
Heliyon 10 (2024) e37156

Available online 30 August 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article

Integrated gene-metabolite association network analysis reveals
key metabolic pathways in gastric adenocarcinoma

Botao Xu a,1, Yuying Shi b,c,d,1, Chuang Yuan e, Zhe Wang f, Qitao Chen b,c,
Cheng Wang b,c,**, Jie Chai a,*

a Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of
Medical Science, Jinan, China
b Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
c National Institute of Health Data Science of China, Shandong University, Jinan, 250000, China
d National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu, 610299, China
e Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
f Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical
Science, Jinan, Shandong, China

A R T I C L E I N F O

Keywords:
Gastric adenocarcinoma
Metabolomics
Biomarker
Topological analysis
Metabolic pathway

A B S T R A C T

Gastric adenocarcinoma is one of the most death cause cancers worldwide. Metabolomics is an
effective approach for investigating the occurrence and progression of cancer and detecting
prognostic biomarkers by studying the profiles of small bioactive molecules. To fully decipher the
functional roles of the disrupted metabolites that modulate the cellular mechanism of gastric
cancer, integrated gene-metabolite association network methods are critical to map the associ-
ations between metabolites and genes. In this study, we constructed a knowledge-based gene-
metabolite association network of gastric cancer using the dysregulated metabolites and genes
between gastric cancer patients and control group. The topological pathway analysis and gene-
protein-metabolite-disease association analysis revealed four key gene-metabolite pathways
which include eleven metabolites associated with modulated genes. The integrated gene-
metabolite association network enables mechanistic investigation and provides a comprehen-
sive overview regarding the investigation of molecular mechanisms of gastric cancer, which fa-
cilitates the in-depth understanding of metabolic biomarker roles in gastric cancer.

1. Introduction

Gastric cancer (GSC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide [1–3]. Gastric
adenocarcinoma is the most prevalent type of GSC [1,4]. It is often detected when patients present with obvious symptoms, leading to a
diagnosis at an advanced stage, which severely impacts treatment and prognosis [5,6]. Therefore, early detection using effective
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screening methods is crucial to improving diagnosis rates and reducing mortality.
Metabolomics is a comprehensive method for qualitative and quantitative profiling of all endogenous small molecules in biological

samples such as tissues, urine, and plasma [7–9]. Cancer metabolomics studies focus on identifying cancer specific metabolites from
tumor tissues that can serve as potential biomarkers for clinical applications [10,11]. Metabolic differences between tumor cells and
surrounding cells help understand the mechanisms underlying tumor growth, invasion, andmetastasis [11–13]. Research onmetabolic
biomarkers for GSC has grown rapidly over the decades with advanced analytical platforms. Several gastric cancer biomarkers, such as
carcinoembryonic antigen (CEA), are used for diagnosis, clinical staging, assessment of treatment response and screening for recur-
rence after successful treatment [14–17].

The discovery of new biomarkers, such as the expression levels of various proteins and genes in body fluid samples, has created new
opportunities for diagnosing and monitoring patients with GSC [18]. These findings may provide valuable targets for the early
diagnosis and personalized treatment of GSC. Functional analysis based on identified metabolites is critical for understanding the
molecular mechanisms of gastric cancer [19]. Gu et al. identified several important metabolites of gastric cancer through metab-
olomics analysis and performed metabolic pathway analysis [20]. They revealed multiple significantly disrupted metabolic pathways,
including oxidative stress, choline phosphorylation, amino acid metabolism, the Krebs cycle, and glycolysis. Three metabolic pathways
are consistently disrupted during GSC development and progression: taurine and hypotaurine metabolism, glutamine and glutamate
metabolism, and alanine, aspartate, and glutamate metabolism [21]. These alterations may be due to abnormal energy supply for
tumor cell proliferation and growth.

