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Siglec-7 (sialic acid–binding immunoglobulin-like lectin 7) is an immune checkpoint-like
glycan recognition protein on natural killer (NK) cells. Cancer cells often upregulate Siglec
ligands to subvert immunosurveillance, but the molecular basis of Siglec ligands has been
elusive. In this study, we investigated Siglec-7 ligands on chronic lymphocytic leukemia
(CLL) B cells. CLL B cells express higher levels of Siglec-7 ligands compared with healthy
donor B cells, and enzymatic removal of sialic acids or sialomucins makes them more
sensitive to NK cell cytotoxicity. Gene knockout experiments have revealed that the
sialyltransferase ST6GalNAc-IV is responsible for the biosynthesis of disialyl-T
(Neu5Aca2–3Galb1–3[Neu5Aca2–6]GalNAca1–), which is the glycotope recognized by
Siglec-7, and that CD162 and CD45 are the major carriers of this glycotope on CLL B
cells. Analysis of public transcriptomic datasets indicated that the low expression of
GCNT1 (encoding core 2 GlcNAc transferase, an enzyme that competes against
ST6GalNAc-IV) and high expression of ST6GALNAC4 (encoding ST6GalNAc-IV) in CLL
B cells, together enhancing the expression of the disialyl-T glycotope, are associated with
poor patient prognosis. Taken together, our results determined the molecular basis of
Siglec-7 ligand overexpression that protects CLL B cells from NK cell cytotoxicity and
identified disialyl-T as a potential prognostic marker of CLL.

Keywords: chronic lymphocytic leukemia, natural killer cells, Siglec-7, sialomucin, ST6GalNAc-IV, Core 2
GlcNAc transferase
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common type of hematopoietic malignancy (1, 2).
CLL develops over a long period of time by the accumulation of mature clonal B lymphocytes that
proliferate in an uncontrolled manner and/or fail to undergo cell death. Clinical outcome of CLL is
influenced by many factors, and the mutation status of immunoglobulin heavy chain variable region
(IGHV), reflecting the differentiation stage of the B cell clone that eventually gives rise to CLL, is a
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strong prognostic factor (3, 4). Survival of CLL cells depends on
the signaling through B-cell receptor, which may recognize
autoantigen or environmental antigen (5–7). Approval of drugs
targeting the B-cell receptor signaling pathway (i.e., Btk and
PI3Kd inhibitors) and the anti-apoptotic protein Bcl2 inhibitor
has revolutionized the treatment of CLL in the past decade (8).
However, drug resistance eventually develops in many patients,
necessitating new therapeutic approaches. Recent success in
clinical trials of chimeric antigen receptor–transduced T cell
and NK cell therapies has marked the beginning of a new era in
CLL therapy (9, 10). The identification of factors influencing the
success of cell-based CLL therapy is thus of clinical interest.

NK cells are equipped with various germline-encoded receptor
proteins working as environmental sensors, and the sum of the
inputs from activating and inhibitory receptors determines the
cellular response (11–13). A previous study found that genetic
polymorphisms determining the ratio between inhibitory and
activating killer immunoglobulin-like receptors are associated with
susceptibility to CLL (14), suggesting the importance of NK cell–
mediated immunosurveillance in CLL. Siglec-7 (sialic acid–binding
immunoglobulin-like lectin 7), also known as p75/AIRM-1, is one
of the inhibitory receptors on NK cells (15, 16) and is considered to
be a potential cancer immunotherapy target (17, 18). Many Siglecs,
from a family of glycan recognition proteins expressed on various
leukocytes, have immune checkpoint-like properties and contribute
to the fine-tuning of immune responses (19, 20). Each Siglec shows
a unique expression pattern and its own glycan recognition
preference (21, 22). Research has shown that neutralization of
Siglec-7 (expressed primarily on NK cells) and Siglec-9 (expressed
primarily on myeloid cells but also on cytotoxic T cells in cancer
patients) with an antibody can modulate the responses of killer
lymphocytes in favor of cancer elimination (18, 23). Removal of
sialic acid, a sugar residue recognized by Siglecs, from cancer cells
also sensitizes them to cellular cytotoxicity by killer lymphocytes
and other mechanisms (17, 24–26).

These previous studies demonstrated that the sialic acid–
Siglec axis is a promising target for checkpoint inhibitor–type
intervention in cancer treatment. However, our knowledge
regarding the identity of Siglec ligands on cancer cells,
consisting of the glycan epitope (glycotope) recognized by
Siglec and the glycoproteins (counterreceptors) that exhibit the
glycotope, is still limited (27, 28). The inherent difficulties in
deciphering glycan-based recognition events include the low
affinity of interaction between the glycan recognition protein
and cognate glycotope (with the Kd value often being in the
order of 10-3 M), complexity of glycan structures and
biosynthesis pathways, redundancy in counterreceptors (i.e.,
the same glycotope can be exhibited in multiple glycoproteins),
and the membrane-associated nature of functional ligands,
among others. Regardless, understanding the molecular basis
of Siglec-based immune subversion by cancer is crucial to
improving the efficacy of cancer therapy. In this study, we used
a combination of approaches to determine the molecular basis of
Siglec-7 ligands on CLL B cells and further identified a potential
prognostic marker of CLL via bioinformatic analysis of public
transcriptomic datasets.
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MATERIALS AND METHODS

Collection of Donor Blood and Purification
of B Cells
The institutional review boards of the National Taiwan
University Hospital and Academia Sinica approved this study
(approval nos. 201907037RINA and AS-IRB-BM-19043,
respectively). Taiwanese CLL patients were recruited at the
National Taiwan University Hospital. Informed consent was
obtained from each participant before peripheral blood
samples were collected. The characteristics of the patients are
summarized in Supplementary Table 1. Blood samples from
healthy donors were obtained from the Taipei Blood Center
(Taipei, Taiwan). B cells were purified from the blood samples by
density gradient centrifugation using Ficoll-Paque PLUS (cat. no.
17-1440-03; Cytiva, Marlborough, MA, USA) followed by affinity
purification with CD19 MicroBeads (cat. no. 130-050-301;
Miltenyi Biotec, Bergisch Gladbach, Germany), as previously
described (29).

