straightness group (factor: reported emotion).

Angle name Type
Degrees of
freedom

−35◦ to −25◦
−25◦ to −15◦

−15◦ to −5◦
−5◦ to 5◦ 5◦ to 15◦ 15◦ to 25◦ 25◦ to 35◦

F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value

LeftAnkleOut-LeftKneeOut-WaistLeftFront Mean 2 0.4845 0.6188 0.4657 0.6301 0.4470 0.6408 0.4713 0.6252 0.1020 0.9031 0.0909 0.9131 0.7818 0.4599

SD 2 0.6812 0.5105 1.3633 0.2642 0.1778 0.8373 0.4065 0.6668 0.8391 0.4344 2.5143 0.0851 0.8202 0.4428

RightAnkleOut-RightKneeOut-

WaistRightFront

Mean 2 0.5185 0.5985 5.5611 0.0063 2.9376 0.0575 0.2956 0.7446 0.3023 0.7396 0.0331 0.9674 0.0279 0.9725

SD 2 0.5383 0.5869 0.2925 0.7476 1.3475 0.2645 0.6572 0.5200 0.7174 0.4899 1.9441 0.1476 0.8614 0.4251

LeftShin-LeftKneeOut-LeftThigh Mean 2 0.0484 0.9528 0.2797 0.7571 0.0162 0.9839 0.3218 0.7254 0.5134 0.5996 0.5020 0.6066 1.0129 0.3662

SD 2 1.0287 0.3646 0.8801 0.4204 2.2178 0.1141 0.8895 0.4133 1.5201 0.2226 2.3493 0.0998 0.7299 0.4841

RightShin-RightKneeOut-RightThigh Mean 2 0.0336 0.9670 0.3826 0.6838 0.2186 0.8041 0.4932 0.6118 0.3929 0.6759 0.4171 0.6599 0.8981 0.4100

SD 2 2.0007 0.1455 1.9058 0.1582 1.3421 0.2659 0.2658 0.7670 0.2274 0.7970 0.6056 0.5474 1.7291 0.1818

LeftKneeOut-LeftThigh-WaistLeftFront Mean 2 0.3220 0.7262 0.1940 0.8242 0.0450 0.9560 0.9174 0.4021 0.6264 0.5361 0.7198 0.4889 0.6020 0.5493

SD 2 0.2257 0.7988 1.0393 0.3604 2.6192 0.0778 0.3334 0.7171 0.2672 0.7659 0.7239 0.4869 0.1148 0.8916

RightKneeOut-RightThigh-WaistRightFront Mean 2 0.0146 0.9855 0.2310 0.7945 0.3152 0.7303 0.7140 0.4915 0.5416 0.5831 1.1918 0.3072 0.9561 0.3873

SD 2 0.1855 0.8313 1.2099 0.3059 0.1851 0.8313 0.9210 0.4006 0.4243 0.6551 1.4454 0.2397 1.2993 0.2765

LeftThigh-WaistLeftFront-Chest Mean 2 0.3876 0.6807 0.0256 0.9747 0.8356 0.4366 1.1208 0.3291 0.9014 0.4085 0.9257 0.3991 0.8437 0.4326

SD 2 0.2137 0.8083 0.7045 0.4987 1.6209 0.2028 1.6481 0.1963 0.4574 0.6340 0.5656 0.5695 0.3365 0.7149

RightThigh-WaistRightFront-Chest Mean 2 0.1644 0.8488 0.3378 0.7148 0.9859 0.3767 0.4663 0.6283 0.1492 0.8616 0.7130 0.4922 0.4879 0.6151

SD 2 0.8236 0.4445 2.5884 0.0841 0.6103 0.5452 1.8801 0.1566 0.5680 0.5680 0.1314 0.8770 0.2727 0.7618

WaistLeftFront-Chest-LeftShoulderTop Mean 2 0.9145 0.4071 0.8174 0.4468 1.3427 0.2658 1.6144 0.2029 1.8164 0.1667 1.1176 0.3304 1.1843 0.3095

