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Abstract: Three new Metal-Organic Frameworks, containing mesitylene tribenzoic acid as a linker
and zinc (1) or cadmium as metals (2,3), were synthesized through solvothermal reactions, using
DMF/ethanol/water as solvents, at temperatures of 80 ◦C (structures 1 and 3) and 120 ◦C (structure
2). Following single-crystal X-ray diffraction, it was found that 1 and 3 crystallize in the P21/c and
C2/c space groups and form 2D networks, while 2 crystallizes in the Fdd2 space group, forming a
3D network. All three frameworks, upon heating, were found to be stable up to 350 ◦C. N2 sorption
isotherms revealed that 1 displays a BET area of 906 m2/g. Moreover, the porosity of this framework
is still present after five cycles of sorption/desorption, with a reduction of 14% of the BET area, down
to 784 m2/g, after the fifth cycle. The CO2 loading capacity of 1 was found to be 2.9 mmol/g at 0 ◦C.

Keywords: metal-organic framework; mesitylene tribenzoic acid; nitrogen sorption

1. Introduction

One of the greatest challenges humanity faces in modern times is represented by cli-
mate change. The steady increase in temperature over the last century has led to detrimental
effects, such as perturbed weather patterns and ocean currents, an increase in dry areas,
and crop failures, to name but a few. Moreover, it is expected that by the end of this century,
extreme weather phenomena will increase in frequency [1]. One of the major contributors
to climate change is represented by anthropogenic release of greenhouse gases. Burning
fossil fuels for transportation alone releases up to 33 Gt of CO2 a year into the atmosphere,
along with CO, nitrogen, and sulfur oxides, as well as other volatile organic compounds.
This value is estimated to be 40% higher than it was in the 19th century [2]. Various ways
to tackle this problem have been proposed, amongst which is the use of alternative, cleaner
fuels, such as natural gas (comprising up to 95% methane) or hydrogen. Both of these burn
cleaner than liquid hydrocarbons and when compared to gasoline, have higher energy
densities per unit of mass [3], the downsize being that storing these fuels usually implies
the use of high pressure, which in turn leads to increased costs and increased safety risks [4].
Therefore, developing new materials that can be used to efficiently store gaseous fuels at
low pressure and ambient temperature is highly desirable. Another way to reduce the
quantity of carbon dioxide in the atmosphere is through carbon capture and storage (CCS).
CO2 can be captured directly from air, or at industrial sites, where it is produced in large
concentrations. To capture it, solvent-based methods [5], or solid adsorbent-based methods
can be used [6]. Storing can then be done in appropriate geological sites.

One reoccurring factor that can be found in the topics discussed above is the need for ef-
ficient solid adsorbents. Amongst the porous materials that are usually considered for such
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applications, one category, namely Metal-Organic Frameworks (MOFs), stands out. MOFs
are porous crystalline materials comprising metal nodes or clusters, bound together by
organic linkers, to form one, two, or three-dimensional networks [7,8]. Some of their main
advantages over other porous materials, such as activated carbon or zeolites, are their large
surface areas and pore volumes, as well as great structural diversity [9], thanks to which
MOFs are considered for a wide number of applications in areas such as catalysis [10,11],
optoelectronics [12,13], environmental applications [14,15], battery design [16,17], sensor
design [18,19], drug delivery [20,21], or gas storage and separation [22,23].

In the past few years, our interest in the field has led to several new Metal-Organic
Frameworks, as well as a number of organic linkers that can be used in MOF design [24–36].
With the goal of obtaining novel MOFs with permanent porosity which have the potential
to be used for gas storage, in this work we synthesized and characterized three new Metal-
Organic Frameworks, obtained using Zn (II) and Cd (II) as metal sources and 2,4,6-tris(4-
carboxyphenyl)-1,3,5-trimethylbenzene (mesitylene tribenzoic acid–H3MTB) an organic
linker which to this day, has only seen limited use in MOF design.

2. Materials and Methods
2.1. Chemistry

Zinc nitrate hexahydrate was purchased from Carl Roth, while 96% ethanol was
purchased from VWR. All other reagents and solvents were purchased from Sigma Aldrich
(St. Louis, MO, USA).