Cell Lines
The human CLL cell lines JVM-3, MEC-1, and MEC-2 were
obtained from DSMZ–German Collection of Microorganisms
and Cell Cultures (Braunschweig, Germany). JVM-3 was
maintained in RPMI-1640 medium containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (Pen/
Strep; Thermo Fisher Scientific, Waltham, MA, USA), whereas
MEC-1 and MEC-2 were maintained in IMDM containing 10%
FBS and 1% Pen/Strep. The human NK cell line NK-92MI (30)
was obtained from Bioresources Collection and Research Center
(Hsinchu, Taiwan) and maintained in MEMa containing 12.5%
horse serum, 12.5% FBS, 1% Pen/Strep, 0.2 mM inositol, 0.1 mM
2-mercaptoethanol, and 0.02 mM folic acid.

Antibodies and Other Reagents
Allophycocyanin-labeled anti-CD43 (clone L10) was obtained
from Thermo Fisher Scientific. Phycoerythrin (PE)-labeled anti-
CD43 (clone CD43-10G7), PE-labeled anti-CD45 (clone KPL1),
and PE-labeled anti-CD162/PSGL-1 (clone 2D1) were purchased
from Biolegend (San Diego, CA, USA). Recombinant Siglec–Fcs
(consisting of an extracellular lectin domain of Siglec and human
immunoglobulin G1 hinge–Fc region, with a FLAG tag in
between) were prepared in-house (31). Fluorescein– and Alexa
Fluor 647–labeled anti-human immunoglobulin G antibodies
were acquired from Jackson ImmunoResearch (West Grove,
PA, USA).

Sialidase (neuraminidase) from Arthrobacter ureafaciens was
purchased from Nacalai (Kyoto, Japan). O-sialoglycoprotein
endopeptidase (OSGP-EP) was acquired from Cedarlane
Laboratories (Burlington, Ontario, Canada). Benzyl-2-
acetamido-2-deoxy-a-D-galactopyranoside (benzyl-a-GalNAc)
and kifunensine were obtained from Millipore Sigma (St.
Louis, MO, USA). DL-Threo-1-phenyl-2-decanoylamino-3-
morpholino-1-propanol was purchased from Cayman
Chemical (Ann Arbor, MI, USA).
May 2022 | Volume 13 | Article 840388
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Proximity Labeling of JVM-3 Cells With
Siglec-7–Fc and Identification of
Counterreceptor Candidates
Identification of Siglec-7 counterreceptors was attempted with
proximity labeling as previously described (32). In brief, JVM-3
cells (1×107) were incubated with Siglec-7–Fc (10 mg) or binding-
deficient mutant Siglec-7(R124A)–Fc (10 mg) precomplexed with
peroxidase-conjugated anti-FLAG antibody (5 mg; cat. no.
A8592; Millipore Sigma), followed by incubation with biotin
labeling reagent (10 mM biotin tyramide and 10 mM H2O2 in
Tris-buffered saline). Biotinylated proteins were purified from
cell lysates with Dynabeads MyOne Streptavidin C1 (Thermo
Fisher Scientific), eluted by heat denaturation in sample buffer
(Bio-Rad, Hercules, CA, USA), and subjected to sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and in-gel
trypsin digestion. The peptides were analyzed by liquid
chromatography with tandem mass spectrometry (LC–MS/MS)
using an Orbitrap Elite hybrid mass spectrometer (Thermo
Fisher Scientific). The raw data were processed using Proteome
Discoverer 2.1 (Thermo Fisher Scientific), and peptide
identification was performed using Mascot (version 2.3.2) and
SEQUEST against the Swiss-Prot human database with a strict
false discovery rate of 0.01. Label-free quantification was
performed using the peak area of each precursor ion with a
mass precision of 2 ppm. Details of the analysis are described in
Supplementary Materials and Methods. The proteomics data
set was deposited to ProteomeXchange via the PRIDE database
(accession no. PXD024690).

Gene Expression Analysis With
Quantitative Real-Time Polymerase
Chain Reaction
The transcript levels of the genes of interest were analyzed with
quantitative real-time polymerase chain reaction (qRT-PCR)
using commercial primer–probe sets (TaqMan Real-Time PCR
Assay; Thermo Fisher Scientific; Supplementary Table 2), in
accordance with the protocols provided by the manufacturer.
First-strand complementary DNA was prepared from 1 mg of
total RNA extracted from the cells using a SuperScript III First-
Strand Synthesis System with random hexamer primers (Thermo
Fisher Scientific). The preparation was then used for the qRT-
PCR assays with a FastStart Universal Probe Master (Roche,
Mannheim, Germany) in a StepOnePlus Real-Time PCR System
(Thermo Fisher Scientific).

Expression of Siglec-7 in NK-92MI Cells
NK-92MI does not express Siglec-7 (33). We thus expressed
Siglec-7 by lentiviral transduction as previously described (34).
Siglec-7+ cells (NK-92MI/S7) were sorted by fluorescence-
activated cell sorting twice. They were later used without
further cloning.