SD 2 2.1649 0.1250 3.5329 0.0359 0.6072 0.5469 0.5502 0.5781 1.0983 0.3365 0.9759 0.3798 1.9595 0.1454

WaistRightFront-Chest-RightShoulderTop Mean 2 0.7710 0.4677 0.6719 0.5148 0.4229 0.6563 0.2794 0.7567 0.3841 0.6818 0.7168 0.4904 0.8103 0.4471

SD 2 2.0888 0.1341 4.6688 0.0133 0.6010 0.5502 1.9995 0.1394 0.4906 0.6134 1.3305 0.2682 1.5063 0.2259

LeftKneeOut-WaistLeftBack-BackLeft Mean 2 0.2721 0.7629 0.3625 0.6976 0.2912 0.7480 1.8402 0.1628 1.0133 0.3659 0.7293 0.4844 0.7647 0.4677

SD 2 0.2765 0.7596 3.4477 0.0387 0.7650 0.4680 0.5142 0.5992 0.8033 0.4501 1.5869 0.2088 1.0004 0.3707

RightKneeOut-WaistRightBack-BackRight Mean 2 1.1541 0.3233 0.8457 0.4347 1.3287 0.2695 1.9146 0.1514 1.6376 0.1984 1.5744 0.2113 1.0199 0.3637

SD 2 0.1448 0.8655 1.0217 0.3666 0.4833 0.6182 0.0701 0.9323 0.0521 0.9493 0.1252 0.8825 0.1395 0.8699

WaistLeftBack-BackLeft-LeftShoulderBack Mean 2 0.1492 0.8617 0.3764 0.6881 0.2840 0.7534 1.0613 0.3489 0.9299 0.3972 1.0790 0.3432 0.9948 0.3728

SD 2 0.1619 0.8510 0.2335 0.7925 0.7214 0.4886 0.3195 0.7271 2.0702 0.1303 3.1031 0.0485 2.4005 0.0950

WaistRightBack-BackRight-RightShoulderBack Mean 2 0.7306 0.4865 0.9563 0.3905 0.4072 0.6666 2.4226 0.0926 2.1401 0.1218 2.1141 0.1252 2.1851 0.1169

SD 2 0.6572 0.5225 0.8903 0.4163 0.8087 0.4483 0.2036 0.8161 0.0944 0.9100 0.3177 0.7284 0.4623 0.6309

LeftShoulderBack-BackTop-HeadTop Mean 2 1.1209 0.3337 0.9886 0.3785 2.1281 0.1244 1.4770 0.2320 1.6585 0.1944 2.4785 0.0881 2.5454 0.0826

SD 2 0.1825 0.8338 0.0951 0.9094 0.6739 0.5120 0.3303 0.7193 0.0124 0.9877 0.6777 0.5097 0.7725 0.4641

RightShoulderBack-BackTop-HeadTop Mean 2 1.3644 0.2645 1.7783 0.1783 1.8622 0.1606 3.5905 0.0303 3.1532 0.0460 3.8224 0.0246 3.6483 0.0289
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TABLE 5 (Continued)

Angle name Type
Degrees of
freedom

−35◦ to −25◦
−25◦ to −15◦

−15◦ to −5◦
−5◦ to 5◦ 5◦ to 15◦ 15◦ to 25◦ 25◦ to 35◦

F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value F-value P-value

SD 2 0.0176 0.9825 0.1755 0.8395 0.3759 0.6877 0.1106 0.8954 0.0546 0.9469 1.2251 0.2973 1.3075 0.2743

BackLeft-BackTop-HeadTop Mean 2 0.7225 0.4903 1.2970 0.2814 1.5026 0.2275 0.3595 0.6987 0.8208 0.4424 1.0128 0.3663 1.0605 0.3495