Metabolomics approaches have been widely studied in gastric cancer, but the deep exploration of upstream pathways and functions
of gastric cancer metabolites is still relatively limited [19,22]. Specifically, most metabolomics studies focus on the enriched metabolic
pathways, while some key modulated metabolites may be ignored. In this work, we conducted an integrated gene-metabolite asso-
ciation network approach using the differentially expressed metabolites of gastric adenocarcinoma and its paraneoplastic tissues.
Hundreds of metabolic pathways were enriched using disrupted metabolites. By using topological pathway analysis and
knowledge-based networks, the gene-protein-metabolite-disease interaction network was constructed to identify core regulated me-
tabolites and genes. The identification of specific metabolic biomarkers and pathways provides potential targets for early detection and
diagnosis of gastric cancer. These targets can be further explored for developing drugs that specifically disrupt cancer metabolism,
potentially leading to more effective treatments. In addition, this integrated gene-metabolite association pipeline provides molecular
insights into the mechanisms of gastric cancer and helps discover new potential metabolic biomarkers.

2. Methods

2.1. Dataset

Twelve metabolomics studies on GSC were included. We extracted the disrupted metabolites that showed statistical differences
between GSC patients and control group. All metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy or
mass spectrometry (MS). The details of the twelve metabolomics studies and metabolites are listed in Table 1.

2.2. Pathway enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was applied to understand the functions and
pathways related to differential metabolites. Using the KEGG Compound Database (https://www.genome.jp/kegg/compound/) and
MetaboAnalyst, we performed pathway enrichment analysis based on several libraries containing approximately hundreds of me-
tabolites [23,24]. The identified metabolites were matched to the KEGG pathway database. We used Fisher’s exact test to verify the
P-value of the calculated pathway enrichment and Holm-Bonferroni adjustment for multiple test corrections. The Benjamini-Hochberg
method was employed to control the false discovery rate (FDR) and reduce false positives. To provide more information on the number
of metabolites, we listed the total number of metabolites in the pathway and the matched number of metabolites. The results of the
enriched pathways were ranked by P-values, and pathways with P < 0.01 were selected for topological analysis. The top 25 pathways
with significant analysis were visualized using bar plots and scatter plots.

2.3. Topological analysis

The most significant metabolic pathways were identified based on P-value and FDR. We then used the relative-betweenness
Centrality method for topological analysis through the GenomeNet Database (https://www.genome.jp/). Betweenness centrality
(BC) describes the importance of a node by the number of shortest paths passing through it. In other words, all shortest paths between
any two nodes in the network were calculated. Nodes with more of these paths passing through them were considered to have high
betweenness. Using the KEGG Pathway Database, we manually mapped the relevant metabolites and removed unnecessary pathways.
We then converted this pathway information into a directed graph where each metabolite was uniquely identified by its chemical
name. We calculated BC based on the number of connections each metabolite had and further exploring their molecular and cellular
functions.
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Table 1
Differential metabolites in serum, urine, and tissue collected on different analytical platforms.

Author and year Platform Sample size TNM
stage

Grade Sample
(species)

Group Disrupted metabolites

Jingping Gu et al.
(2020) [21]

NMR Model mice (n
= 52)
CON mice (n =

32)

Mice
tissue

GS vs CON lactate, glutamate, glutamine,
aspartate, creatine, choline, PC,
GPC, taurine, AMP, Pyruvate, myo-
Inositol.

LGD vs GS glutamate, glutamine, creatine,
choline, PC, GPC, taurine, AMP,
NAD+.

HGD vs LGD lactate, acetate, GPC, glycine,
creatine, choline, PC, taurine, AMP.

GSC vs HGD leucine, isoleucine, valine,
oxybutyrate, lactate, lysine,
aspartate, GPC, glycine, myo-
Inositol, PC, AMP.