Preparation of Gene-Edited JVM-3 and
MEC-1 Cells With CRISPR–Cas9
To obtain JVM-3 and MEC-1 sublines lacking the genes of
interest, we introduced Streptococcus pyogenes Cas9 and single-
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guide RNA (sgRNA) expression constructs via lentiviral
transduction. Lentiviruses for the expression of Cas9
(p5w.Cas9.Pbsd) and sgRNAs (pU6-gRNA.Ppuro) were
obtained from RNA Technology Platform and Gene
Manipulation Core (National Biotechnology Research Park and
Academia Sinica, Taipei, Taiwan). Transduced cells were
subjected to drug selection and further sorted to select the
population that lost the target protein (as revealed by antibody
staining) or the target glycotope (as revealed by lectin or
antibody staining; Supplementary Figure 1). Sorted cells were
propagated, and the indels in the target gene were analyzed by
genomic PCR and DNA fragment length analysis (with 3730xl
DNA Analyzer and GeneMapper Software v4.0, Applied
Biosystems/Thermo Fisher Scientific; outsourced to Genomics,
New Taipei City, Taiwan; Supplementary Figure 1). Sorted cells
were used without further cloning. Owing to the pseudo-
tetraploid nature of the JVM-3 cell line, sequencing-based
genotyping was not conducted. The sequences of the sgRNA
and PCR primers used for DNA fragment length analysis are
summarized in Supplementary Table 3.

NK Cell Cytotoxicity Assay
Target cells were labeled with 5 mM calcein acetoxymethyl ester
(Thermo Fisher Scientific) in Dulbecco’s PBS, washed three
times with 5% FBS in Dulbecco’s PBS, and mixed with NK-
92MI/S7 at an effector/target ratio in the range of 1:1 to 10:1 in
96-well conical bottom plates (cat. no. 249935, Thermo Fisher
Scientific). After a 4-h incubation at 37°C in a CO2 incubator,
the plate was centrifuged (at 600 g, 3 min), the supernatant (150
mL) was transferred to a fresh chimney plate (cat. no. 655096,
Greiner Bio-One; Kremsmünster, Austria), and fluorescence
intensity (excitation: 485 nm; emission: 535 nm) was measured
with a plate reader (SpectraMax Paradigm; Molecular Devices,
San Jose, CA, USA). Specific lysis was calculated with the
following formula:

SpecificLysis %ð Þ = 100� FE+T − FTð Þ= Fmax − FTð Þ
where FE+T, FT, and Fmax represent fluorescence in the
supernatant from the effector + target, target alone, and
maximum release by detergent lysis, respectively.

Quantitative Analysis of O-Glycans With
LC–MS/MS
O-glycans were released from cells by alkaline reductive
elimination, permethylated, and subjected to reversed-phase
C18 nanoLC–MS/MS analysis as previously described (35).
The major O-glycans detected and verified by MS/MS were
relatively quantified by the peak areas of their extracted ion
chromatograms. Details of the analysis are described in
Supplementary Materials and Methods.

International Cancer Genome Consortium
CLL Transcriptomic Data Analysis
Access to the data sets for CLL patients was granted by the Data
Access Compliance Office of the International Cancer Genome
Consortium (DACO-1071633). RNA sequencing–based
May 2022 | Volume 13 | Article 840388
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transcriptomic data sets for CLL patients (EGAD00001000258
and EGAD00001001443) were downloaded and analyzed using a
Taiwania 1 supercomputer at the National High-Performance
Computing Center (Hsinchu, Taiwan) and GNU Parallel (36).
RNA sequencing data of the patients with CLL or small cell
lymphoma and with survival status (n = 255 and n = 9,
respectively; total n = 264) were included in the analysis.
Patient data was obtained as metadata from the International
Cancer Genome Consortium, and supplemented with IGHV
mutation status from (37). Details of the analysis are described
in Supplementary Materials and Methods.

Statistics
Statistical tests were performed with Prism 8 (GraphPad, San
Diego, CA, USA) or with R. P value smaller than 0.05 was
considered significant. Two-tailed tests were used throughout.
For the comparison of two groups, Mann–Whitney test (when
the normal distribution of values was not expected; Figure 1A)
or Student’s t test (Figures 2, 4A, 6C) was used. For the
comparison of the means of multiple groups, one-way
ANOVA with Dunnett’s post hoc test (Figures 1F, 3C, 4C) was
used. Association between gene expression and Siglec-7 binding
(Figure 6E) was analyzed by linear regression, and that between
gene expression and patient survival (Figure 7 and Table 1) was
analyzed by likelihood ratio test.
RESULTS

B Cells From CLL Patients Express
Higher Levels of Siglec-7 Ligands Than
Those From Healthy Donors
Differences in the cellular or protein-specific glycosylation
patterns between B cells from CLL patients and those from
healthy donors have been described in the literature (38–42),
but whether these changes alter interactions with Siglecs has not
been specifically addressed to date. To compare the glycosylation
profiles of B cells from CLL patients with those of B cells from
healthy donors in the context of Siglec recognition, we tested the
binding of several recombinant Siglecs to these cells by flow
cytometry. We chose CD22/Siglec-2, Siglec-7, and Siglec-9 as
probes, as these Siglecs showed robust binding to B cells from CLL
patients in our preliminary experiments (data not shown). We
found that B cells express ligands for several Siglecs and that B
cells from CLL patients express higher levels of Siglec-7 ligands
compared with those from healthy donors (Figure 1A). By
contrast, the levels of ligands for CD22/Siglec-2 or Siglec-9 were
not significantly different between the two groups (Figure 1A).
The results for the CD22/Siglec-2 probe are consistent with those
we obtained in a previous study, which demonstrated similar
degrees of terminal a2–6 sialylation of N-glycans in B cells from
CLL patients and healthy donors (42).

Primary Siglec-7 Ligands in CLL B Cells
Are O-Glycosylated Proteins
To investigate the molecular basis of Siglec-7 ligands in CLL B
cells, we sought a CLL B cell line that resembles B cells from CLL
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patients in terms of glycan profile. Among the cell lines tested,
JVM-3 showed a Siglec binding pattern similar to that of B cells
from CLL patients (Figure 1B). Thus, we primarily used this cell
line for further study.