SD 2 0.1865 0.8304 0.0673 0.9350 1.0389 0.3576 0.2770 0.7585 0.4246 0.6550 0.1453 0.8649 0.2800 0.7563

BackRight-BackTop-HeadTop Mean 2 0.3262 0.7232 0.8130 0.4487 1.5697 0.2132 2.0942 0.1272 1.9272 0.1497 1.4560 0.2372 1.6514 0.1961

SD 2 0.2449 0.7837 0.1288 0.8794 0.2129 0.8086 0.1499 0.8610 0.1021 0.9030 0.3622 0.6969 0.4358 0.6478

BackLeft-LeftShoulderBack-LeftUpperArmHigh Mean 2 0.1312 0.8773 0.0324 0.9682 0.2414 0.7860 0.2599 0.7716 0.0830 0.9204 0.0986 0.9061 0.1756 0.8391

SD 2 4.0633 0.0229 6.5990 0.0027 3.1264 0.0481 3.6658 0.0282 3.6448 0.0288 5.1320 0.0073 6.9080 0.0014

BackRight-RightShoulderBack-

RightUpperArmHigh

Mean 2 1.0434 0.3595 1.3588 0.2653 0.0156 0.9845 0.3870 0.6799 0.3829 0.6826 0.3804 0.6844 0.4216 0.6569

SD 2 0.5392 0.5864 3.1303 0.0514 0.3775 0.6866 1.9646 0.1442 1.7410 0.1794 2.4455 0.0910 2.0120 0.1382

BackTop-LeftShoulderBack-

LeftUpperArmHigh

Mean 2 0.5789 0.5641 0.5947 0.5552 1.8350 0.1649 2.2422 0.1102 2.2731 0.1071 3.1222 0.0476 3.2399 0.0426

SD 2 2.3301 0.1074 4.5964 0.0142 3.9456 0.0224 0.4238 0.6554 0.2227 0.8007 0.1632 0.8496 0.3666 0.6939

BackTop-RightShoulderBack-

RightUpperArmHigh

Mean 2 0.3575 0.7012 0.2573 0.7740 0.6156 0.5424 2.8092 0.0638 2.6764 0.0726 2.9230 0.0576 2.6311 0.0761

SD 2 3.1340 0.0519 6.6653 0.0025 0.9057 0.4076 0.2664 0.7666 0.7699 0.4652 2.2086 0.1143 3.1152 0.0479

LeftUpperArmHigh-LeftElbowOut-LeftWristOut Mean 2 0.6176 0.5432 0.8131 0.4486 0.0917 0.9124 0.2894 0.7492 0.2457 0.7825 0.0682 0.9341 0.0836 0.9199

SD 2 1.1964 0.3105 1.0386 0.3607 0.6048 0.5481 0.5018 0.6066 0.4446 0.6421 0.6856 0.5057 0.4640 0.6299

RightUpperArmHigh-RightElbowOut-

RightWristOut

Mean 2 0.4218 0.6581 0.3834 0.6833 0.1244 0.8831 0.6790 0.5089 0.3996 0.6714 0.0878 0.9160 0.0227 0.9776

SD 2 0.6450 0.5288 1.2455 0.2956 0.7447 0.4775 0.4103 0.6643 0.0592 0.9425 1.4991 0.2274 1.6201 0.2022

Bold values mean significantly different angles (P < 0.05).
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TABLE 6 Tukey test results of significantly di�erent mean and SD of each angle in each straightness group (factor: expected emotion).

Straightness
group

Walking
direction

Type
Significant angle
for 3 markers

Significant pair
P-value from
Tukey test of
significant pair

25◦ to 35◦ Counter-clockwise SD

RightShoulderBack

BackTop

HeadTop

Negative Video

vs

Neutral Video

0.0405

relationship between the factors and the left and right arm swing

magnitudes. Additionally, we performed multi-factor ANOVA

analysis with the arm swing magnitude data of all straightness

groups at once.

The factors we used in multi-factor analysis are as follows.