GC–MS
NMR

Human
tissue,
serum,
urine,
gastric
content

20 trials
(summarized
from review
article)

lactate, valine, glutamine,
fumarate, pyrimidine, nucleotides,
guanosine, myo-inositol,
acetaldehyde, ketones, acetone,
β-hydroxybutyrate

Naresh Doni
Jayavelu et al.
(2014) [27]

1H NMR
LC
GC
MS
CE

Human
serum,
urine,
tissue

8 trials
(summarized
from review
article)

lactic acid, serine, proline, malic
acid, fatty acids, sarcosine, azelaic
acid, glutamate, urate, creatinine,
threonate, 3-hydroxypropionic
acid, pyruvic acids, valine,
isoleucine, serine, phosphoserine,
1-acyl-lysophosphatidylcholines,
polyunsaturated fatty acid, lactic
acid, butanedioic acid

Hyuk Nam Kwon
et al. (2020) [28]

NMR GSC:n = 103
(67 male, 36
female, mean
age:53.7 ±

10.1 years)
CON:n = 100
(70 male, 30
female, mean
age 54.5 ±

10.5 years)

Stage I (69
patients)
Stage II
(10
patients)
Stage III
(15
patients)
Stage IV(9
patients)

Differentiated (n
= 55),
Undifferentiated
(n = 48)

Human
urine

GSC
(stage1,2,3,4)
vs CON

alanine, citrate, creatine,
creatinine, glycerol, ippurate,
phenylalanine, taurine,3-
hydroxybutyrate

Huijuan Wang et al.
(2016) [29]

1H NMR GSC: n = 125
(91 male, 34
female, median
age:60, range:
28–86 years)
CON: n = 54
(39 male, 15
female, median
age:61, range:
28–80 years)

Stage I (30
patients)
Stage II
(46
patients)
Stage III
(37
patients)
Stage IV
(12
patients)

Poorly
differentiated (n
= 74),
Moderately
differentiated (n
= 46),
Well-
differentiated (n
= 0),
Not applicable (n
= 5)

Human
tissue

GSC
(stage1,2,3,4)
vs CON

isoleucine, lactate, glutamate,
glutathione, 4-hydroxyphenylac-
tate, tyrosine,
phenyacetylglutamine,
hypoxanthine, citrulline, valine,
acetoacetate, methylamine

Younes Aftabi et al.
(2021) [30]

NMR
LC
GC
CE

Serum,
urine,
tissue,
breath,
fecal

18 trials
(summarized
from review
article)

acylcarnitines, amino acids and
biogenic amines, sphingolipids,
glycerophospholipids, hexoses,
tryptophan, phenylalanine,
kynurenine, 2-Hydroxybutyrate,
pyroglutamate, glutamate,
asparagine, azelaic acid, ornithine,
urate, g-tocopherol, organic acids,
fatty acids, 3-Hydroxypropionic
acid, pyruvic acid, L-alanine,
glucuronoic lactone steroids,
heptanedioic acid, L-valine,
acetamide, L-isoleucine, serine.

V. Tugnoli et al.
(2006) [31]

HR-MAS GSC: n = 5 (2
male, 3 female,
mean age 70.6
± 12.9 years,
range: 59–86

Well
differentiated (n
= 3),
Poorly
differentiated

Human
tissue

GSC vs CON glucose, imidazole, oleic acid,
valine, threonine, lactate,
lidocaine, chlorohydrate,
β-alanine, lysine, arginine,
glutamate, glutamine, proline,

(continued on next page)
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2.4. Network analysis

To create knowledge-based networks, metabolites and genes were mapped to the interaction network to generate subnetworks
containing these seeds and their direct neighbors (first-order subnetworks). This process often results in one large subnetwork along
with several smaller ones. We extracted genes associated with gastric adenocarcinoma from the Disgenet database [25]. Chemical and
human gene associations were extracted from the Search Tool for Interacting Chemicals (STITCH), which explores known and pre-
dicted interactions between chemicals and proteins, using only highly confident interactions [26]. Most associations in STITCH are
based on the PubMed database, including reactions from similar chemical structures and molecular activities. Since reaction direction
was not considered in this study, the metabolic response network plot was undirected, and edge weights were not specified. Node
characteristics included size and color. We used degree centrality to measure node importance. Degree centrality is terms as the node
degree, meaning the number of edges it has. The higher the degree, the more central the node, which indicates a higher correlation
between the metabolites and gastric adenocarcinoma.