As expected, sialidase treatment of JVM-3 cells diminished
Siglec-7 binding (Figure 1C). Among the compounds that
interfered with glycan processing, including benzyl-2-
acetamido-2-deoxy-a-D-galactopyranoside (benzyl-a-GalNAc,
mimicking the GalNAc peptide and diverting the O-glycan
biosynthesis pathway), kifunensine (blocking N-glycan
processing at high mannose–type glycans), and DL-threo-1-
phenyl-2-decanoylamino-3-morpholino-1-propanol (inhibiting
glycolipid biosynthesis), only benzyl-a-GalNAc significantly
attenuated Siglec-7 binding to JVM-3 cells, suggesting that the
glycotope on CLL B cells recognized by Siglec-7 is primarily
exhibited on O-glycans (Figure 1D). We then treated the cells
with O-sialoglycoprotein endopeptidase (OSGP-EP), which
selectively digests mucin-like glycoproteins heavily modified
with sialylated O-glycans (sialomucins) (43, 44). This
treatment diminished Siglec-7 binding to JVM-3 cells
(Figure 1E), demonstrating that glycoproteins heavily modified
with O-glycans are the primary ligands for Siglec-7. Treatment of
B cells from CLL patients with sialidase or OSGP-EP also
diminished Siglec-7 binding (Figure 1F), confirming the
observation with JVM-3.

Enzymatic Removal of Sialylated
O-Glycans Sensitizes JVM-3
to NK Cell Cytotoxicity
To test whether Siglec-7 ligands protect JVM-3 cells from NK
cells, we enzymatically treated JVM-3 cells with sialidase or
OSGP-EP and subjected them to NK cell cytotoxicity assay
using the NK-92MI cell line expressing Siglec-7 (NK-92MI/S7).
We over-expressed Siglec-7, as NK-92MI does not (or only
weakly) express Siglec-7 (33).

As expected, both enzymatic treatments sensitized JVM-3 cells
to NK cell cytotoxicity (Figure 2A). Moreover, the JVM-3 cell
culture in the presence of benzyl-a-GalNAc also sensitized the
cells to NK cell cytotoxicity (Figure 2B). Taken together, these
results imply that sialylated glycotopes on heavily O-glycosylated
proteins (counterreceptors) protect CLL B cells from NK cell
cytotoxicity. We observed a similar enhancement of cytotoxicity
by the same treatment of JVM-3 cells when parental NK-92MI
cells were used as effector cells (Supplementary Figure 2),
implying that sialylated and heavily O-glycosylated proteins
can protect CLL by a Siglec-7-independent mechanism as
well. Although we found Siglec-6 is highly expressed on parental
NK-92MI, recombinant Siglec-6 did not show binding to JVM-3
(Supplementary Figure 3), excluding the interaction between
NK-92MI and JVM-3 cells by way of Siglec-6 and its ligand.

Siglec-7 Counterreceptors on CLL B Cells
Include CD43, CD45, and PSGL-1
We used a proximity biotin labeling method (32) to identify the
counterreceptors for Siglec-7 and determined CD45 as a
candidate (Supplementary Dataset 1). CD43, a major
sialomucin, was also identified with a single peptide. However,
May 2022 | Volume 13 | Article 840388
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FIGURE 1 | Siglec-7 ligands are highly expressed on B cells from patients with chronic lymphocytic leukemia (CLL). (A) Comparison of Siglec ligand levels
between B cells from healthy donors and those from CLL patients. The difference in Siglec-7–Fc binding (expressed as median fluorescence intensity [MFI]) to B
cells between healthy donors (n = 9) and CLL patients (n = 17) was statistically significant (***P < 0.001, Mann–Whitney test), whereas the difference in CD22/
Siglec-2–Fc and Siglec-9–Fc binding between the two groups was not (P = 0.33 and 0.38, respectively; Mann–Whitney test). Bars represent mean ± SD. (B)
Siglec ligands in primary B cells and CLL B cell lines. JVM-3, MEC-1, and MEC-2 cells were stained with recombinant CD22/Siglec-2–Fc, Siglec-7–Fc, and
Siglec-9–Fc and analyzed with flow cytometry. Siglec–Fc binding signals (in MFI) were normalized to that of CD22/Siglec-2–Fc. Bars represent mean ± SD of
three independent experiments. For primary B cells, the data was normalized individually for each donor [healthy donors (n = 9) and CLL patients (n = 17)], using
the same dataset as presented in panel (A). JVM-3 most closely resembled CLL B cells in terms of Siglec binding pattern. (C) Effect of sialidase treatment on
Siglec-7 binding to JVM-3. JVM-3 cells were treated with (green) or without (red) sialidase before probing with recombinant Siglec-7–Fc. Siglec-7–Fc binding
was abrogated by treatment of the cells with sialidase. Siglec-7(R124A)–Fc was used as a negative control (gray). (D) Effects of glycan processing inhibitors on
Siglec-7–Fc binding to JVM-3. Cells were cultured in the presence of benzyl-2-acetamido-2-deoxy-a-D-galactopyranoside (benzyl-a-GalNAc; red: control;
yellow: 0.2 mM; green: 0.5 mM; blue: 1 mM), kifunensine (red: control; yellow: 5 mM; green: 10 mM; blue: 20 mM), or DL-threo-1-phenyl-2-decanoylamino-3-
morpholino-1-propanol (PDMP; red: control; yellow: 10 mM; green: 20 mM; blue: 40 mM) for 72 h; stained with recombinant Siglec-7–Fc; and analyzed with flow
cytometry. Benzyl-a-GalNAc pretreatment attenuated Siglec-7–Fc binding, whereas neither kifunensine nor PDMP did, implying that O-glycans exhibit the glycan
epitope (glycotope) recognized by Siglec-7. (E) Effect of O-sialoglycoprotein endopeptidase (OSGP-EP) treatment on Siglec-7–Fc binding to JVM-3. JVM-3 cells
were treated with (green) or without (red) OSGP-EP before probing with recombinant Siglec-7–Fc. OSGP-EP treatment of JVM-3 cells attenuated Siglec-7–Fc
binding, indicating that glycoproteins heavily modified by sialylated O-glycans (sialomucins) are the major ligands for Siglec-7. (F) Effect of enzyme treatment on
Siglec-7–Fc binding to B cells from CLL patients (n = 5). Sialidase and OSGP-EP treatment of B cells from CLL patients diminished Siglec-7–Fc binding (****P <
0.0001, one-way ANOVA with Dunnett’s post hoc test). Bars represent mean ± SD.
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other sialomucins (e.g., CD162/P-selectin glycoprotein ligand-1
[PSGL-1]) were not identified, likely because these proteins are
resistant to proteolysis and inherently difficult to identify by
mass spectrometry (45).