• Reported Emotion: Happy, Sad, Neither

• Curvature: -30, -20, -10, 0, 10, 20, 30

• Angle Side: Left, Right

• Gender: Male, Female

• Reported Emotion × Curvature: Happy/-30, Sad/0,

Neither/10, etc.

• Reported Emotion × Angle Side: Happy/Left,

Happy/Right, Sad/Left, Sad Right, etc.

• Curvature× Angle Side: -30/Left, -20/Right, 10/Left, etc.

• Reported Emotion × Gender: Happy/Male, Sad/Male,

Happy/Female, etc.

First, the Reported Emotion factor is for checking whether

the arm swing magnitudes are affected by different emotions if

we do not consider any other factor.

For the Curvature factor, we converted the straightness

groups to curvature values before performing multi-factor

ANOVA. The sign of curvature value (plus or minus) was

selected by checking whether the left arm and right arm were

Inside or Outside when the subjects are walking in a circular

walking path. For all curved walking groups, outside arm used

plus sign and inside arm used minus sign as shown in Table 8. For

straight walking group, the curvature was 0 for both left arm and

right arm, since there was no inside or outside in straight walk.

By checking the curvature factor, we could verify whether the

curvatures of walking, including small curve, moderate curve,

and large curve, and the inside-outside status of that arm have

significant effects on arm swingmagnitude. Since our dataset has

a circular walking path that has never been used in conventional

studies, we are uncertain whether outside arm swing and inside

arm swing during circular walking are symmetric. If the two

sides are not symmetric, this implies that one side can be

used to more clearly distinguish a subject’s current emotion.

Moreover, we believe that the curvature of walking can affect

arm swinging. For these reasons, we decided to perform an

analysis on curvature and the inside-outside status of the arm.

For the Angle Side factor, because we found from a one-way

ANOVA test that only left arm swing is significantly different

between happy and sad emotions, we checked whether the arm

side (left or right) affects the arm swing magnitude.

Genders of subjects are also possible to have effects with

subjects’ arm swings while walking, multi-factor ANOVA was

also performed with the Gender factor to check whether this

factor has any significant effect with arm swing magnitudes.

6.2.2. Results

The results from multi-factor ANOVA analysis are listed in

Table 9.We found that some factors have a significant effect with

arm swing magnitude, including Reported Emotion, Curvature

and Gender. In addition, we found interaction effects between

Reported Emotion with Angle Side, Curvature with Angle Side,

and Reported Emotion with Gender.

We also checked the Reported Emotion factor by performing

a Tukey test. The results from the Tukey test are shown in

Table 10. From this table, every pair of emotion, including

Happy vs. Neither, Happy vs. Sad, and Neither vs. Sad, has a

significant effect with arm swing magnitude, regardless of any

other factors.

The Gender factor is also checked by Tukey test. Table 11

shows the result of Tukey test for this factor. As shown in

this table, male subjects and female subjects have significantly

different arm swing magnitudes, regardless of any other factor.

6.3. Linear regression analysis

6.3.1. Methodology

Because the behaviors of left arm swings and right arm

swings are different, i.e, the left arm has statistically significant

arm swing differences among emotions while the right arm

does not show such significant differences. We performed linear

regression analysis of the left arm and right arm to check

whether the regression slopes of each arm side are similar. The

regression equation is as follows.

Y = α + β × X (1)
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TABLE 7 Tukey test results of significantly di�erent mean and SD of each angle in each straightness group (factor: reported emotion).