The NMR spectra have been recorded on a Bruker NEO 400 instrument (Bruker
BioSpin, Rheinstetten, Germany) operating at 400.1 and 100.6 MHz for 1H and 13C nuclei.
Chemical shifts are reported in δ units (ppm) and were referenced to the internal deuterated
solvent (DMSO-d6 reference at 2.51 ppm (1H) and 39.4 (13C). IR spectra were recorded on
a Shimadzu IRTracer-100 instrument (Shimadzu U.S.A. Manufacturing, Inc., Canby, OR,
USA). A STA 449F1 JUPITER (Netzsch, GmbH, Selb, Germany) thermal analyzer from
Netzsch was employed for the thermogravimetric (TG) measurements at a heating rate of
5 ◦C min−1 between 30 and 700 ◦C. The data were processed with the NETZSCH PROTEUS
4.2 software (Netzsch, GmbH, Selb, Germany). X-ray diffraction analysis was performed
on a Rigaku Miniflex 600 diffractometer (Rigaku, Tokyo, Japan) using CuKα-emission in
the angular range of 5–50◦ (2θ) with a scanning step of 0.01◦ and a recording rate of 2◦/min.
Nitrogen and carbon dioxide sorption experiments (up to 1 bar) for the BET surface area and
porosity determination were measured with a Quantachrome NOVA 3200e (Quantachrome
GmbH & Co. KG, Odelzhausen, Germany) at 77 K and 273 K, respectively. Elemental
analyses (C, H) were conducted using a CE440 Elemental Analyzer (Exeter Analytical,
Coventry, UK).

2.1.1. Synthesis of H3MTB

To a solution of potassium carbonate (6.55 g, 47 mmol) in water (30 mL), 1,4-dioxane
(50 mL), and ethanol (30 mL) were added. The mixture was then degassed by pass-
ing N2 through it for 15 min. 1,3,5-Triiodo-2,4,6-trimethylbenzene [37] (1.5 g, 3 mmol),
4-carboxyphenylboronic acid (1.94 g, 11.7 mmol), and tetrakis(triphenylphosphine)palladium
(0) (0.45 g, 0.39 mmol) were then added and the reaction was heated to 100 ◦C under
nitrogen for 48–72 h, until the color turned black. Next, after cooling to room temperature,
the mixture was filtered to remove the black palladium precipitate that formed during
the reaction. The filtrate was added to water (400 mL) and acidified to a pH value of
around 1 using hydrochloric acid, which led to the formation of an abundant white solid.
After filtering and washing with water, the solid was recrystallized from ethanol, yielding
colorless needles of H3MTB (0.89 g, 61%). 1H NMR (400 MHz, DMSO-d6): δ= 12.98 (s, 3H,
COOH), 8.03 (d, 6H, J = 8.3 Hz, H ar), 7.37 (d, 6H, J = 8.3 Hz, H ar), 1.62 (s, 9H, CH3) ppm.
13C NMR (100 MHz, DMSO-d6): δ= 167.6, 146.3, 139.2, 132.4, 130.1, 130.0, 129.8, 19.6 ppm.
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2.1.2. Synthesis of {[Zn2LHCO2(DMF)2H2O]·DMF}n (1)

In a 6 mL vial, H3MTB (24 mg, 0.05 mmol) was dissolved in a mixture of DMF/ethanol
(2 mL/0.5 mL). To this, a solution of zinc nitrate hexahydrate (45 mg, 0.15 mmol) in
water (0.5 mL) was added. The reaction vial was capped and heated to 80 ◦C for 24 h.
The crystalline product which formed during this time was then filtered, washed with
DMF (3 × 5 mL) and air dried, yielding 35 mg of 1 (78% based on H3MTB). IR (ATR):
ν (cm−1) = 3432 (s), 1553 (m), 1402 (s), 1175 (m), 1099 (w), 1018 (w), 959 (w), 868 (w), 756 (s),
642 (w), 473 (m). Elemental analyses for C40H45N3O12Zn2 calc. C 53.9%, H 5.1%, N 4.7%,
found C 53.8%, H 5.1%, N 4.8%.