Table 1 (continued )

Author and year Platform Sample size TNM
stage

Grade Sample
(species)

Group Disrupted metabolites

years)
CON: n = 11 (7
male, 4 female,
mean age: 49.3
± 17.3 years,
range: 30–86
years)

and
Undifferentiated
(n = 1)

methionine, asparagine, creatine,
tyrosine, phenylalanine,
ethanolamine,
phosphorylethanolamine,
glycerophosphorylethanolamine,
glycerophosphorylcholine,
phosphorylcholine, β-glucose,
taurine, myoinositol, scylloinositol,
α-glucose, glycine, PEG, glycerol,
UDP, uracil, UMP, formate.

Shivanand
Pudakalakatti
et al. (2022) [32]

NMR
LC-MS

Villin-PPARD
mouse model
(n = 5)
WT littermates
(n = 5)

Mice
tissue

Villin-PPARD
mouse model
vs WT
littermates

glucose, imidazole, IMP, uracil,
phenylalanine, glycine, isocitrate,
UDP-glucose, AMP, inosine,
palmitic acid, linoleic acid, steric
acid, oleic acid.

Angela W Chan et al.
(2016) [33]

H NMR GSC: n= 43 (28
male, 15
female, mean
age: 65.2 ±

12.0 years)
BN: n = 40
(198 male, 21
female, mean
age: 63.1 ± 9.0
years)
HE: n = 40 (23
male, 17
female, mean
age: 63.2 ± 8.8
years)

Stage I (6
patients)
Stage II
(11
patients)
Stage III
(10
patients)
Stage IV
(14
patients)
Unknown
(2
patients)

Well
differentiation (n
= 3),
Moderate
differentiation (n
= 8),
Moderate to poor
differentiation (n
= 5),
Poor
differentiation (n
= 29),
Not reported (n
= 3)

Human
urine

GSC vs HE 2-hydroxyisobutyrate, 3-indoxyl-
sulfate, alanine

Gokula Krishnan
Ramachandran
et al. (2016) [34]

NMR 13 gastric
cancer cell lines

Human
gastric
cancer
cell

GSC vs CON choline, choline related
compounds, creatine, 2-hydroxy-
glutarates, glutamine,
methylamine, 2-oxoglutarate

Jinping Gu et al.
(2016) [20]

NMR Model mice (n
= 52)
CON mice (n =

32)

GS (n = 11),
LGD (n = 15),
HGD(n = 15),
GSC(n = 11)

Mice
serum

Model (GS,
LGD, HGD,
GSC) vs CON

seine, tyrosine, phenylalanine,
glycine, lysine, histidine,
asparagine, hydroxybutyrate,
glycerol, arginine, glutamine,
threonine, alanine, LDL/VLDL,
lactate, xanthine, phosphocholine,
α-acid glycoprotein,
polyunsaturated fatty acid

Chi-Woong Mun
et al. (2004) [35]

NMR Noncancerous
(n = 22)
Cancerous (n =

13)

Human
tissue

Noncancerous
vs Cancerous

lipids, alanine, N-acetyl neuraminic
acid, glutathione, lactate, choline

GSC represents the gastric cancer group, CON is the normal population and represents the control group, GS represents the gastritis group, LGD
represents the low-grade gastric dysplasia group, HGD represents the high-grade gastric dysplasia group, BN represents the benign gastric disease
group, HE represents the healthy group.