Straightness group Walking direction Type Significant angle

for 3 markers

Significant pair P-value from Tukey

test of significant pair

−35◦ to−25◦ Clockwise SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0222

−25◦ to−15◦ Clockwise

Mean

RightAnkleOut

RightKneeOut

WaistRightFront

Happy vs. Sad

Neither vs. Sad

0.0382

0.0070

SD

WaistLeftFront

Chest

LeftShoulderTop

Happy vs. Sad 0.0338

SD

WaistRightFront

Chest

RightShoulderTop

Happy vs. Sad 0.0095

SD

LeftKneeOut

WaistLeftBack

BackLeft

Happy vs. Sad 0.0394

SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0017

SD

BackTop

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0103

SD

BackTop

RightShoulderBack

RightUpperArmHigh

Happy vs. Sad 0.0018

−15◦ to−5◦ Clockwise SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0464

SD

BackTop

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Neither 0.0313

−5◦ to 5◦ Straight SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0258

5◦ to 15◦ Counter-clockwise SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0250

15◦ to 25◦ Counter-clockwise Mean

RightShoulderBack

BackTop

HeadTop

Happy vs. Sad 0.0405

Mean

BackTop

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0380

SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad

Neither vs. Sad

0.0088

0.0363

(Continued)
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TABLE 7 (Continued)

Straightness group Walking direction Type Significant angle

for 3 markers

Significant pair P-value from Tukey

test of significant pair

25◦ to 35◦ Counter-clockwise Mean

RightShoulderBack

BackTop

HeadTop

Happy vs. Sad 0.0442

Mean

BackTop

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad 0.0342

SD

BackLeft

LeftShoulderBack

LeftUpperArmHigh

Happy vs. Sad

Neither vs. Sad

0.0027

0.0075

Bold values mean significantly different angles (P < 0.05).

FIGURE 12

Angle of BackLeft-LeftShoulderBack-LeftUpperArmHigh (arm

swing) in body skeleton image (original human figure source:

dox012 on Sketchfab4).

In this equation, α is the intercept, β is the slope, X is the

curvature value, and Y is the predicted arm swing magnitude.

That is, we find the most suitable α and β value for each emotion

in each arm side that can minimize the differences between

predicted arm swing magnitude (YPredict) and actual arm swing

magnitude (Y) for each curvature value.

The regression equations for left arm swing magnitude in

each emotion are as follows.

ArmSwingHappyLeft = αHappyLeft+βHappyLeft×Curvature (2)

ArmSwingSadLeft = αSadLeft + βSadLeft × Curvature (3)

4 https://sketchfab.com/3d-models/man-

5ae6bd9271ac4ee4905b96e5458f435d (last accessed: April 6, 2022).

ArmSwingNeitherLeft = αNeitherLeft + βNeitherLeft × Curvature

(4)

The regression equations for right arm swing magnitude in

each emotion are as follows.

ArmSwingHappyRight = αHappyRight + βHappyRight × Curvature

(5)

ArmSwingSadRight = αSadRight + βSadRight × Curvature (6)

ArmSwingNeitherRight = αNeitherRight+βNeitherRight×Curvature

(7)

Accordingly, we find the α and β values of left arm swing and

right arm swing for happy, sad, and neither emotion separately.

If βHappyLeft , βSadLeft , and βNeitherLeft are equal, the slopes of

all emotions are similar for the left arm. That is, the difference

in emotions does not have a significant effect on the left arm

swing magnitude in each curvature. For the right arm, we also

checked whether βHappyRight , βSadRight , and βNeitherRight were

equal. Consequently, we can follow the same rule used for the

left arm to verify whether emotion differences significantly affect

the right arm swing.

6.3.2. Results

The results of linear regression of each emotion for the left

arm are as follows.

• Happy: α = 4.5521, β = 0.0259

• Neither: α = 3.8916, β = 0.0017

• Sad: α = 3.1764, β = 0.0038.

For the right arm, the linear regression results are as

follows.

• Happy: α = 4.2854, β = 0.0206

• Neither: α = 4.0596, β = 0.0227

• Sad: α = 3.6643, β = 0.0142.
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FIGURE 13

Plot of left arm swing in all emotions (with 95% confident interval error bars).

FIGURE 14

Plot of right arm swing in all emotions (with 95% confident interval error bars).

