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Abstract: The regeneration of bone tissue is the main purpose of most therapies in dental medicine.
For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo-
and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration
processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as
well as resorb in the time frame needed for complete regeneration up to the condition of restitution
ad integrum. In this context, the modes of action of CaP-based substitute materials have been
frequently investigated, where it has been shown that such materials strongly influence regenerative
processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different
physicochemical properties of the materials. However, the material characteristics needed for the
required ratio between new bone tissue formation and material degradation has not been found, until
now. The addition of different substances such as collagen or growth factors and also of different
cell types has already been tested but did not allow for sufficient or prompt application. Moreover,
metals or metal ions are used differently as a basis or as supplement for different materials in the
field of bone regeneration. Moreover, it has already been shown that different metal ions are integral
components of bone tissue, playing functional roles in the physiological cellular environment as well
as in the course of bone healing. The present review focuses on frequently used metals as integral
parts of materials designed for bone regeneration, with the aim to provide an overview of currently
existing knowledge about the effects of metals in the field of bone regeneration.
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1. Introduction

The regeneration of bone is of special interest, most notably in dental medicine. For the
regeneration of bone tissue of the jaw and also within the sinus cavity, autografts are still the so-called
“gold standard” due to their osteoinductive, osteogenic and osteoconductive regenerative capacities [1].
These properties are based on the different components of the transplanted bone tissue: calcified
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bone matrix, different bone cell types, i.e., osteoblasts, osteocytes and osteoclasts, and the connective
tissue including the vasculature and, thus, endothelial cells, as well as other, different cell types
such as macrophages (so-called “osteomacs”) and fibroblasts, amongst others, are components of
autografts [2]. Additionally, bone-associated proteins such as members of the bone morphogenetic
protein (BMP) family or osteopontin, osteonectin and osteocalcin beside matrix- and cell-related metal
ions are integral parts of autografts. An autograft represents a physiologically active transplant, as all
of these components allow support of the bone regeneration process after implantation into a defect
side [3,4]. However, the application of autografts requires the harvest of healthy bone tissue from
another part of the body, i.e., from extraoral locations such as the hip crest or intraoral localizations
such as the mandibular ramus. Thus, one of the disadvantages of the application of bony autografts is
the second defect side that is created for harvesting of the bone tissue. Besides different complications
that could accompany this second surgical intervention, the amount of bone tissue from other locations
is often limited and, thus, is not sufficient to fill a bone defect [5].

Beside autografts, a variety of so-called bone substitute materials has been developed within
the last decades to overcome the issues with bone autografts. In this context, two main material
classes are differentiated: bone substitutes based on “natural” precursors and synthetic materials [6].
The natural-based bone substitute materials are mainly processed from human or animal bone (allo-
and xenografts). For the manufacturing of allogenic bone substitutes, bone tissue from living donors,
i.e., from femoral heads, or of dead donors, is used, while xenografts are mainly processed from
bovine bone (or recently porcine bone). Furthermore, different natural materials based on a variety of
biopolymers such as silk fibroin, amongst many others, have been analyzed for application as bone
substitutes within the last decades [7,8].

Moreover, different synthetic bone substitute materials have been developed, and most of these
materials that are clinically applied are based on calcium phosphates such as hydroxyapatite (HAp) or
β tricalcium-phosphate (β-TCP) [9]. Even mixtures of these compounds have been shown to provide
good healing results based on the combined degradation behavior. Moreover, a variety of other
synthetic materials also combined with techniques such as three-dimensional printing procedures
have been tested and have shown to be suitable for bone regeneration [10–12].

However, the regenerative properties of all the afore-mentioned biomaterials are restricted,
particular in comparison to autografts as most of the bone substitute materials provide only a basis for
osteoconductive bone growth [13]. Until now, no bone substitute material has been developed that
features comparable regenerative capacities compared to autografts.

Different strategies have been originated to overcome this issue. A first group of concepts includes
synthetic bone substitute materials with controllable material characteristics such as porosity or (nano-)
topography [14]. It has been suggested that even these special material properties, which are often
stated to mimic the characteristics of the bony extracellular and calcified matrix and, thus, being
“biomimetic”, allow for induction of bone growth [15]. Interestingly, many publications including
in vitro studies and in vivo analyses within ectopic tissues such as the subcutaneous connective tissue,
describe osteoinductive properties of especially developed synthetic bone substitute materials [16].
However, the suspected osteoinductive properties of such materials have never been revealed in
clinical studies, indicating that such a concept is still not tenable.

A second concept group includes the addition of different biologically active agents such as
collagen, hyaluronic acid or osteoinductive molecules, such as members of the bone morphogenetic
protein (BMP) family [17–20]. In this context, it has been shown that the combination of synthetic bone
substitutes with extracellular matrix proteins, such as collagen, leads to diverse regenerative results.
On the one hand, the polymer addition can allow an increase in bony integration behavior, while other
results report significantly lower bone growth rates for such a material composition in comparison
to the bone substitute material alone [21–24]. In the case of the addition of molecules such as BMPs,
other issues have been realized, although a variety of studies has shown their exceptional regenerative
properties [25–27]. This results from the facts that the underlying regenerative mechanisms of BMPs
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are not yet understood and possible side effects are not well-known, especially since such molecules
are usually administered in non-physiological doses (thousands to millions times the amount normally
found in the body) [28]. Additionally, such molecules are still very expensive, although also available
as recombinant proteins compared to other bone substitute materials [27]. Furthermore, the effect
of the immobilized growth factor also depends on the amount released within a certain timeframe.
Hence, the material properties such as porosity play a significant role [29].