B. Xu et al.
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3. Results and discussion

3.1. Study design

The overview of this study design is shown in Fig. 1. We first summarized the differentially expressed metabolites associated with
gastric adenocarcinoma from twelve metabolomics studies on the disease. Table 1 provides examples of differential metabolites in
serum, urine, and tissue based on NMR and MS. We then performed functional analyses, including pathway enrichment analysis,
topological analysis, and gene-protein-metabolite-disease interaction network analysis. The molecular mechanisms of key metabolites
and metabolic pathways were explored through literature cross-referencing. We mapped differentially expressed metabolites onto
relevant metabolic pathways. Based on the significance level of the P-value adjusted by FDR, significant metabolic pathways were
selected to identify the top differentially expressed metabolites with biological significance between different groups. Topological
analysis of these significant metabolic pathways was conducted to discover potential interconnections between metabolites. To
investigate the pathogenesis of gastric adenocarcinoma from a genetic regulation perspective, we linked the related genes of gastric
adenocarcinoma and significant metabolites to construct a gene-metabolite interaction network. The genes most related to the
metabolic pathway of gastric adenocarcinoma were identified to explain the development of gastric adenocarcinoma at both genetic
and metabolic levels.

3.2. Metabolic profiling

Through the analysis of analytical platforms and methods, we identified and summarized 80 disrupted metabolites specific to
gastric adenocarcinoma. These metabolites are listed in Table S1. The ten most confident differential metabolites are glutamate,
glutamine, AMP, choline, aspartate, isoleucine, lactate, valine, citrate, and fumarate. There are five crucial disrupted metabolic
processes in gastric adenocarcinoma: amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, energy metabolism,
and quaternary ammonium metabolism. Branched-chain amino acids (leucine, isoleucine, and valine) and lysine were significantly
upregulated. Glutamate, glutamine, aspartate, isoleucine, and valine were involved in amino acid metabolism. Lactate, which belongs
to carbohydrate metabolism, gradually increased during gastric adenocarcinoma. Fatty acid metabolism showed a roughly increased
level of myo-inositol. Adenosine 5′-monophosphate was markedly increased in energy metabolism. Choline was significantly increased
in quaternary ammonium metabolism.

3.3. Metabolic pathway enrichment analysis

KEGG pathway enrichment analysis was used to identify key pathways in the development of gastric adenocarcinoma. The sig-
nificant KEGG pathways and core metabolite sets were analyzed, and the results are shown in Fig. 2. There are ten pathways with an
adjusted P-value <0.01 and FDR <0.01, including aminoacyl-tRNA biosynthesis, arginine biosynthesis, alanine, aspartate, and
glutamate metabolism, glyoxylate and dicarboxylate metabolism, valine, leucine, and isoleucine biosynthesis, pantothenate and CoA
biosynthesis, the citrate cycle, glycine, serine, and threonine metabolism, D-glutamine and D-glutamate metabolism, and butanoate
metabolism. The details of the enrichment analysis are shown in Table S2. As shown in Fig. 2, there are seven pathways with -log(p) ≥
1.5 and impact >0.3, including arginine biosynthesis, alanine, aspartate, and glutamate metabolism, glyoxylate, and dicarboxylate
metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosyn-
thesis, and the synthesis and degradation of ketone bodies.

Fig. 1. The workflow of the integrated gene-metabolite association network for mechanistic investigation of gastric adenocarcinoma.

B. Xu et al.
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3.4. Topological analysis

Four metabolic pathways have been validated to be associated with gastric adenocarcinoma: arginine biosynthesis (Pathway
Impact, PI: 0.42, P-value: 1.04E-7), alanine, aspartate, and glutamate metabolism (PI: 0.58, P-value: 2.00E-6), D-glutamine and D-
glutamate metabolism (PI: 0.5, P-value: 0.7E-3), and phenylalanine metabolism (PI: 0.36, P-value:0.0038). Differentially expressed
metabolites were mapped to these pathways as shown in Fig. 3.