Flow cytometry analysis revealed that CD43 and CD162/PSGL-
1 are expressed on JVM-3 cells (data not shown). We thus tested
whether either of these proteins or CD45 accounts for a major
counterreceptor by knocking out each of them. Gene disruption
(SPN for CD43, PTPRC for CD45, and SELPLG for CD162/PSGL-
1) revealed that none of these proteins alone could account for the
Siglec-7 counterreceptor but that depletion of each glycoprotein
attenuated the Siglec-7 binding to a small extent (Figure 3A).
Frontiers in Immunology | www.frontiersin.org 6
We then tested whether any of the knockout cells show
increased sensitivity to NK cell cytotoxicity. As expected, cells
deficient in CD45 or CD162/PSGL-1 were more sensitive to
cytolysis by NK-92MI/S7 (Figure 3B). Taken together, these
results indicate that CD45 and CD162/PSGL-1 are functional
Siglec-7 counterreceptors on CLL B cells.

Siglec-7 Glycotope on CLL B Cells Is
Synthesized by ST6GalNAc-IV
To gain further insight into the glycan part of Siglec-7 ligands, we
sought the sialyltransferase responsible for the biosynthesis of
the glycotope recognized by Siglec-7. Siglec-7 preferentially
A B

FIGURE 2 | Sialylated O-glycoproteins protect chronic lymphocytic leukemia B cells from NK cell cytotoxicity. (A) Effects of sialidase or O-sialoglycoprotein
endopeptidase (OSGP-EP) treatment of JVM-3 cells on NK cell cytotoxicity. JVM-3 cells were treated with sialidase or OSGP-EP and subjected to cytotoxicity
assay using an NK-92 cell line expressing Siglec-7 (NK-92MI/S7). Both treatments made JVM-3 cells more sensitive to NK cell cytotoxicity. Cytotoxicity assays
were conducted in technical triplicate and repeated several times, with consistent results. Representative results are shown (*P < 0.05, **P < 0.01, and ***P <
0.001; Student’s t test). Bars represent mean ± SD of technical triplicates. (B) Effect of benzyl-2-acetamido-2-deoxy-a-D-galactopyranoside (benzyl-a-GalNAc)
treatment of JVM-3 on NK cell cytotoxicity. JVM-3 cells cultured in the presence of benzyl-a-GalNAc (72 h) were more sensitive to NK cell cytotoxicity.
Cytotoxicity assays were conducted in technical triplicate and repeated several times, with consistent results. Representative results are shown (*P < 0.05,
Student’s t test). Bars represent mean ± SD of technical triplicates.
A B

FIGURE 3 | CD43, CD45, and CD162/PSGL-1 are the counterreceptors of Siglec-7. (A) Effect of glycoprotein knockout (KO) on Siglec-7–Fc binding. The
glycoprotein genes (SPN, PTPRC, and SELPLG – encoding CD43, CD45, and CD162/PSGL-1, respectively) in JVM-3 were disrupted with CRISPR–Cas9
technology, and the cells were subjected to staining with Siglec-7–Fc. The disruption of individual genes led to a small but reproducible reduction in Siglec-7–Fc
binding. Data was normalized by the Siglec-7–Fc binding (in MFI) to control JVM-3 cells. *P < 0.05, and **P < 0.01, one-way ANOVA with Dunnett’s post hoc
test. Bars represent mean ± SD of 6 independent experiments. (B) Effect of glycoprotein KO on NK cell cytotoxicity. Glycoprotein KO and control JVM-3 cells
were subjected to NK cell cytotoxicity assay. Disruption of CD45 and CD162/PSGL-1 led to increased sensitivity to NK cytotoxicity. A trend toward increased
sensitivity of CD43 KO cells to NK cytotoxicity was observed, but it was not statistically significant (*P < 0.05 and ***P < 0.001, repeated-measures one-way
ANOVA with Dunnett’s post hoc test). Bars represent mean ± SD of 23 independent experiments.
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A

B C

FIGURE 4 | ST6GalNAc-IV is responsible for Siglec-7 ligand glycotope synthesis. (A) Sialyltransferases expressed in JVM-3. The transcript level for ST6GALNAC4
was the highest among ST6GALNACs, whereas that for ST8SIA4 was the highest among ST8SIAs. Bars represent mean ± SD of technical quadruplicates. (B) Effect
of sialyltransferase KO on Siglec-7–Fc binding. GNE and sialyltransferase genes (ST6GALNAC4, ST8SIA4, and ST6GAL1) in JVM-3 were disrupted with CRISPR–
Cas9 technology, and the cells were subjected to staining with Siglec-7–Fc. The disruption of GNE and ST6GALNAC4 led to a marked reduction in Siglec-7–Fc
binding, whereas the disruption of ST8SIA4 and ST6GAL1 did not. Data was normalized by the Siglec-7–Fc binding (in MFI) to control JVM-3 cells. ***P < 0.001, and
****P < 0.0001, one-way ANOVA with Dunnett’s post hoc test. Bars represent mean ± SD of 6 independent experiments. (C) Effect of sialyltransferase KO on NK cell
cytotoxicity. Sialyltransferase KO and control JVM-3 cells were subjected to NK cell cytotoxicity assay. The disruption of GNE and ST6GALNAC4 led to increased
sensitivity of JVM-3 cells to NK cytotoxicity, whereas the disruption of ST8SIA4 and ST6GAL1 did not (*P < 0.05, repeated-measures one-way ANOVA with
Dunnett’s post hoc test). Bars represent mean ± SD of 21 independent experiments.
TABLE 1 | Association of glycosyltransferase expression levels with the survival of patients with chronic lymphocytic leukemia.