2.1.3. Synthesis of {[CdL(DMF)] C2H8N·H2O}n (2)

In a 6 mL vial, H3MTB (24 mg, 0.05 mmol) was dissolved in a mixture of DMF/ethanol
(2 mL/0.5 mL). To this, concentrated hydrochloric acid (37%, 0.1 mL, 1.2 mmol), followed
by a solution of cadmium acetate hydrate (38 mg, 0.15 mmol) in water (0.5 mL), were added.
The reaction vial was capped and heated to 120 ◦C for 48 h. The large crystals that formed
were then filtered, washed with DMF (3 × 5 mL) and air dried, yielding 23 mg of 2 (63%
based on H3MTB). IR (ATR): ν (cm−1) = 1657 (m), 1587 (m), 1537 (m), 1387 (s), 1173 (w),
1096 (m), 1018 (w), 858 (m), 760 (s), 662 (w), 455 (m). Elemental analyses for C35H38CdN2O8
calc. C 57.8%, H 5.3%, N 3.9%, found C 57.7%, H 5.3%, N 4.1%.

2.1.4. Synthesis of {[CdHL(DMF)] DMF}n (3)

In a 6 mL vial, H3MTB (24 mg, 0.05 mmol) was dissolved in a mixture of DMF/ethanol
(2 mL/1 mL). To this, cadmium nitrate tetrahydrate (60 mg, 0.19 mmol), followed by
acetic acid (0.16 g, 2.6 mmol) were added and the reaction mixture was homogenized.
The reaction vial was then capped and heated to 80 ◦C for 48 h. The crystals that formed
were then filtered, washed with DMF (3 × 5 mL) and air dried, yielding 25 mg of 3 (68%
based on H3MTB). IR (ATR): ν (cm−1) = 1713 (m), 1651 (m), 1607 (m), 1393 (s), 1238 (m),
1177 (w), 1099 (m), 1018 (w), 868 (m), 746 (s), 677 (w), 511 (w), 451 (m). Elemental analyses
for C36H36CdN2O8 calc. C 58.7%, H 4.9%, N 3.8%, found C 58.5%, H 5.0%, N 3.9%.

2.1.5. Activation of 1 and 3

After air drying, around 50 mg of the crystalline product were suspended in 5 mL
ethanol for 24 h, at room temperature. The solvent was then replaced with fresh ethanol
and the suspension was allowed to sit at room temperature for another 24 h. The solid
was then filtered, air-dried, and activated under vacuum for 6 h at 150 ◦C. The activated
material was then used in sorption experiments.

2.2. X-ray Crystallography

X-ray diffraction data were collected on Oxford-Diffraction XCALIBUR Eos CCD
diffractometer using graphite-monochromated Mo-Kα radiation. Single crystals were
positioned at 40 mm from the detector and 807, 416, and 282 frames were measured
each for 50, 125, and 125 s over 1◦ scan width for 1, 2, and 3, respectively. The unit cell
determination and data integration were carried out using the CrysAlisPro package from
Oxford Diffraction [38]. Multi-scan correction for absorption was applied. The structures
were solved with the ShelXT program using the intrinsic phasing method and refined
by the full-matrix least-squares method on F2 with ShelXL [39,40]. Olex2 was used as an
interface to the ShelX programs [41]. Non-hydrogen atoms were refined anisotropically. The
hydrogen atoms attached to carbon were placed geometrically and refined using a riding
model. The hydrogen atoms involved in hydrogen bonding were localized from different
Fourier maps accounting for the hybridization of the supporting atoms and the hydrogen
bond parameters. The positional parameters of disordered fragments in the crystal of
1 and 3 were refined with necessary imposed restraints on geometry and displacement
parameters available in the SHELXL program. The molecular plots were obtained using
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the Olex2 program. Crystal data and some further details concerning X-ray analysis are
given in Table 1, whereas the bond lengths and angles are listed in Tables S1–S6.

Table 1. Crystal data and details of data collection.

1 2 3

Empirical formula C40H45N3O12Zn2 C35H38CdN2O8 C36H36CdN2O8
Fw 890.53 727.07 737.07

Space group P21/c Fdd2 C2/c
a [Å] 10.2207(5) 9.0032(5) 34.769(3)
b [Å] 28.3147(14) 60.946(2) 7.5285(4)
c [Å] 14.9056(9) 31.1632(10) 33.254(3)
α [◦] 90 90 90
β [◦] 98.678(5) 90 114.833(11)
γ [◦] 90 90 90

V [Å3] 4264.2(4) 17,099.6(12) 7899.7(13)
Z 4 16 8

rcalcd [g cm−3] 1.387 1.130 1.239
Crystal size [mm] 0.25 × 0.08 × 0.08 0.15× 0.05 × 0.05 0.25 × 0.02 × 0.02