Fig. 2. The metabolic pathway enrichment analysis. Panel (a) shows the pathway enrichment overview (top 25 pathways). The horizontal axis
represents the enrichment ratio, and the vertical axis represents the name of the pathway. The color of the histogram represents the P-value,
representing the significant degree of enrichment. The darker the color, the smaller the Q value and the higher the degree of enrichment. Panel (b)
shows all matched pathways according to the P-values from the pathway enrichment analysis and pathway impact values from the pathway to-
pological analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Topological analysis of four enrichment pathways related to gastric adenocarcinoma. It shows the metabolic pathway of alanine, aspartate
and glutamate metabolism, D-glutamine and D-glutamate metabolism, Phenylalanine metabolism, and Arginine biosynthesis.

B. Xu et al.
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We identified that alanine, aspartate, and glutamate were significantly different in gastric adenocarcinoma tissues compared to
normal tissues. In a study by Yuan et al. using amulti-omics approach, the metabolic profile of gastric adenocarcinoma showed that the
metabolism of alanine, aspartate, and glutamate (AAG) was significantly related to the occurrence and development of gastric
adenocarcinoma [36]. The metabolomic analysis highlighted the co-expression relationship between AAG metabolism, glyco-
lysis/gluconeogenesis metabolism (G/G), and HER2 levels in gastric adenocarcinoma [36]. This finding could contribute to the
development of more targeted therapies for gastric adenocarcinoma.

3.5. Gene-metabolite association network analysis

The results of the genes associated with gastric adenocarcinoma from the Disgenet database are shown in Table S3. We used 80
differentially expressed metabolites and 675 gastric adenocarcinoma-related genes to create a gene-metabolic network. A gene-
metabolite interaction network with all the differentially expressed metabolites was then constructed, as shown in Fig. 4. Based on
node degree, the top eleven metabolites associated with genes are L-glutamic acid, glutathione, citric acid, oxoglutaric acid, succinic
acid, L-aspartic acid, adenine, glycine, L-glutamine, sucrose, and taurine. The top four genes are DECR1, CAT, GLUL, and IDH2. These
metabolomic changes provide new insights for selecting effective diagnostic markers and targeted therapy for gastric adenocarcinoma.
Additionally, these genes offer clues for screening and treating gastric adenocarcinoma at the transcriptional level. The metabolite that
interacted most with genes was L-glutamic acid.

The metabolites that interacted most with genes were L-glutamic acid. Fig. 5 shows a gene-metabolite interaction network for the
four top enriched pathways: alanine, aspartate, and glutamate metabolism; D-glutamine and D-glutamate metabolism; arginine
biosynthesis; and phenylalanine metabolism. As shown in Fig. 5, L-glutamic acid and oxoglutaric acid are produced by three metabolic

Fig. 4. Integrated network analysis of genes and metabolites associated with gastric adenocarcinoma. Red labels indicate genes and blue labels
indicate metabolites. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

B. Xu et al.
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pathways. The genes ACE and FH are also closely related to these pathways. This highlights the potential of related signaling pathways
as therapeutic targets for gastric adenocarcinoma. Angiotensin-converting enzyme (ACE) is a type I cell surface zinc metallopeptidase
responsible for catalyzing the conversion of Ang I to Ang II [37]. There is increasing evidence that ACE is also involved in the
pathological process of carcinogenesis [38]. ACE is differentially expressed in several malignancies and affects tumor cell proliferation
[38], migration, angiogenesis, and metastatic behavior [39,40]. A recent study discovered that ACE mRNA and protein levels are
significantly upregulated in gastric adenocarcinoma [41]. Rocken et al. demonstrated that ACE influences the progression and met-
astatic behavior of gastric adenocarcinoma, but not its incidence [42]. Experimental studies have shown that the local
renin-angiotensin system can affect tumor biology in various ways: (a) increasing neoangiogenesis mediated by vascular endothelial
growth factor and microvascular density in solid tumors, which is essential for tumor growth [38,43]; (b) promoting tumor cell
proliferation [44]; and (c) remodeling the mesenchymal stroma, which forms the scaffold for tumor cells [45]. Recent studies indicate
that combination therapies including ACE inhibitors may be effective in cancer treatment [44]. Many ACE inhibitors are readily
available, affordable, well-tolerated, and may reduce the of side effects of other chemotherapeutic agents [46].