Parameter Hazard ratio (95% CI) by univariate analysis Hazard ratio (95% CI) by multivariate analysis
with age and IGHV mutation as covariates

Age (per year) 1.04 (1.01–1.07; P = 0.008) 1.04 (1.01–1.07; P = 0.015)
IGHV mutation (mutated/unmutated) 0.12 (0.06–0.24; P < 0.001) 0.15 (0.07–0.32; P < 0.001)
GCNT1 (G) and ST6GALNAC4 (S)
GhighShigh/GhighSlow 3.25 (1.07–9.91; P = 0.038) 1.87 (0.59–5.96; P = 0.289)
GlowShigh/GhighSlow 7.61 (2.60–22.27; P < 0.001) 3.59 (1.16–11.12; P = 0.026)
GlowSlow/GhighSlow 4.62 (1.03–20.88; P = 0.045) 1.38 (0.27–7.00; P = 0.701)
Frontiers in Immunology | www.frontiersin.org
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Analyses of the association of GCNT1 and ST6GALNAC4 with mortality, with or without clinical covariates, were performed using International Cancer Genome Consortium data (n = 264)
as described in Methods. The cutoff value for sample subgrouping was based on the optimal cutoff for gene expression (3.3 and 10.3 for GCNT1 and ST6GALNAC4, respectively) fitted in
the Cox proportional hazards model. P values are based on likelihood ratio test. CI, confidence interval.
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recognizes a2–8–linked oligosialic acids ([Neu5Aca2–8]n; n ≧
2), disialyl N-acetyllactosamine (Neu5Aca2–3Galb1–4
[Neu5Aca2–6]GlcNAcb1–), and a terminal tetrasaccharide of
a-series gangliosides (Neu5Aca2–3Galb1–3[Neu5Aca2–6]
GalNAcb1–) (46–51), which are elaborated by ST8Sia and the
ST6GalNAc family of sialyltransferases, respectively. Therefore,
we analyzed the expression profiles of these sialyltransferases in
the JVM-3 cell line; we found that ST8SIA4 and ST6GALNAC4
were highly expressed (Figure 4A). As shown in Figure 4B,
ST6GALNAC4-deficient cells showed a clear reduction in Siglec-
7 binding, whereas those deficient in ST8SIA4 or ST6GAL1 did
not. As expected, JVM-3 cells deficient in GNE (encoding UDP-
GlcNAc 2-epimerase/ManNAc 6-kinase, the first enzyme in the
sialic acid biosynthesis pathway) also showed a clear reduction in
Siglec-7 binding (Figure 4B).

To test whether the JVM-3 cells deficient in Siglec-7 glycotope
are more sensitive to NK cell cytotoxicity, we subjected the
cells to cytotoxicity assay. As expected, ST6GALNAC4 and
GNE deficient cells were more sensitive to NK cell cytotoxicity
than the control cells were, whereas ST8SIA4 and ST6GAL1
deficient cells were not (Figure 4C). Taken together, these
results indicate that ST6GALNAC4 is responsible for the
biosynthesis of the glycotope that protects CLL B cells from
NK cell cytotoxicity.

The disialyl-T Structure Is the CLL
Glycotope Recognized by Siglec-7
To determine the glycotope elaborated by ST6GalNAc-IV, we
subjected the control and ST6GALNAC4-deficient JVM-3 cells to
quantitative O-glycan analysis by liquid chromatography–
tandem mass spectrometry (LC–MS/MS). As shown in
Figure 5, control JVM-3 cells predominantly expressed
variably sialylated core 1 O-glycan (Galb1–3GalNAca1–)
structures, with disialyl-T (Neu5Aca2–3Galb1–3[Neu5Aca2–
6]GalNAca1–) being the most abundant. By contrast,
ST6GALNAC4-deficient JVM-3 cells showed a significant loss
of disialyl-T as well as a concomitant increase in monosialyl-T
(Neu5Aca2–3Galb1–3GalNAca1–) and core 2 O-glycan
structures (e.g., Galb1–3[Galb1–4GlcNAcb1–6]GalNAca1–).
These results strongly suggest that disialyl-T is the primary
glycotope on CLL B cells recognized by Siglec-7. We noticed
that the trisialyl-T structure (Neu5Aca2–3Galb1–3[Neu5Aca2–
8Neu5Aca2–6]GalNAca1– and/or Neu5Aca2–8Neu5Aca2–
3Galb1–3[Neu5Aca2–6]GalNAca1–) was reduced in
ST6GALNAC4-deficient JVM-3 cells and further diminished in
ST8SIA4-deficient cells, suggesting that disialyl-T serves as an
acceptor substrate for ST8Sia-IV. Nevertheless, as ST8SIA4
deficiency neither impaired Siglec-7 binding nor enhanced NK
cell cytotoxicity, O-glycans with linear oligosialic acids do not
appear to be essential for Siglec-7 binding or the resistance of
CLL B cells to NK cell cytotoxicity.

Expression of GCNT1 Interferes With the
Biosynthesis of Siglec-7 Ligands
MEC-1 cells are more sensitive to NK cell cytotoxicity compared
with JVM-3 cells (Figure 6A), which coincided with weaker
Frontiers in Immunology | www.frontiersin.org 8
Siglec-7 binding (Figure 2A). Given that (i) the addition of
GlcNAc at C6 of GalNAc by core 2 GlcNAc transferase
(encoded by GCNT1) precludes the sialylation at the same
position by ST6GalNAc-IV (Figure 6B) and (ii) the expression
level of GCNT1 in MEC-1 is higher than that in JVM-3
(Figure 6C), we speculated that the expression of GCNT1
interferes with the expression of Siglec-7 glycotope in MEC-1
cells. As expected, GCNT1 disruption in MEC-1 cells enhanced
Siglec-7 binding (Figure 6D). To confirm the effects of GCNT1
and ST6GALNAC4 on Siglec-7 ligand expression, we quantified
their transcript levels by qRT-PCR and analyzed their association
with Siglec-7 ligand levels on B cells from CLL patients. As
expected, high expression of GCNT1 was associated with weaker
Siglec-7 binding, whereas the expression of ST6GALNAC4 showed
a positive correlation with Siglec-7 binding (Figure 6E).