A further group of tissue engineering concepts includes the addition of different cell types
to bone substitute materials. Most often osteoblasts and their precursor cells are used for such
material-cell-combinations, based on the fact that this cell type is mainly involved in bone regeneration
by deposition of the organic extracellular matrix and its subsequent mineralization [30]. In this context,
mesenchymal stem cells are also of special interest as this cell type represents the earliest cellular
step in osteoblastic differentiation [31]. Furthermore, the additions of other cell types that directly or
indirectly support the bone growth process have been examined [32]. For example, the influence of
different endothelial cell types, such as human dermal microvascular endothelial cells (HDMEC) in
mono- or co-culture with bone substitute materials, have been analyzed to provide fast and sufficient
vascularization, which is an important factor for bone tissue regeneration [33,34]. Additionally, blood
cells or “inflammatory” cells such as cell types of the monocyte/macrophage line have been used to
increase the regenerative properties of bone substitutes [35]. This concept is based on the assumption
that such cell types express different molecules that are involved in (bone) tissue healing and might
induce or at least increase the process of bone regeneration [36–38]. In this context, a broad spectrum
of scaffolds combined different blood cells—for example, platelet-rich plasma (PRP) or platelet-rich
fibrin (PRF)—obtained by simple centrifugation from freshly drawn venous blood, have also been
suggested to increase or even induce bone regeneration [39–41]. The assumption of such concepts is
that both the obtained cells and moreover growth factors present within the blood, should stimulate
(bone) tissue regeneration [42]. However, all of these tissue engineering concepts did not find their
way into the clinic as they are either not applicable in acute surgical situations due to the long time
spans needed for cell isolation and co-cultivation with a bone substitute, or their clinical efficacy has
still not been proven by scientific analyses such as in the case of PRP or PRF concepts.

A further concept is the application or the combination of different metals or metal ions with bone
substitute materials in the field of bone regeneration. Different metal ions are essential components
of different tissues, such as calcium phosphates for extracellular calcified bone matrix or integral
component of cells or proteins that regulate essential cellular processes, including proliferation and
differentiation [43–45]. Together, the different metal ions have functional roles in the physiological
cellular environment as well as in the course of bone healing. Thus, the application of metal ions in
combination with the above-mentioned bone substitutes or singularly, is of special interest for bone
regeneration [46–48]. To provide an overview of the regenerative potential of the different metal ions,
the present review summarizes the knowledge about their involvement in cellular processes and the
bone healing process, with a further focus on studies that have already analyzed the regenerative
potential of bone substitutes, including metals.

2. Bone Tissue Healing and Approaches for Material-Related Support

The process of bone tissue healing is based on different factors. Primarily, the bone related cells,
i.e., osteoblasts, osteoclasts and their precursors, are involved in this process [49]. In this context, most
bone substitute materials allow for the osteoconductive ingrowth of osteoblasts and mesenchymal
progenitors acting as a scaffold structure [50,51]. Afterwards, osteoblasts produce the extracellular
organic bone matrix, which mainly consists of collagen type 1, and hydroxyapatite is crystallized
on the collagen fibrils. Moreover, osteoblasts trigger and promote the crystallization by secretion
and expression of various other proteins or receptors such as the receptor activator of NF-κB ligand
(RANKL) and GDF5 [52]. Thus, osteoblasts and their precursors are always a first starting point for
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different concepts that should improve bone healing [53]. Interestingly, different ions such as Mg2+

ions influence osteoblastic growth, proliferation or differentiation [54,55].
Moreover, influences on bone-resorbing cells and their precursors, i.e., multinucleated osteoclasts

and hematopoietic stem cells as well as the different intermediate stages, are of great interest in the field
of bone tissue regeneration [56]. This is based on the fact that a molecular cross-talk between osteoblast
and osteoclasts has been revealed and additionally, it has been shown that both cell types are organized
in so-called bone remodeling units (BRU) or basic multicellular units (BMU) [57,58]. On the one hand,
osteoblasts play an important role in osteoclastogenesis and bone resorption based on the expression
of different molecules such as the receptor activator of NF-κB ligand (RANKL), the macrophage-colony
stimulating factor (M-CSF), interleukin (IL)-1β, IL-6 and IL-11, amongst others [52,59,60]. Furthermore,
osteoblasts also express different inhibiting molecules such as osteoprotegerin (OPG), the granulocyte
macrophage-colony-stimulating factor (GM-CSF), IL-3, IL-12 and IL-18, which led to the conclusion
that a balanced control of bone remodeling is achieved. On the other hand, different coupling factors
are nowadays known that are expressed by osteoclasts such as tartrate-resistant acid phosphatase
(TRAP), sphingosine 1-phosphate (S1P), bone morphogenetic protein 6 (BMP-6), hepatocyte growth
factor (HGF) and collagen triple helix repeat containing 1 (CTHRC1), amongst others, inducing
osteoblastic growth or bone formation [61]. Thus, this cell type constitutes a further approach for
enhancement of bone regeneration. In this context, it has already been shown that ions such as Sr2+

ions can influence bone formation via depression of osteoclast-mediated bone resorption (for further
details see paragraph 3).

Additionally, other cell types such as endothelial cells are involved in the process of bone tissue
healing, as sufficient vasculature and the related transport of both nutrients and metabolic end products
are basic factors for bone formation [33]. Thus, this cell type and functional blood vessels are also a key
factor in the regeneration process. In this context, both the process of bone healing and angiogenesis
are directly coupled via different local factors [62]. Primarily, the so-called hypoxia-inducible factor
1-α (HIF-1α) pathway is induced by local hypoxia affected by a bone injury as a key mechanism for
coupling bone growth to angiogenesis [63]. The induction of this pathway results in an increased
expression of the vascular endothelial growth factor (VEGF), one of the most important and strongest
angiogenic cytokines, which is also expressed by osteoblasts and cell types such as macrophages [64].
The expression of VEGF leads to blood vessel ingrowth within the defect area and has a direct influence
on osteoblast growth and proliferation as well as matrix deposition [64].

Moreover, the connection between the immune system and bone tissue metabolism and
regeneration has been recognized in more detail in recent years. In this context, it has been revealed
that a special subtype of the macrophage line within bone tissue, so-called osteomacs, is a further
key element for bone formation [65]. Interestingly, these osteal macrophages are also integrated into
resting bone tissue and are enriched at sites of bone formation combined with the inflammatory
process following bone injury [37]. Following their activation, osteomacs have shown to promote
osteoblastogenesis and matrix deposition via the nuclear factor (NF)-κB signaling pathway, which
is important for their pro-osteogenic function [66]. Furthermore, it has been revealed that a direct
cell-cell-contact between osteomacs and osteoblasts takes place, ensuring an osteoblastic maintenance
and homeostasis via the sequestosome 1/p62-dependent low-level activity of NF-κB [65,67].