The FH gene encodes both cytosolic and mitochondrial variants, which differ in their N-terminal peptide sequences [47]. The
mitochondrial FH protein is part of the tricarboxylic acid (TCA) cycle, catalyzing the reversible hydration of fumarate to malate [48].
FH-deficient cells respond to mitochondrial damage compensatory metabolic changes [49]. Typically, as observed in mitochondrial
diseases, FH-deficient cells increase their glycolytic rate, shunting glucose to lactate production instead of oxidizing it in the mito-
chondria [50] and other branches of glycolysis [51]. This glycolytic shift is supported by the transcriptional reprogramming of
glycolytic enzymes and the inhibition of pyruvate dehydrogenase (PDH), which prevents glucose from entering the mitochondria [52].
As glucose entry into mitochondria is reduced, glutamine replaces glucose as the main carbon source for the truncated TCA cycle [53].
Sporadic deletion of FH has been reported in several tumors, including paragangliomas [53,54], adrenocortical carcinomas [55],
neuroblastomas [56], gliomas, osteosarcomas and Ewing’s sarcoma [57]. Its transcriptional downregulation has been found in spo-
radic clear cell carcinoma and colorectal cancer [58], and there is evidence of FH mutations in breast, bladder, and testicular cancers
[59]. These findings imply a critical role for FH deletion in human cancers [49]. However, how its deletion promotes tumorigenesis
remains controversial, and its role in gastric carcinogenesis and progression requires further investigation.

4. Discussion

In this study, we identified key metabolic pathways associated with gastric adenocarcinoma using topological and gene-metabolite
association network analyses. Three metabolomics studies served as independent validation cohorts to determine whether the dys-
regulated metabolites and metabolic pathways were consistent with external findings. The results are provided in Table S6. Among the
differentially expressed metabolites, 84.3 % showed a consistent trend with the summarized metabolites, and 90.3 % of the key
metabolic pathways were validated. These findings demonstrate the validity of these dysregulated metabolic pathways in gastric
cancer [60–62].

For the metabolism of aromatic amino acids, both phenylalanine and tryptophan which are essential amino acids, have been
validated as being linked to gastric cancer. According to a study by Deng K. et al., high levels of aromatic amino acids in gastric juice
are associated with stomach cancer and are necessary for the formation of the non-essential amino acid tyrosine [63,64]. They also
found elevated levels of tyrosine, phenylalanine, and tryptophan in gastric fluid samples during the early stages of gastric carcino-
genesis, supporting the discovery of elevated levels of aromatic amino acids in gastric contents [64]. An essential indicator of
metabolic reprogramming in gastric adenocarcinoma is abnormal arginine metabolism. This reflects changes in the pathophysiology

Fig. 5. A gene-metabolite interaction network of four key metabolic pathways. The color of the circle represents the different signalling pathways.
The size represents the degree to which a metabolite or gene is associated with gastric adenocarcinoma. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)

B. Xu et al.
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and subtype of the disease, as well as interactions among enzymes and intermediates in the metabolic pathways [65].
Glutamine plays a crucial role in cancer cell metabolism and is essential for tumor growth, development, and treatment response