T [K] 200 180 180
µ [mm−1] 1.187 0.553 0.599

2Θ range [◦] 3.99 to 50.052 2.936 to 50.052 4.45 to 50.054
Reflections collected 15,409 27,241 16777

Independent reflections 7479[Rint = 0.0368] 7488[Rint = 0.0921] 6878[Rint = 0.0905]
Data/restraints/parameters 7479/82/522 7488/7/423 6878/2/396

R1
[a] 0.0890 0.0519 0.0751

wR2
[b] 0.2050 0.0641 0.1795

GOF[c] 1.071 0.999 1.009
CCDC 2,171,839 2,171,840 2,171,841

3. Results and Discussion

The first MOF based on mesitylene tribenzoic acid (H3MTB) was reported in 2010
and contained Zn as a metal [42]. Since then, several other structures bearing Zn, Zr, or
lanthanides have been obtained [25,43–50], however, to the best of our knowledge, no Cd
(II) structures with H3MTB as a linker have been presented so far.

Solvothermal reactions of H3MTB with zinc (II) nitrate, cadmium (II) acetate, and
cadmium (II) nitrate afforded three new metal-organic frameworks, as depicted in Scheme 1.
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The crystal structure of the compounds 1–3 was determined by a single-crystal X-ray
diffraction study. The results of this study for compound 1 are shown in Figure 1.
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Figure 1. Crystal structure of compound 1. (a) View of the asymmetric unit with thermal ellipsoids at
50% level and selected atom labeling showing the coordination of the Zn atoms. Symmetry-generated
atoms are shown with faded colors; (b) View of the 2D coordination polymer; (c) Crystal packing
viewed along the a-axis; (d) Space-filling model. Non-relevant H-atoms are not shown. Symmetry
codes: 1) 1 − x, 1

2 + y, 1
2 − z; 2) x − 1, y, z − 1; 3) 1 + x, y, 1 + z; 4) 1 − x, 1

2 + y, 1
2 + z.

According to X-ray crystallography, the charge balance and chemical composition
correspond to {[Zn2LHCO2(DMF)2H2O]·DMF}n formula. Its structure is described as a
neutral two-dimensional coordination polymer, which as an asymmetric unit (Figure 1a)
comprises two Zn2+ cations, one deprotonated MTB ligand (L3−), a formate anion, two
DMF and one H2O molecule in the first coordination sphere and one co-crystallized DMF
molecule. The Zn atoms exhibit different coordination environments. Zn1 is tetrahedrally
coordinated by four carboxylate oxygen atoms provided by MTB3− ligands and formate
anion, while the Zn2 atom has a distorted octahedral coordination with O6 set of donor
atoms provided by two MTB3− carboxylate groups, one water, and two DMF molecules.
The separation of two Zn atoms across the bridging carboxylate groups is 3.633(1) Å.
The MTB3− anion behaves as a hexadentate ligand bridging six Zn atoms due to k2O,O’
bidentate-bridging coordination function of each carboxylate group. The formate anion
fulfills a monodentate coordination function, the second oxygen atom being involved as an
acceptor in an intermolecular hydrogen bond towards solvate DMF as a donor of proton. In
the crystal, the asymmetric units are self-assembled generating hexagonal two-dimensional
coordination polymers, as shown in Figure 1b. The symmetrically related coordination
networks in parallel orientation to the 011 plane are interacting through the O-H···O and
C-H···O hydrogen bonding formed, respectively, by coordinated water and DMF molecules
as donors towards the coordinated oxygen atom of formate anion as acceptor. Their packing
occurs in such a way that the centers of the hexagonal openings are overlapped by dinuclear
fragments of opposite neighboring layers, as shown in Figure 1c,d. As a result, the free
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solvent accessible area in the crystal is considerably reduced, constituting only 19.6% of the
total unit cell volume.