High Expression of ST6GALNAC4 and Low
Expression of GCNT1 Are Associated With
Poor Prognosis in CLL Patients
To test whether the expression levels of ST6GALNAC4 and
GCNT1 show any association with the prognosis of CLL
patients, we analyzed the correlations between the overall
survival of CLL patients and the expression levels of these genes
using the CLL RNA sequencing data set in the International
Cancer Genome Consortium database (37, 53). RNA sequencing
data of the patients with CLL or small cell lymphoma and with
survival data (n = 255 and n = 9, respectively; total n = 264) were
included in the analysis. Our analysis revealed that high
ST6GALNAC4 expression and low GCNT1 expression are
associated with poor prognosis (Figure 7A, B, respectively).
Moreover, by comparing four groups of patients stratified by
ST6GALNAC4 and GCNT1 expression levels, we found that the
prognosis of GCNT1lowST6GALNAC4high patients is the least
favorable (overall, P = 0.00015; GCNT1lowST6GALNAC4high vs.
GCNT1highST6GALNAC4low groups, P < 0.001; Figure 7C). This
association remained significant even when age and IGHV
mutation status (a strong prognostic factor for CLL) were
included as covariates (P = 0.026; Table 1). Taken together,
these results suggest that the expression of the disialyl-T
structure is associated with poor prognosis in CLL patients,
possibly through immunoevasion by engagement of Siglec-7 on
NK cells.
DISCUSSION

In this study, we demonstrated that B cells from CLL patients
express higher levels of Siglec-7 ligands compared with those
from healthy donors and that the ligands protect B cells from NK
cell cytotoxicity. The glycotope recognized by Siglec-7 is the
disialyl-T (Neu5Aca2–3Galb1–3[Neu5Aca2–6]GalNAca1–)
structure, which was exhibited on various counterreceptors,
including CD43, CD45, and CD162/PSGL-1. The glycan
epitope was synthesized by ST6GalNAc-IV (encoded by
ST6GALNAC4), and its synthesis was blocked by core 2
GlcNAc transferase (encoded by GCNT1). The expression
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levels of these two glycosyltransferases were associated with the
overall survival of CLL patients, and the pattern predictive of
high disialyl-T expression (GCNT1lowST6GALNAC4high) was
associated with poor prognosis. These data imply that the
m e c h a n i sm und e r l y i n g t h e p o o r p r o g n o s i s i n
GCNT1lowST6GALNAC4high patients likely involves the high
expression of the disialyl-T structure, which may facilitate
immunoevasion by engaging Siglec-7 on NK cells.

The O-glycosylation pattern of human B cells has been
previously reported to change during differentiation, and a
Frontiers in Immunology | www.frontiersin.org 9
reduction in GCNT1 expression and a concomitant shortening
of O-glycans were observed in the cells that have undergone
germinal center reaction (54). Research has also shown that the
level of Siglec-7 ligands on human B cells changes during
differentiation, with naive and memory cells expressing high
levels of Siglec-7 ligands, whereas it decreases temporarily on
activated naive cells (55). Therefore, the expression level of
Siglec-7 ligands potentially reflects the differentiation stage of
the B-cell clone that gave rise to CLL. However, our analysis
(data not shown) indicated that GCNT1 expression is higher in
A

B

FIGURE 5 | ST6GalNAc-IV is responsible for the biosynthesis of disialyl-T in JVM-3 cells. (A) O-glycans were released by reductive elimination from control
(gray), ST6GALNAC4 KO (yellow), and ST8SIA4 KO (blue) JVM-3 cells; permethylated; and subjected to liquid chromatography with tandem mass spectrometry
analysis. Except for monosialyl-T (Neu5Aca2–3Galb1–3GalNAca1– or Galb1–3[Neu5Aca2–6]GalNAca1–), which could be resolved by liquid chromatography
into two distinct isomeric structures, and trisialyl-T, which consisted of two unresolved positional isomers (Neu5Aca2–3Galb1–3[Neu5Aca2–8Neu5Aca2–6]
GalNAca1– and Neu5Aca2–8Neu5Aca2–3Galb1–3[Neu5Aca2–6]GalNAca1–), each of the other O-glycans was found to be represented by a single dominating
structure, as determined by tandem mass spectrometry and annotated accordingly using the Symbol Nomenclature for Glycans (52). Relative abundance was
calculated from the peak areas of extracted ion chromatograms and normalized to the percentage total. Disruption of ST6GALNAC4 resulted in a reduction in
the disialyl-T (Neu5Aca2–3Galb1–3[Neu5Aca2–6]GalNAca1–) structure and a concomitant increase in the monosialyl-T (Neu5Aca2–3Galb1–3GalNAca1–) and
core 2 (e.g., Galb1–3[Galb1–3GlcNAcb1–6]GalNAca1–) structures. Disruption of ST8SIA4 resulted in the loss of the trisialyl-T structure. (B) Stacked bar chart of
the same data shown in panel (A), along with the color code used for each of the eight major O-glycans identified and quantified.
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IGHV-mutated CLL (reflecting somatic hypermutation in
germinal center), which is opposite of our expectation [i.e.,
GCNT1 expression diminishes during B-cell maturation (54)].
Regardless, when the IGHV mutation status was included in the
multivariate analysis, the association between overall survival
and the ST6GALNAC4 and GCNT1 expression levels remained
significant (Table 1). Thus, ST6GALNAC4 and GCNT1
transcription and disialyl-T expression levels may serve as
independent criteria for the prognosis of CLL patients.