[66–69]. Glutamine enters the cell via the amino acid transporter ASCT2/SLC1A5 and is converted to glutamate in the mitochondria
through a deamination reaction catalyzed by glutaminase (GLS) [70,71]. Glutamate is then converted to the TCA cycle intermediate
α-ketoglutarate (α-KG) by glutamate dehydrogenase (GDH)/alanine or aspartate aminotransferases (TAs) [72]. The increased presence
of glutamine and glutamate in metabolic data underscores the importance of this pathway in cancer metabolism [70,71]. The ab-
sorption of glutamine by the tumor microenvironment differs significantly from that of healthy tissues [73,74]. Glutamine metabolism
in the tumor microenvironment has been shown to enhance tumor growth and reduce the immune system’s ability to fight tumors
[73]. Many cancer cells exhibit an oncogene-dependent addiction to glutamine, promoting proliferative signaling [75,76]. For
example, the influx of glutamine via SLC1A5 is closely linked to the efflux of molecules via the SLC7A5/LAT1 transport protein, which
also facilitates leucine entry into cells and promotes mTORC1-mediated cell growth [77]. Additionally, signaling molecules like Akt,
Ras, and AMPK activate glycolytic enzymes and induce lactate production (Warburg effect), forcing cancer cells to rely on glutamine
metabolism to meet the increased energy demands [76]. The proto-oncogene c-Myc promotes glutamine catabolism by transcrip-
tionally activating GLS and SLC1A5 genes [76–78]. Glutamine-mediated protein glycosylation, including that of growth factor re-
ceptors, transports proteins to the cell surface and activates them [78].

Aspartate is another crucial metabolite to consider. Aspartate β-hydroxylase (ASPH) has been identified as a cell surface protein
associated with the malignant transformation of tumor cells [79,80]. ASPH is a key target for controlling tumor cell migration and
invasion [81,82]. Increased expression of ASPH has been observed at both transcriptional and translational levels in various trans-
formed cell lines and human cancer tissues, including hepatocellular carcinoma, pancreatic cancer, colon cancer, prostate cancer, lung
cancer, breast cancer, ovarian and cervical cancer, cholangiocarcinoma, neuroblastoma, and gastric adenocarcinoma [83]. ASPH
levels have also been linked to cell motility and invasion in in vitro studies. The Wnt/β-catenin [84,85] and insulin/insulin-like growth
factor 1 (IGF1)/insulin receptor substrate 1 (IRS1) signaling pathways [86], via extracellular signal-regulated kinase (ERK)/mitoge-
n-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B [66], upregulate ASPH gene expression. ASPH
has been proposed as a common link between the Wnt/β-catenin and insulin/IGF1/IRS1 signaling pathways [87]. This study deploys
an integrated multi-omics approach and comprehensive network analysis that provides valuable insights into the metabolic alterations
in gastric cancer. The identified metabolic and genomic biomarkers and pathways show significant potential for improving early
diagnosis, personalizing treatment, and developing new therapeutic strategies for gastric cancer.

4.1. Limitations of study

Though this study presents key metabolic pathways in gastric adenocarcinoma based on metabolomics data, several limitations
should be noted. The metabolomics data were pooled from multiple observational cohort studies, which limits the ability to establish
causality between the observed metabolic alterations and the pathophysiology of gastric adenocarcinoma. Additionally, the study
results were derived from a specific cohort of patients, which may not represent all demographic groups affected by gastric adeno-
carcinoma. Genetic diversity and environmental factors, which vary widely across populations, can influence the disease’s metabolic
pathways, potentially limiting the applicability of our findings to other groups. This study utilized metabolomics data and a topological
approach to infer the gene-metabolite association network. To gain a more comprehensive understanding of the disease mechanisms
and the metabolic diversity of gastric adenocarcinoma, additional data such as transcriptomics and proteomics should be incorporated.
This integrated approach could help tailor personalized therapeutic strategies for gastric adenocarcinoma.

5. Conclusions

In this study, the gene-metabolite interaction network analysis provided insights into the transcriptional regulation mechanisms of
these metabolic pathways associated with gastric adenocarcinoma. These findings highlight several potential biomarkers for early
detection, diagnosis, and monitoring, as well as targets for personalized therapeutic strategies. This integrated analysis offers sig-
nificant mechanistic insights into the metabolic and genetic disruptions in gastric adenocarcinoma, paving the way for improved
clinical interventions and outcomes.
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