According to the above results, for left arm swings, the

β values from linear regression of happy and sad are largely

different (β = 0.0259 and β = 0.0038, respectively). The results

suggest that the left arm swing magnitude when the subjects feel

happy ismuch different from the left arm swingmagnitude when

the subjects feel sad, since the slope of these two emotions are

significantly different. In addition, for right arm swings, the β

values of happy and sad are also different, but the difference in

the right arm swings’ slopes is smaller than that in the left arm

swings’ slope (β = 0.0206 and β = 0.0142, respectively). Hence,

the right arm swing magnitudes under happy and sad emotions

are also different from each other, but not so much different as

they are in the left arm. Under the neither emotion, the slope of

the left arm swings is much different from the slopes of happy

and sad emotions (β = 0.0017). However, the slope of the

right arm swings is quite similar to the slope of happy emotion
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TABLE 8 Conversion from straightness group to curvature for

multi-factor ANOVA (plus sign for outside and minus sign for inside).

Straightness

group

Actual side Inside/outside Resulting

curvature

value

−35◦ to−25◦ Left Outside +30

Right Inside -30

−25◦ to−15◦ Left Outside +20

Right Inside -20

−15◦ to−5◦ Left Outside +10

Right Inside −10

−5◦ to 5◦ Left - 0

Right - 0

5◦ to 15◦ Left Inside −10

Right Outside +10

15◦ to 25◦ Left Inside −20

Right Outside +20

25◦ to 35◦ Left Inside −30

Right Outside +30

TABLE 9 Results of multi-factor ANOVA.

Factor Degrees of freedom F-value P-value

Reported emotion 2 42.6435 0.0000

Curvature 6 8.7467 0.0000

Angle side 1 1.9132 0.1668

Gender 1 40.9067 0.0000

Reported emotion× Curvature 12 0.8662 0.5815

Reported emotion × Angle side 2 5.7700 0.0032

Curvature × Angle side 6 3.6326 0.0014

Reported emotion × Gender 2 55.7149 0.0000

Bold values mean significantly different angles (P < 0.05).

TABLE 10 Significantly di�erent pairs from Tukey test of reported

emotion.

Significant pair P-value from Tukey test

Happy vs. Neither 0.0011

Happy vs. Sad 0.0000

Neither vs. Sad 0.0000

(β = 0.0227). Therefore, the neither emotion has significantly

different arm swings compared to those of the happy and sad

emotions for the left arm side. Nevertheless, for the right arm,

the neither emotion has quite similar arm swings to those of the

happy emotion.

In summary, the slopes are affected by emotion differences

largely for the left arm side, but not so much for the right

TABLE 11 Significantly di�erent pairs from Tukey test of gender.

Significant pair P-value from Tukey test

Female vs. Male 0.0000

arm side. These results are in agreement with those from

one-way ANOVA.

7. Discussion

From the results of all statistical analyses, we examine

particularly noteworthy findings as follows.

First, from one-way ANOVA results, we found that human

gait is noticeably more affected by the reported emotion, which

is from a self-reported questionnaire, than by the expected

emotion, which is the annotated emotion of the emotion

induction video we used. When we performed a comparison

between expected emotions, all subjects watched the same video

of each emotion type including neutral, positive and negative

video; in each video, the visual patterns, dialogues, sounds, and

musical rhythms are identical. Consequently, the results suggest

that the gait differences we found from our analyses are not

based on the raw video or audio stimuli but on the subjects’

reported feelings induced by these videos.

In addition, from one-way ANOVA results of reported

emotion, the behaviors of several body part movements are

affected by human emotion. These include, for example, the

mean values of angles related to the head and shoulders

of subjects and the standard deviation values of angles, i.e.,

movement magnitude related to the chest, waist, and arms

of subjects. In particular, the left arm swing magnitude is

obviously different among reported emotions regardless of

walking curvature. However, only the left arm swing magnitude

is significantly affected by the difference in emotions among

all curvatures, whereas the right arm swing magnitude is not

affected in this way. Since the participants in our study did

not walk in a straight walking path but circularly with different

curvatures, it is possible that this phenomenon occurred due to

subjects’ walking curvature.