The observed association of GCNT1 expression with CLL
prognosis is incongruent with data reported for solid tumors
(e.g., bladder and prostate cancers), in which high expression of
GCNT1 was associated with poor prognosis, presumably through
the protection of tumors from NK cells (56–58). We speculate
Frontiers in Immunology | www.frontiersin.org 10
that this discrepancy can be attributed to the difference in the
lectins and counterreceptors involved. The extension of
polylactosamine on the core 2 O-glycans on major
histocompatibility complex class I polypeptide–related
sequence A (MICA) was found to reduce its binding with the
cognate receptor NK group 2 member D (NKG2D) on NK cells,
both directly and by way of binding with galectin-3 (58). The cell
lines we used (JVM-3 and MEC-1) expressed low levels of MICA
(data not shown). MICA was slightly upregulated on B cells from
CLL patients compared with those from healthy donors, whereas
high plasma levels of soluble NKG2D ligands (soluble MICA,
MICB, and UL16 binding protein 2) were associated with poor
treatment-free survival of CLL patients (59), suggesting that
soluble NKG2D ligands may compromise NKG2D-mediated
A B

D E

C

FIGURE 6 | Core 2 GlcNAc transferase interferes with the biosynthesis of the glycotope recognized by Siglec-7. (A) NK cell cytotoxicity assay of JVM-3 and MEC-1
cell lines. JVM-3 cells were more resistant than MEC-1 cells to NK cell cytotoxicity. Cytotoxicity assays were conducted in technical triplicate and repeated several
times, with consistent results. Representative results are shown. Bars represent mean ± SD of technical triplicates. (B) Schematic representation of O-glycan
biosynthesis in leukocytes. (C) Quantitative real-time polymerase chain reaction analysis of glycosyltransferases in JVM-3 and MEC-1 cells. ST6GALNAC4 expression
was higher in JVM-3, whereas GCNT1 expression was higher in MEC-1 (*P < 0.05, **P < 0.01, and ***P < 0.001; Student’s t test). Bars represent mean ± SD of
technical replicates (n = 3–6). (D) Effect of GCNT1 disruption in MEC-1 cells on Siglec-7–Fc binding. (E) Correlation of the GCNT1 and ST6GALNAC4 transcript
levels and Siglec-7–Fc binding (in median fluorescence intensity [MFI]) to B cells from patients with chronic lymphocytic leukemia (n = 10). Association between gene
expression and Siglec-7 binding was analyzed by linear regression.
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NK cell activation in CLL. In addition, as the polylactosamine
extension on O-glycans on B cells is limited (data not shown),
interrupt ion of the MICA–NKG2D interact ion by
polylactosamine may not play a major role in CLL. Regardless,
the difference in the role of GCNT1 between solid tumors and
CLL underscores the importance of understanding the nature of
the glycotope and counterreceptors serving as ligands for Siglecs.

Two recent studies independently identified CD43 as a Siglec-
7 counterreceptor on the K562 erythroleukemia cell line, which is
often used as a target for NK cytotoxicity assays, and
demonstrated that knockout/knockdown of CD43 renders
K562 cells more sensitive to NK cytotoxicity (34, 60). By
contrast, our analysis revealed that CD43 is not the sole
counterreceptor for Siglec-7. The difference between K562 and
CLL may be explained by the different repertoires of
glycoproteins expressed on these cells. For instance, K562 cells
express CD43, but not CD162/PSGL-1, at high levels (data not
Frontiers in Immunology | www.frontiersin.org 11
shown). Another recent study, investigating the resistance of
multiple myeloma cells to NK cytotoxicity, revealed that multiple
myeloma cells express high level of Siglec-7 ligand, and CD162/
PSGL-1 is a major Siglec-7 counterreceptor on multiple
myeloma cells (61). Yet another recent study using a
genetically manipulated HEK293T cell line demonstrated that
GCNT1 and ST6GALNACs regulate the expression of Siglec-7
glycotope, which the authors deduced to be disialyl-T, and found
a strong dependence of Siglec-7 binding on the type of
counterreceptor expressed (62).

NK cells in CLL patients have been reported to be functionally
impaired (63). Although the subject is beyond the scope of this
study, Siglec-7 ligands on CLL B cells can be hypothesized to
induce the state of NK cell exhaustion by engaging Siglec-7. If
this is true, then blocking the interaction between Siglec-7 on NK
cells and its ligands on CLL B cells may restore the cytotoxic
activity of NK cells.
A

B

C

FIGURE 7 | GCNT1 and ST6GALNAC4 expression levels are associated with the prognosis of patients with chronic lymphocytic leukemia (CLL). Shown are the
Kaplan–Meier survival plots with logrank test for two subgroups dichotomized with the expression levels of ST6GALNAC4 (A) and GCNT1 (B) as well as for four
subgroups with the expression levels of both genes (C) using the optimal cutoff fitted in the Cox proportional hazards model. High expression of ST6GALNAC4 (A)
and low expression of GCNT1 (B) were associated with poorer prognosis in CLL patients (P = 0.00259 and < 0.0001, respectively; likelihood ratio test). In panel (C),
the survival curves of four subgroups are significantly different (P = 0.00015), and the prognosis of GCNT1lowST6GALNAC4high patients was significantly poorer as
compared with that of GCNT1highST6GALNAC4low patients (P < 0.001, likelihood ratio test; see also Table 1).
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Our study has some limitations. Although our analysis of
Taiwanese CLL patient samples found correlations between
GCNT1 and ST6GALNAC4 expression levels and Siglec-7
glycotope (Figure 6E), the findings are not definitive because
of the limited number of samples. Moreover, the clinical benefit
of glycotope testing remains unknown. A prospective study
enrolling more patients would address this issue better.
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