Finally, the reaction of different inflammatory cells to an implanted bone substitute influences the
process of bone healing [68,69]. Thus, research in the field of biomaterial-induced inflammation has
increasingly focused on bone regeneration research. In this context, it has been revealed in the last
decades that nearly all bone substitute materials induce an inflammatory cascade, the so-called “foreign
body response to biomaterials”, after its application [70]. In this cascade, the initial accumulation of
proteins, which is highly specific for every biomaterial dependent on its respective physicochemical
characteristics, causes the further binding of a first generation of different cells and following inductions
of specific signaling pathways [71,72]. This first generation of cells within an implantation bed guide
the cellular processes via expression of different molecules or cytokines [73]. Interestingly, it has been
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revealed that in this inflammatory cascade, macrophages and their fused end stages, the so-called
multinucleated giant cells (MNGCs), are key cellular components [74,75]. Those cell types have
shown to express both pro- and anti-inflammatory molecules such as VEGF that guide the integration
behavior and factors such as the implant bed vascularization of bone substitute materials [64,76].
Additionally, other cell types such as granulocytes or thrombocytes have been partially revealed to
have an eminent influence on this tissue reaction cascade, which finally leads to different outcomes of
the bone regeneration process. Material factors, for example, the chemical composition or physical
material properties such as the porosity or the surface structure, as well as the involvement of different
ions such as Cu2+ ions, have been shown to influence the inflammatory tissue reaction caused by a
bone substitute material [71,77,78].

3. Metal Ions, Their Physiological Functionalities and Role in Bone Healing

Metals have been widely accepted as implant materials for a few decades. Even when a solid metal
is applied to a physiological environment, it is always in an equilibrium with its ions. These metal ions
are responsible for a variety of biochemical functions, which are important for the different steps of
bone regeneration, as they influence the equilibrium between osteoblasts, osteoclasts and osteocytes.
Thus, metals and their corresponding ions, which have an influence on the process of bone healing,
should be mentioned here (Figure 1). We will also outline the impact on different states of tissue
formation and the interplay between related metal ions in processes leading to bone regeneration.
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3.1. Aluminum (Al3+)

Aluminum does not belong to the group of trace elements, is not involved in any physiological
functions and is consequently not essential for the human organism [79]. Intake of elevated
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quantities of aluminum is associated with toxic effects leading to serious adverse reactions including
anemia, encephalopathy and osteoporosis, as Al3+ ions compete with essential ions like Fe2+ [80–82].
Investigation of the specific reaction of human neural cells to aluminum exposure, for example,
showed that concentrations as little as 100 nM of aluminum sulfate significantly elevated atypical,
pro-inflammatory and pro-apoptotic gene expression [83].

Reports about the functions of aluminum in bone formation are ambiguous. Positive impacts of
aluminum supplementation on osteogenesis in beagles as well as in osteopenic rats was previously
demonstrated, initiating a further interest in the investigation of aluminum in tissue engineering [84,85].
In contrast to these findings, expression of osteoblast activity markers was substantially lower, while
expression of apoptotic markers was increased when treated with aluminum, demonstrating impaired
cellular activity and survival, and a clear link between aluminum intoxication and compromised
bone formation [86]. Quarles and colleagues put their findings on the positive impact of aluminum
on de novo bone formation into context with the contradicting literature and suggested that aside
from discrepancies in the applied model/organism, aluminum concentrations and time of exposure, a
paradoxical impact of aluminum on mesenchymal progenitors and mature osteoblasts could be the
main reason for these dissimilar observations [85]. This hypothesis was further supported by another
group, which demonstrated that aluminum ions provoked a chemotrophic stimulus in preosteoblasts
while having an inhibitory effect on osteoblasts [87].

Negative impacts of aluminum on osteoblast function, however, are prevalent in the contemporary
literature. An in vivo study in rats assessed the effects of aluminum exposure on the uptake of bone
mineral elements, trace elements and bone mineral density. The levels of analyzed trace elements
were significantly lower with aluminum exposure, and deposition of calcium, phosphorus and
magnesium was decreased in comparison to the control population. Bone mineral density in the
femur metaphysis of the aluminum-treated group was also significantly lower compared to the control,
resulting in pronounced bone loss [88]. Aluminum does not seem to contribute to bone and tissue
healing but to have a rather opposing impact on this process so that, aside from favorable mechanical
properties, addition of aluminum to implantable medical devices offers no scientifically evident
benefits. Furthermore, other bioceramics such as zirconia oxide are progressively emerging as bioinert
alternative to aluminum oxide [89].

3.2. Calcium (Ca2+)

Calcium is an important functional component of biodegradable calcium phosphate-based
biomaterials designated for bone regeneration in orthopedics, trauma surgery, and in dentistry (for
reviews: [90–92]).

Calcium is the most common mineral of the body and is primarily stored in the skeleton [93].
Calcium homeostasis is tightly regulated by the parathyroid hormone (PTH) and calcitonin, which
regulate calcium serum levels by stimulating (PTH) or inhibiting (calcitonin) bone resorption mediated
by osteoclasts. During bone remodeling, bone resorbing osteoclasts can create local concentrations of
extracellular calcium ions up to 40 mM [94]. These microenvironmental increases are known to inhibit
resorption activity of osteoclasts and to stimulate proliferation and differentiation of mesenchymal
stromal cells [93,95–99] and osteoblasts [100,101].