From these results, we investigated the arm swingmagnitude

in different walking curvatures. We found from the plots of arm

swing magnitude shown in Figures 13, 14 that the inside arm

has a smaller arm swing magnitude compared with the outside

arm, regardless of reported emotion or the arm side (left or

right arm). That is, when comparing within the same emotion,

for both left arm and right arm, the arm swing magnitude is

smaller if the arm is inside than if the arm is outside. This effect

is very obvious for happy emotion. Additionally, arm swing

magnitudes of sad emotion are always smaller comparing to

happy emotion for both left and right arm according to the
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experimental results using our dataset. Although the arm swing

when the arm is inside is smaller than when the arm is outside

in the same emotion, the smallest arm swing of happy emotion

remains greater than the largest arm swing of sad emotion

as shown in Figures 13, 14. Therefore, we can distinguish the

differences between happy and sad emotions from the arm swing

magnitudes even we do not know the walking curvature and

inside-outside status, but if we have this additional information,

it will be easier to distinguish between emotions. Our finding

about differences of arm swing magnitudes between happy

emotion and sad emotion agrees with previous works in related

fields including the studies proposed by Montepare et al. (1987),

Michalak et al. (2009) and Halovic and Kroos (2018). All of them

have similar findings that subjects’ arm swings when feeling sad

are smaller than the arm swings when feeling happy. Due to

these results of one-way ANOVA, we decided to focus only on

arm swing magnitude for reported emotion in the remaining

analyses, since we found that arm swing can reveal subjects’

emotion better than other body parts. Moreover, the effects of

walking curvature and arm side can be investigated from arm

swing magnitude using multi-factor ANOVA.

Based on to the results of multi-factor ANOVA, various

issues should be considered as follows. First, for the main effects,

we found that the reported emotion and curvature have effects

on arm swing magnitude. However, the angle side (left or right

arm) does not have a significant effect on arm swing magnitude.

Furthermore, we found two interaction effects related to the

angle side: first, the Reported Emotion factor with Angle Side

factor (F = 5.3906, P = 0.0047); second, the Curvature factor

with the Angle Side factor (F = 3.4769, P = 0.0020). It is possible

that these differences are due to the dominant hand of the

subjects. Unfortunately, in the current dataset we collected, the

dominant hand is not balanced, i.e., most subjects are right-

handed. Therefore, this hypothesis cannot be verified and it is

still an open question for future investigation. Moreover, the

reported emotion and walking curvature do not have interaction

effects with each other.

Gender is also another factor that should be investigated.

As we want to verify whether female and male subjects have

different arm swing magnitudes, multi-factor ANOVA was

performed with Gender factor in addition to Reported Emotion,

Curvature, and Angle Side factors. From multi-factor ANOVA

results, gender is another factor that has significant effect with

arm swing magnitudes. Gender factor also has an interaction

effect with the reported emotion factor (F = 55.7149, P =

0.0000). From other related studies, for example, Venture et al.

(2014) which used four professional actors including 2 men

and 2 women in their experiment, they found that inter-gender

recognition is feasible and emotional expressions of male and

female subjects are similar. In the study proposed by Gross

et al. (2012), most features are not affected by gender e.g., gait

velocity, cadence, range of motion at several joints, lateral tilt of

pelvis and trunk etc. However, some other features are different

among genders such as stride length, elbow range of motion,

trunk extension. This study contains 30 subjects with 50% female

participants so it should be more reliable as there are more

number of subjects. Also, in the study by Kang and Gross (2016)

that performed experiment using 11 women and 7 men, some

features such as gait speed or stride length are not affected by

gender while some other features such as the normal jerk score

of elbow and wrist are affected because of gender difference.

Hence, it is normal that some features can be affected by gender

difference while some features are not. Unfortunately, our study

has very imbalanced numbers of male and female subjects so we

cannot make the final conclusion about this issue.