The crystal structure of compound 2 is illustrated in Figure 2. The asymmetric unit
comprises one Cd atom, one MTB3− ligand, and one coordinated DMF molecule, which is
completed with one dymethylammonium cation and a solvate water molecule (Figure 2a).
The Cd atom is coordinated by five oxygen atoms from two bidentate and one monodentate
carboxylate groups of MTB3− ligands, while the sixth is provided by a DMF molecule.
Assuming that each bidentate carboxylate group occupies only one coordination position,
the coordination geometry corresponds to a distorted tetrahedron. Each MTB3− ligand is
triply deprotonated, all carboxylate groups being coordinated to Cd atoms. Two of them are
coordinated in k2O,O’ bidentate-bridging mode, while the third one fulfills a monodentate
coordination function. The central benzene rings of two MTB3− ligands surrounding each
Cd ion are coplanar, while the third is tilted by 22.8(3)◦. Due to this particularity, the
self-assembling of asymmetric units in the crystal occurs with the formation of an anionic
three-dimensional network containing hexagonal openings of 16 × 17 Å, as shown in
Figure 2b. Further analysis of the 3D structure has evidenced that the Cd linked by MTB3−

ligands form a helical array directed along the a crystallographic axis (Figure 2b enclosed).
The adjacent subnets are doubly catenated (Figure 2c) and their offsetting at ~10 Å along
the b-axis leads to the reduction of the solvent-accessible areas in the crystal. Such a packing
(Figure 2c,d) is characterized by the presence of channels running parallel to the a-axis with
accessible voids of ca. 4985 Å3 or 29.2% per unit cell as estimated by the Olex2 program.

Compound 3 crystallizes in the C2/c space group of the monoclinic system. Its struc-
ture is built up from the neutral {CdHL(DMF)}n coordination polymers and co-crystallized
DMF molecules in 1:1 ratio. A view of the asymmetric unit is shown in Figure 3a. Each
metal ion is coordinated with four carboxylates and a DMF molecule and possesses a highly
distorted CdO7 coordination environment. The HMTB2− ligand is doubly deprotonated
and links two Cd atoms through two carboxylate groups coordinated in a µ2-k3O,O’:O
tridentate mode. The third non-deprotonated carboxylate is not coordinated, being in-
volved in hydrogen bonding as a donor towards solvate DMF molecule as an acceptor of
protons. As a result, the coordination polymer is extending in two directions to form a
quite dense two-dimensional coordination network parallel to the 011 plane. A view of the
2D architecture along the b and a-axis is shown in Figure 3b. In the crystal, 2D coordination
layers are arranged in parallel packing and the interaction between them occurs through
multiple O-H···O and C-H···O hydrogen bonds which involves solvate DMF molecules as
donor or acceptor of protons. Consequently, the main crystal packing motif is characterized
as a three-dimensional supramolecular network possessing free solvent-accessible voids of
1586 Å3, which constitutes 20.1% of the total unit cell volume.

In order to assess the thermal stability of the coordination networks, thermogravimetric
analysis (TGA) was performed on the crystalline compounds 1, 2, and 3. The experimental
curves are reported in Figure 4. The results suggest that the initial weight loss which occurs
up to 200 ◦C is associated with the release of water and other solvents. Above 350 ◦C,
the decomposition process of the framework takes place. It is worth pointing out that
the MOFs presented here have a relatively high thermal stability, comparable to other
Zn/Cd-containing MOFs [51,52].
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Figure 2. Crystal structure of compound 2. (a) View of the asymmetric unit with thermal ellipsoids at
50% level and selected atom labeling showing the coordination of the Cd atoms. Symmetry-generated
atoms are shown with faded colors; (b) View of the 3D coordination polymer, helical chain array of
Cd atoms along a-axis (enclosed); (c) Crystal packing viewed along the a-axis; (d) Space-filling model.
Non-relevant H-atoms are not shown. Symmetry codes: 1) 5/4− x, y− 1/4, z− 1/4; 2) 3/4− x, 1

4 + y,
z− 1/4; 3) 3

4 − x, y− 1/4, 1
4 + z; 4) 5/4− x, 1

4 + y, 1
4 + z.

To evaluate the phase purity of the three new coordination networks, powder X-ray
diffractograms were recorded and compared to the simulated spectra (Figures 5–7). The
phase purity assessment of compounds 1 and 3 as indicated by the similarities between the
calculated and experimental diffractograms revealed the presence of a single crystalline
phase in each sample. In the case of compound 2, noticeable differences were observed
between the calculated and experimental diffraction patterns (Figure 6). Presumably, this is
due to the difference in the temperature at which the data was recorded (180 K for single-
crystal X-ray diffraction, which was used to generate the simulated powder diffractogram,
and 293 K for the experimental powder X-ray diffractogram), as well as changes in the
network which may occur during workup [53].