During the 1980s, extracellular calcium was shown to activate an extracellular G-protein-coupled
receptor, termed the calcium sensor receptor (CaSR) [102]. The CaSR is expressed in cells of the
hematopoietic lineage, such as in monocytes [103], osteoclasts [104] and in cells of the mesenchymal
lineage [93,99,101,105,106]. Regarding the high responsiveness of bone cells to extracellular calcium,
elevated levels of calcium enhance proliferation chemotaxis and osteogenic differentiation of bone
marrow-derived mesenchymal stromal cells in a dose-dependent manner by activating the CaSR [93,99].
Downstream, the intracellular pathway induces phosphorylation of extracellular signal-regulated
protein kinases 1 and 2 (ERK 1/2) [99], which are part of the mitogen-activated protein kinase
(MAPK) signaling pathway, playing an important role in regulating cell proliferation in various
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mammalian cells [107]. The activation of the CaSR in response to extracellular calcium levels also
stimulates phospholipase C (PLC) and induces sustained increase of cytosolic calcium in rat calvarial
osteoblasts [106]. The activation of PLC results in generation of inositol 1,4,5-trisphosphate (IP3) and
triggers IP3-receptor-mediated calcium release from the endoplasmic reticulum. As a result, store
operated calcium entry (SOCE) mediates extracellular calcium entry into the cells for endoplasmic
reticulum-calcium store filling [108]. In addition to the effects mediated by the CaSR and the SOCE
route, voltage gated calcium channels may also serve as structural units accounting for calcium entry
into osteoblasts [106], and osteogenic differentiation of osteoprogenitors [96,109].

Given the superior significance to modulate cellular functions, variations in extracellular calcium
in the milimolar range result in proliferation, survival and chemotaxis as well as in differentiation
of osteoblasts [101,106] and bone marrow-derived mesenchymal stromal cells (MSCs) [93,96,99].
Optimal conditions to stimulate proliferation of rat calvarial osteoblasts include extracellular calcium
concentrations in the range of 3 and 10 mM [101]. Proliferation of bone marrow-derived MSCs
harvested from different species (i.e., human, porcine, rat) is effectively supported by concentrations
of 4 mM [99], 7.8 mM [96], and 10 mM [93]. Additionally, osteogenic differentiation capacity of human
bone-derived MSCs is stimulated in response to extracellular calcium concentrations in the range of 10
and 20 mM [98].

According to the composition of natural bone and the pivotal role of calcium in cellular
functions, various calcium phosphate-based materials have been developed for bone replacement
therapies [90–92]. Incorporation of the calcium phosphate phases modulates bioactivity of
the biomaterials, and as pointed out in previous studies, high bioactivity is equivalent to
calcium phosphate binding capacity and causes depletion of calcium in close vicinity to the
biomaterial [97,104,110]. Calcium phosphate deposition along the surface of bone substitute materials
represents an advantageous property to support osseointegration. However, the calcium-deficient
microenvironment in close vicinity to the materials remains obscure—especially considering the
aforementioned calcium-dependent effects on osteoblasts and progenitor cells. It has been shown
that osteoprogenitors—as in the case of bone-derived MSCs—can overcome calcium deficiency when
they are cultured in combination with highly bioactive xerogels [97]. The mechanism by which the
cells maintain their functional integrity even in response to calcium levels close to zero is still not
clear. Given the fact that the materials with high bioactivity are composites, it might be concluded that
the beneficial effects on cell survival, proliferation and differentiation are mediated largely by ionic
dissolution products such as silica [97,111] or phosphate ions [112,113]. According to this, it has been
postulated that best results of osteogenic differentiation of osteoblast progenitors along with bone
formation may be expected when calcium phosphate-based materials dissociate easily to calcium and
phosphate ions [113].

3.3. Chromium

The physiological function of chromium in human is currently under debate. Though some
cellular functions of chromium have been reported, in 2014, the European food safety authority
officially removed it from their list of essential micronutrients [114,115]. The impact of chromium
exposition on osteoblasts was investigated in several studies, whereby only toxic effects, causing
reduced DNA, RNA and protein synthesis, were reported [116,117]. Furthermore, chromium
suppressed collagenase activity in osteoblasts, which reduced collagen formation and deposition
and also negatively affected new bone formation [117].

In the field of reconstructive medicine, cobalt-chromium (CoCr) is one of the main alloys used for
total hip arthroplasty. However, the Co2+ ion released from CoCr surfaces has been reported to severely
impact mesenchymal stem cells by altering osteogenic gene expression, affecting osteogenic lineage
differentiation and compromising the mineralization process [118]. The impairment of bone formation
by chromium and cobalt was further analyzed by the effect of these ions on the expression of various
TGF-β isoforms and mineralization in MG-63 and Saos-2 osteosarcoma cells, as well as in primary
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human osteoblasts. While Co2+ decreased the expression of different TGF-β isoforms in all investigated
cell types, Cr3+ had no impact. Cr3+, on the other hand, strongly inhibited the mineralization process of
these cells in vitro, whereas Co2+, within the range of the tested concentrations, showed no inhibitory
effects on mineralization [119].

3.4. Cobalt (Co2+)

As cobalt is a compound of cobalamin, it is an essential trace element, which stimulates the
production of red blood cells and promotes angiogenesis by activating hypoxia-inducible transcription
factors (HIF) [120–122]. Previous studies have demonstrated a rather unfavorable effect of Co2+ ions
released from CoCr surfaces, affecting osteogenic lineage differentiation of hMSCs, TGF-β isoform
expression in osteoblasts and the mineralization process. Conversely, recent data indicate that the
impaired mineralization reported by Schröck and colleagues was caused by Cr3+ ion release, rather
than by Co2+ ions [118,119].

The angiogenic capacities of cobalt ions sparked the idea of incorporating this metal into different
materials used for bone healing in order to stimulate vascularization of implanted grafting materials
and thereby enhance the remodeling processes and supporting overall regeneration. The impact of Co2+

ions incorporated into calcium phosphate (CaP) coatings for poly-lactic acid (PLA) particles on new
blood vessel formation was studied in an intramuscular implantation model in goats. The inflammatory
reaction, following a 12-week implantation course, demonstrated no pathologic differences between
PLA particles coated with solely CaPs or those coated with Co2+ containing CaPs. Formation of blood
vessels was significantly increased when Co2+ containing CaP-coated PLA particles was implanted, and
vessel size was notably increased, suggesting a positive impact of Co2+ on vascularization in vivo [123].