As shown in other studies, there are several works about gait

analysis which attempted to estimate subjects’ ages from their

gaits. These studies reveal that human gaits can be used for age

estimation (Lu and Tan, 2010; Zhang et al., 2010; Nabila et al.,

2018; Gillani et al., 2020). This means that gait patterns from

subjects with different age ranges are also different. Because of

this issue, emotion recognition accuracy might decrease if the

difference of subjects’ ages is large. In this study, the average age

of participants is 19.69 years with 1.40 years standard deviation

as our participants are undergraduate students in our university.

It is possible that if the dataset contains more age diversity, the

results of investigation could be changed. Therefore, we want

to state that the findings from our study are based on a sample

group with similar age range.

According to the linear regression analysis, we found that

the arm swings in each emotion are affected differently between

the left and right arm as the regression slopes of the left arm

are very different under each emotion, whereas the regression

slopes of the right arm are quite similar among all emotions.

This means that the effects of emotions on the left and right arm

swings appear differently. The results suggest that we should also

consider the arm side in addition to the arm swing magnitude so

that we can distinguish between different emotions more easily

with higher accuracy.

In summary, according to the results from all analyses,

we can confirm the following hypotheses. First, body part

movements are different under different emotions. Hence,

walking posture can reveal the emotion of subjects. Second, the

body part movements of the left and right sides while walking in

a non-straight walking path are not symmetric, and thus one side

can reveal the emotion of a subject better than the other side.

This study reveals several useful findings for the emotion

recognition research field. We found that human gait can

reveal the current emotion of subjects while walking, even

in a non-straight walking path. Arm swing magnitude shows

the differences in subjects’ emotions effectively. Consequently,

if we know the walking curvature as well as the arm

side, it will be easier to distinguish between emotions.

The results from our study can be used to develop an

emotion recognition system that performs accurately and

unobtrusively in real-life situations where the subjects are

Frontiers in Artificial Intelligence 24 frontiersin.org

https://doi.org/10.3389/frai.2022.989860
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jianwattanapaisarn et al. 10.3389/frai.2022.989860

walking in a crowded environment, without the need for high-

quality cameras or specific equipment. Since human emotions

can be detected by their arm swing magnitudes, we can

use any camera with pose-estimation software to calculate

the essential features for emotion prediction. Nevertheless,

some issues remain unexplored due to the limitations of

our dataset, including the effect of dominant hand and the

differences between male and female subjects. We plan to

collect more data so we can investigate these issues in the

near future.

8. Conclusion

In this study, we investigated the differences in body part

movements while subjects are walking in a non-straight path and

watching emotion-inducing videos using Microsoft HoloLens 2.

Since the walking path is not straight, we can collect gait data

for different curvatures. Body part movements were captured by

the OptiTrack motion-capturing system with 37 markers. For

emotion induction using emotion-inducing videos, we found

that not all subjects felt the same emotion that we expected

them to feel; therefore, it is important to always ask for their

feelings after finishing emotion induction. For gait features,

we calculated 24 angles that show the movements of body

parts while subjects are walking. We also calculated walking

straightness and the curvature level of walking, along with

the inside-outside status of body side, i.e., left side or right

side. According to the results of one-way ANOVA, multi-

factor ANOVA, and linear regression analyses on gait data,

we found that the magnitudes of arm swing are larger when

the subjects are walking and feeling happy than when the

subjects are feeling sad. In our opinion, the results agree

with human nature that subjects will move slower with less

magnitudes when they are feeling sad in comparison to when

they are feeling happy. Furthermore, if the subjects walk in

a non-straight walking path, observing one side of the body

movements will be easier for prediction of emotion than the

other side, since the left arm swings can reveal subjects’ current

emotion better than the right arm swings, especially when the

left arm is the outside arm and the subjects are walking at a

high curvature level. From all of the analyses we conducted,

we conclude that body movements while walking are different

under different emotions, so we can detect subjects’ emotions

using their gait. In particular, arm swing magnitude reveals

the current emotions of subjects better than any other part of

the body.
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