In order to assess their porosity, 1 and 3 were activated prior to gas sorption measure-
ments. The analyzed material was suspended in ethanol for 48 h, followed by filtering,
drying, and heating to 150 ◦C under vacuum, for 6 h. N2 isotherms, measured at 77 K are
presented in Figure 8 for 1 and Figure S1 for 3. Both frameworks display type I isotherms,
characteristic of microporous materials. While 3 displayed a BET value of only 26 m2/g, 1
was found to have a BET value of 906 m2/g at p/p0 values situated between 0.01 and 0.05.
The values for total pore volume, micropore volume, and mesopore volume for 1 can be
found in Table 2, while the pore size distribution of 1, determined by the BJH method, is
presented in Figure S2.
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Table 2. Micropore, mesopore and total pore volume for 1.

SBET (m2/g)
Micropore

Volume a (cm3/g)
Mesopore

Volume b (cm3/g)
Total Pore Volume

(cm3/g)

906 0.347 0.021 0.384
a Determined using the t-plot method. b Determined using the BJH method.

The powder X-ray diffractogram registered after the sorption measurement displayed
little differences when compared to the one registered for the activated material. Therefore,
we decided to submit the same sample to a total of five adsorption/desorption cycles, in
order to assess the frameworks’ robustness. As can be seen in Figure 9, 1 displays good
sorption properties even after 5 cycles, despite the BET value going down from 906 m2/g
(cycle 1) to 784 m2/g (cycle 5).
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Figure 9. N2 isotherms of 1, where the same sample underwent 5 consecutive cycles of sorp-
tion/desorption. Full triangles indicate sorption isotherms and hollow triangles indicate desorption
isotherms. BET values were as follows: 906 m2/g after cycle 1, 860 m2/g after cycle 2, 831 m2/g after
cycle 3, 815 m2/g after cycle 4, and 784 m2/g after cycle 5.
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The powder X-ray diffractograms registered after each N2 adsorption/desorption
cycle, alongside the diffractogram corresponding to framework 1 after activation under
heat and vacuum, are presented in Figure 10. We have found that even after five cycles, no
major structural modification of the network was observed.
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Figure 10. Diffractograms corresponding to compound 1 after drying in vacuum (red) and after 1
(black), 2 (green), 3 (blue), 4 (purple) and 5 (orange) N2 adsorption/desorption cycles.

In the next step, the CO2 adsorption properties of framework 1 were investigated. The
analysis was performed at 0 ◦C and the isotherm thus obtained is depicted in Figure 11.
It was found that 1 displays a CO2 adsorption capacity of 2.9 mmol/g at 0 ◦C. Moreover,
PXRD analysis performed after CO2 adsorption/desorption indicated that the network
suffers no significant structural modifications (Figure S6).
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4. Conclusions

To conclude, mesitylene tribenzoic acid was successfully employed as a linker in the
solvothermal synthesis of a Zn-containing and two Cd-containing Metal-Organic Frame-
works. One of the latter structures proved to be unstable during isolation, as evidenced
by PXRD analysis. Out of the remaining frameworks, the Zn-based one was found to dis-
play permanent porosity and good N2 sorption properties, with a BET value of 906 m2/g.
Moreover, by subjecting it to five consecutive adsorption/desorption cycles, the framework
retained its porous nature, displaying a BET value of 784 m2/g after the fifth cycle. When
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CO2 was used as an adsorbate, the same framework was found to have an uptake of
2.9 mmol/g at 0 ◦C.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15124247/s1, Figure S1: N2 isotherm of 3.; Figure S2: BJH pore size
distribution of 1; Figures S3–S5: IR spectra for 1, 2 and 3; Figure S6: Diffractograms corresponding
to framework 1 as synthesized (black), after activation (blue) and after CO2 adsorption/desorption
(red); Table S1: Selected bond lengths [Å] for 1; Table S2: Selected angles [◦] for 1; Table S3: Selected
bond lengths [Å] for 2; Table S4: Selected angles [◦] for 2; Table S5: Selected bond lengths [Å] for 3;
Table S6: Selected angles [◦] for 3; CIF files of 1, 2 and 3.
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