The impact of Co2+ containing CaPs on osteoporotic alveolar bone regeneration was further
investigated in rats. Biocompatibility assessment of the material was approved for epithelial Caco-2
and osteoblastic MC3T3-E1 cells, whereby no toxic effects were observed in Caco-2 cells; however,
a considerable decrease in cell viability and impairment of cytoskeletal organization was observed
in the MC3T3-E1 cells. Despite the negative impact of Co2+ ions on osteogenic cells, hydroxyapatite
(HAp) nanoparticles doped with Co2+ demonstrated dose-dependent acceleration of osteogenesis,
osteoporotic bone regeneration and graft material substitution in comparison to HA-nanoparticles
without Co2+. The authors listed several hypotheses for their observations, including increased
transport of Ca2+ ions into the extracellular fluids facilitated by the moderate toxicity of Co2+ ions
as well as increased cytokine production and release, which could potentially boost aminopeptidase
activity together with migration and proliferation of endothelial cells [124].

The combination of Co2+ HAp nanoparticles with blood or plasma rich in growth factors (PRGF)
was shown to induce the generation of large quantities of osteoblasts, increase mineralization and
accelerate bone regeneration [124]. Taking into consideration that recent studies demonstrated
impaired growth factor expression and osteogenic lineage determination in hMSCs exposed to Co2+,
these observations seem reasonable, as blood and PRGF may compensate for this lower expression,
thus enabling proper osteogenic lineage differentiation [119]. Furthermore, the study indicates that
bone minerals containing scaffolds, as presented in this study, are suitable for cobalt incorporation, as
cobalt does not impair but rather seems to support the mineralization process [119,124].

Similar findings were reported by another group, who developed a hydrogel with incorporated
Co2+ ions. Hydrogels solely doped with Co2+ did not increase the amount of regenerated bone volume,
bone surface and bone surface density in a rat model in vivo, whereas the addition of BMP2 to the
hydrogel did. The observed gain was even more pronounced with the simultaneous loading of
Co2+ and BMP2 onto the hydrogel, which again favors the hypothesis of a synergistic effect of Co2+

in conjunction with growth factors in graft vascularization and bone regeneration [125]. Increased
collagen deposition, new bone formation and bone hardness were also reported for cobalt-containing
bioglasses compared to bioglasses without cobalt in critical size defects in a rabbit’s femur in vivo [126].
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Additionally, the authors showed that the inclusion of both strontium and cobalt into the bioactive
glasses even further ameliorated the bone regeneration process.

3.5. Copper

While Cu2+ is in the most stable oxidation state in aqueous solution, it can also be present as
Cu+ in the human body exhibiting diverse properties and functions [127]. Together with iron and
zinc, copper is one of the most important metals for humans and is especially needed to generate
Cu-proteins that have enzymatic functions. Cu-proteins have three main functions in living organisms,
such as participation in electron-transfer reactions, transport of oxygen and transport or storage of the
metal itself.

Therefore, copper is involved in multiple physiological functions, including the regulation of
bone metabolism and turnover. Cu imbalances also affect the nervous system and can lead to vascular
abnormalities in the human body. The impact of copper deficiency on skeletal growth and development
was previously assessed in several studies [128,129]. Copper became a material of interest in the field of
bone regeneration due to its antibacterial properties and its ability to stimulate collagen fiber deposition
and angiogenesis, which represents the first step towards the formation of vital and vascularized
tissue [130–132]. The effect of copper-doped silicate bioceramics on vascularization was subjected to
several studies. Kong and colleagues [133] recently reported a positive impact on the expression of
angiogenic growth factors in human umbilical vein endothelial cells (HUVECs) and human dermal
fibroblasts (HDFs) in response to Cu2+ released from copper silicate bioceramics. Thus, the release
of Cu2+ ions from porous matrices like bioactive glass should facilitate the ingrowth of bone into the
scaffold matrix [134].

Current data support enhanced osteogenic differentiation of mesenchymal stem cells mediated by
copper supplementation. Early studies on the effect of copper on MSCs derived from postmenopausal
women demonstrated reduced proliferation, a 2-fold enhancement of differentiation into osteoblasts
and increased calcium deposition, while alkaline phosphatase activity was considerably diminished in
these cells and shifted to an earlier timepoint [135]. Similar findings on the suppression of alkaline
phosphatase activity mediated by copper exposition were observed in rat MSCs by Li and colleagues,
who reported a clear reduction in osteogenic differentiation of rat MSCs concomitant with the
reduction of several osteogenic genes, alkaline phosphatase activity and bone nodule formation.
In addition, cytoskeletal abnormalities during osteogenesis were found in these cells. The process of
ectopic bone formation in a rat model was also significantly impaired by the presence of copper and
while vascularization in the regenerated soft tissue was promoted, collagen formation was strongly
inhibited [136].

These findings are supported by a study conducted with pre-osteoblastic MC3T3-E1 cells cultured
on copper containing bioglasses. While no effects on proliferation and alkaline phosphatase activity
of these cells were noted with scaffolds doped with 0.4 wt.% to 0.8 wt.% CuO, 2.0 wt.% showed
a significant reduction effect on both. In an in vivo approach, rat calvarial defects showed that a
higher concentration of Cu2+ ions also substantially reduced new bone formation from 46 ± 8% to
0.8 ± 0.7%, while lower concentrations showed no such impairment. On the other hand, the authors
found a stimulatory effect on blood vessel formation dependent of the copper content of the scaffolds,
with the greatest impact seen for the highest concentration of 2.0% CuO [137]. Benefits of copper
supplementation in the regeneration of critical-sized calvarial defects in rats were further reported by
the comparison of chitosan scaffolds and chitosan scaffolds doped with copper. Analysis of micro-CT
scans after 4 weeks of healing indicated twice the amount of bone volume in the defects treated with
copper containing chitosan scaffolds as compared to scaffolds without copper [138].

3.6. Gallium (Ga3+)

Gallium is a metal that serves no known essential functions in human. While currently
being investigated in cancer treatment because of its anti-proliferative properties resulting from the
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interference with iron-dependent cellular functions, studies also demonstrated that short-term gallium
treatment reduces bone turnover in vivo and increases the calcium content of bone in patients suffering
from cancer-related hypercalcemia [139]. Furthermore, gallium has the potential to disrupt microbial
iron utilization by interacting with iron-binding bacterial molecules called siderophores. In this manner,
gallium downregulates bacterial iron uptake and impairs bacterial growth [140]. Gallium-EDTA-coated
titanium chips exhibited significant antimicrobial activity against Escherichia coli for more than 28
days after coating, underscoring a promising application of gallium-based coatings for effective
prevention of biofilm formation, and these chips could be used in dental and orthopedic reconstructive
surgery [141]. Additionally, gallium-coated titanium implants showed superior antibacterial properties
in vivo and consequently, more effective prevention of biofilm formation than silver coatings [142].

Several studies analyzed the effect of gallium administration on osteoclasts and osteoblasts.
While osteoclastic lineage differentiation and resorption activity were lowered by gallium, no impact
on viability and proliferation of osteoblasts was noted [143]. In an in vivo approach using a rabbit
femoral defect model, gallium-loaded calcium phosphate cements showed no superiority over calcium
phosphate cements without gallium in terms of bone healing, whereby the authors implied that
no effect was observed due to the low resorption of the material and consequently, low release
of Ga3+-ions [144]. In a subsequently conducted study, the gallium release from Ga-CaP was
optimized and re-evaluated for its beneficial properties in bone healing. Upregulation of osteoblastic
marker expression was observed in primary human osteoblasts cultured on the Ga-CaP, whereby late
osteoclastic markers were downregulated in primary human monocytes that were previously induced
towards the osteoclast lineage.

The in vivo properties of Ga-loaded CaPs in new bone formation were assessed in a murine bone
defect healing model; aside from an enhanced total defect-fill, Ga-CaPs also promoted the synthesis of
mature organized collagen [145]. With respect to the current literature, gallium holds a set of promising
qualities for future applications in tissue engineering.

3.7. Iron (Fe2+)

Iron is one of the most important ions in the human organism as it is essential for a variety of cellular
processes [146–148]. Different cellular effects such as the synthesis of deoxyribonucleic acid (DNA) and
ribonucleic acid (RNS), proteins, electron transport processes, cellular proliferation and differentiation
are related to iron ions [149,150]. These effects are based on the involvement of iron ions mainly as
components of enzyme molecules, such as oxidases, catalases, peroxidases, aconitases, ribonuleotide
reductases and nitric oxide synthases, amongst others [150–152]. As a coordinating ion in the center
of hemoglobin and myoglobin, iron is an essential trace element, required for oxygen transport and
regulation of several metabolic enzymes [153,154]. Iron is the loosely bound ion component of the
procollagen proline hydroxylase and the procollagen lysine hydroxylase [155]. Both enzymes effect the
hydroxylation of proline and lysine residues in the precursors of collagen. Large amounts of iron released
from iron-containing implants, however, may cause excessive iron levels in the blood. Here, the free
iron can react with peroxides and trigger the formation of free radicals, which are highly reactive and
damage lipids, proteins, DNA as well as cellular structures [156,157]. Additionally, hemochromatosis
has been demonstrated to result in osteoporosis mediated by increased ferroxidase activity of ferritin.
In vitro experiments demonstrated inhibition of osteogenic lineage differentiation in human osteoblasts
concomitant with decreased calcification caused by iron overload [158–160]. In vivo experiments in
zebrafish larvae demonstrated that the mechanism by which iron-overload causes impaired osteoblast
function and mineralization is based on the increased generation of reactive oxygen species. Application
of deferoxamine, an iron chelator capable of removing whole-body iron, ameliorated the iron-induced
negative effects on osteoblastic marker expression and mineralization [161]. Similarly, this was also
observed for hepcidin, a regulator of iron-uptake, which is also capable of removing whole body iron.
Likewise, hepcidin downregulation elevates the iron level and causes iron-overload mediated interference
with osteogenesis [162].
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Iron exposure to human bone marrow mesenchymal stem cells (BMSCs) decreased their
differentiation towards the osteogenic lineage as well as extracellular matrix mineralization with
a total block of lineage commitment at a concentration of 50 µM. In vivo experiments in mice were able
to reproduce these findings. The inhibitory effect of iron, however, was specific for osteogenic lineage
differentiation, whereas no impact on chondrogenesis and adipogenesis was noted [163]. Furthermore,
the promotion of osteoclast formation mediated by iron was previously reported, which additionally
underscores the unfavorable features of iron for the purpose of biomedical tissue engineering [164].
In contrast to these previous results, Wang and colleagues reported a positive impact of iron oxide
nanoparticles (IONPs) on the osteogenic differentiation of human BMSCs in vitro mediated by MAPK
signaling. The authors speculated that the negative impact of iron on osteogenesis observed in
previous studies resulted from increased reactive oxygen species (ROS) formation and ferritin activity,
whereby this process is proposed to be prevented by nanoparticle formulations [165]. Moreover,
Zhao and colleagues analyzed both effects of excessive and low body iron conditions on osteoblast
activity [166]. The results showed that an increased iron concentration inhibited osteoblastic activity in
a concentration-dependent manner, while a mild iron deficiency led to an increase in cellular activity.
In contrast, a severely low iron level completely inhibited osteoblastic differentiation. An enhanced
osteoclast formation is one result of an increased iron concentration while osteogenic stimuli are
blocked under the same conditions [167]. Thus, further studies will have to clearly determine the
potential benefits of iron in tissue engineering.

3.8. Lithium (Li+)

Lithium is a non-essential trace element and consequently fulfills no known functions in
the human organism. However, due to its beneficial impact in the treatment of psychological
disorders, lithium has been widely introduced into medical applications [168]. Among the various
mechanisms of action that have been proposed for lithium, the stimulation of neural progenitor cell
proliferation by the Wnt/β-catenin pathway, which leads to an increase of the brains grey matter,
is widely accepted [169,170]. Interestingly, the proliferation of other cell types such as MSCs is
also regulated by the Wnt/β-catenin pathway, suggesting that lithium might also modulate the
proliferation of these cells [171]. In fact, a recent study reported increased proliferation of hMSCs
stimulated by lithium-mediated Wnt/β-catenin signaling in vitro [172]. Additionally, previous
studies reported this pathway to be a main regulator of osteoblastogenesis, which made lithium
application in the field of tissue engineering even more appealing [173]. Though few studies reported
a beneficial impact of lithium supplementation on bone mineral density and a reduction of the risk of
fracturing, the molecular mechanisms by which lithium facilitates these effects are not yet completely
understood [174,175]. In a transcriptome-based approach used to identify the impact of lithium
on osteoblastogenesis, Satija and colleagues reported diminishing proliferation of hMSCs treated
with lithium and decreased expression of adipogenic and osteoclastogenic factors accompanied by
the induction of osteoblastogenic markers associated with collagen-1 deposition and mineralization;
similar results were also reported by other groups [176–178]. Systemic lithium application exhibited
beneficial effects on bone healing following distraction osteotomy in the tibia of rats. Bone mineral
density, the quantity of newly formed mature bone tissue and bone mass regeneration were increased
in rats who received a lithium solution through gastric gavage in comparison to those receiving a
saline solution, pointing to accelerated callus ossification and bone healing mediated by lithium [179].

To further utilize the beneficial effects of lithium on bone regeneration, various biodegradable
lithium-containing scaffolds have been developed and tested for their potential in bone regeneration;
preliminary experiments on lithium release, toxicity and osteoblastic cell activity on such scaffolds
were promising [180,181]. In vitro experiments comparing pure HAp with lithium-doped HAp
scaffolds demonstrated increased osteoblast activity, resulting in accelerated material degradation,
and the degradation products exhibited no toxic impacts on osteoblasts and enhanced osteoblast
proliferation. Additionally, compressive strength testing revealed favorable mechanical properties
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of lithium-doped HAp scaffolds [182]. Further evidence on the beneficial impact of lithium
incorporation into calcium phosphate cement scaffolds on bone healing was recently demonstrated.
Lithium release from this material stimulated the proliferation and differentiation of osteoblasts
in vitro by Wnt/β-catenin activation. Application of lithium-doped calcium phosphate cements
significantly increased osteogenesis and defect repair in vivo and showed superior osteoconduction
and osteointegration compared to pure calcium phosphate cements [183]. Overall, the literature
emphasizes that lithium regulates growth and development of osteogenic progenies while suppressing
osteoclast development; identification of the exact mechanisms of lithium orchestrating either
differentiation or proliferation of osteoblasts represents a pivotal goal for future clinical applications.
Nonetheless, lithium seems to directly regulate and benefit osteogenic lineage cells, whereas other
metallic ions, such as copper and cobalt, seem to impact bone regeneration by their impact on
endothelial cells and accelerated vascularization.

3.9. Magnesium (Mg2+)

Magnesium is an alkaline earth metal that belongs to group 2 metals of the periodic table.
The mammalian body consists of approximately 0.4 g magnesium/kg body weight [184]. More than
90% is bound and stored in bone, muscle and non-muscular soft tissue [184,185], while only a small
amount (1–5%) [185] resides in extracellular fluids [186] in the form of ionized/free magnesium
(55–70%) or is bound to proteins and anions [184].

Magnesium is an important intracellular cation [185–187] as it is cofactor for more than
300 enzymatic reactions, essential for the synthesis of proteins and nucleic acids [185,188] and
for the transport of both, potassium and calcium ions [185]. Magnesium is also crucial for
transphosphorylation of ATP, and changes of intracellular magnesium levels might influence several
pathways [189].

As magnesium maintains bone strength [185] and bone formation capacity, [184] adequate dietary
magnesium plays a major role in musculoskeletal health and is relevant to prevent osteoporosis [190].
A magnesium deficiency exerts negative effects on rat bone metabolism, systemic bone mass [191],
and contributes to osteoporosis in humans [189]. It has been proposed that the effects of magnesium
deficiency might be the result of increased levels of TNFα, IL-1 [192], and NF-κB ligand (RANKL),
along with decreased serum levels of osteoprotegerin (OPG) [193].

According to the superior role of magnesium in cellular functions, magnesium-based materials
are regarded as promising candidates for bone replacement therapies due to the stimulation capacity of
bone cell differentiation in vitro [194–197] and bone formation in vivo [198–201]. Currently available
materials include different magnesium-containing compounds such as oxides, phosphates and silicates
that are used as bone cements, bone scaffolds or implant coatings. Overviews of the different
magnesium-based materials—such as bioceramics, e.g., magnesium phosphates (MgO-P2O5), calcium
magnesium phosphates (CaO-MgO-P2O5), and magnesium glasses (SiO2-MgO) [202] are given in
recent systematic reviews [203–215].

Numerous in vitro studies focus on the effects of magnesium ions on bone cells, in terms of
enhancing proliferation and migration as well as alkaline phosphatase (ALP) activity of human
osteosarcoma MG-63 cells [216], increasing viability and differentiation capacity of a human osteoblast
cell line (hFOB1.19, ATCC) [217], cell proliferation of bone marrow derived stromal cells (BMSC), and
expression of α2 und α3 integrins [218]. However, additional data provide evidence that the effects of
magnesium ions develop dose-dependently [217]. Concentrations of about 1–3 mM Mg2+ stimulate
gap junctional intercellular communication (GJIC) of osteoblasts [217], while viability, proliferation and
differentiation of human BMSCs are ensured by concentrations in the range of 2.5–10 mM [216,218–220].

In contrast, decreased mineralization capacity and matrix deposition of BMSCs have been
observed in response to magnesium concentrations higher than 1.3 mM Mg2+ [221–223]. According
to the role of magnesium as a physiological calcium antagonist [222], it has been suggested that
magnesium substitution for calcium in hydroxyapatite structure [224] and/or modulations of
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intracellular calcium oscillations with consecutive suppression of spontaneous ATP release and
inactivation purinergic receptors are responsible for the decreased mineralization capacity of the
cells [221]. Additionally, magnesium has a competitive role against Matrix gla protein (MGP),
suggested as a potent inhibitor of HAp crystal growth during mineralization [225]. These results are
consistent with emerging studies demonstrating significant suppression of mitochondrial accumulation
of calcium ions in MSCs [222] and inhibition of excess calcium-induced mineralization in response
to high extracellular magnesium [226]. Similarly, decreased intracellular calcium concentration and
decreased calcium influx have been observed when MSCs have been cultured in the presence of a
high magnesium concentration [223]. Competition between calcium and magnesium ions for the
same ion transporters, such as transient receptor potential cation channel, subfamily M, member 7
(TRPM7) [223] and/or inhibition of expression of calcium-sensing receptor (CaSR) [226], might be
responsible for the decreased mineralization capacity. In terms of how high concentrations of Mg2+

ions modulate bone cell metabolism and bone cell function, the Wnt/β-catenin anti-calcifying pathway
and the magnesium transporter SLC41A1 have been shown to be involved in magnesium-mediated
signaling of BMSCs [223].

The benefit of biodegradability is that it avoids a second surgery for implant removal
and prevents formation of foreign body giant cells in close vicinity of permanent implants,
and this has been designated as a major advantage of the magnesium-based materials [227].
The architecture and pore structural conditions of magnesium-enriched scaffolds greatly influence
bone formation and remodeling activities [228]. Hydrogen gas released during degradation of
magnesium-enriched scaffolds enlarges pre-existing pores, and expands the space for invading cells
and blood vessels [201]. Given these beneficial effects, magnesium-based materials have emerged as a
new class of biodegradable biomaterials for bone tissue engineering—referred to as next-generation
biomaterials [227].

However, considering the rapid degradation rates, magnesium-based implants are still not
commonly used in clinical practice [212,227,229]. The “high magnesium microenvironment” created
by rapid corrosion of magnesium alloys might disturb calcium-dependent processes and physiology
of the cells localized in close vicinity to the implants [222]. Therefore, the balance between calcium and
magnesium ions is not only crucial for bone physiology [222] but also for successful osseointegration
of magnesium-based materials.

Additionally, due to rapid corrosion rates, magnesium-based implants have the risks of structural
failure and toxic responses immediately after implantation [227]. In the course of degradation,
magnesium hydroxide and hydrogen gas are produced, both of which cause detrimental effects on
cells and tissue localized close to the implant [188,230]. Controllable in vivo corrosion rates, in terms
of establishing sufficient corrosion protection methods at different levels might represent promising
tools to overcome these disadvantages [188,212,227,229,230].

3.10. Manganese (Mn2+)

Manganese is an essential element and is crucial for the proper function of a multitude of enzymes
in living organisms [231]. Divalent cations such as Mn2+ are also known to influence cell migration
by modulating focal adhesion organization via integrins and actin stress fiber formation [232,233].
These properties make manganese an interesting candidate for improving ingrowth and integration of
bone grafts and other implantable materials alike. The impact of manganese on MG-63 osteoblastic
cells was evaluated in order to confirm this theoretical benefit of manganese supplementation in the
process of new bone formation. Manganese supplementation reduced cell proliferation, migration,
ERK/MAPK-signaling and collagen I as well as alkaline phosphatase expression in a dose-dependent
manner. Interestingly, the mRNA level of bone sialo protein (BSP) was increased by manganese
exposure, whereas the BSP protein level was not elevated [234].

Interestingly, doping alumina tubes with manganese significantly enhanced tissue maturation
and osteogenesis in vivo in rats; the authors noted that the surface structure of the alumina tubes
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was altered by manganese incorporation which made it impossible to distinguish whether the
observations resulted from the phase composition or the surface topography modification [235].
However, manganese is also reported to have insulin-mimetic properties and other properties within
this class, such as VAC-increased fracture site vascularization by local application, which led to
the hypothesis that manganese might also accelerate fracture healing [236,237]. In fact, a group
reported a significant increase in the mechanical properties of bone, mineralized tissue formation and
VEGF-expression in a rat femoral fracture model when manganese chloride (MnCl2) was supplemented.
Additionally, blood vessel density was dramatically increased by MnCl2 treatment, suggesting
increased vascularization, fracture healing and osteogenesis, implicating a potential function for
manganese in tissue engineering [238].

3.11. Silver (Ag+)

Due to its antimicrobial properties, silver has a long history of application for medical purposes,
whereas the investigation of potential functions of silver in bone regeneration is a quite recent
occurrence [239]. Analysis of the tissue response to silver acetate-coated Dacron vascular grafts
implanted into the dorsal skinfold chamber in mice revealed higher functional capillary density without
affecting inflammatory host tissue response, collagen formation, apoptosis and cell proliferation as
compared to uncoated grafts [240]. Furthermore, functionalization of silver nanoparticles in tissue
regeneration has already been introduced into commercially available wound dressings, as they exhibit
outstanding anti-microbial and anti-inflammatory properties [241–243]. Additional arguments for
the utilization of silver nanoparticles instead of other silver formulations like silver nitrate in tissue
engineering were recently reported by Quin and colleagues [244]. They showed that the lowest toxic
concentration of silver nanoparticles in urine-derived stem cells was substantially higher than that
assessed for silver nitrate. More interestingly, however, was the reported promotion of osteogenic
lineage induction and actin polymerization of these cells, which was only observed for AgNPs, and
not for AgNO3 [244]. In fact, the stimulatory impact of AgNPs on the mineralization of MC3T3-E1
osteoblastic cells maintained by miRNA-mediated increased expression of genes associated with bone
formation was previously reported [245].

In order to identify putative impacts of AgNPs in the process of osteogenic lineage induction, the
entire transcriptome of MC3T3-E1 cells in response to AgNP exposure was analyzed. The authors found
that, aside from the upregulation of different bone morphogenic proteins important for osteogenesis,
the enhancement of osteoclastic marker expression was the most pronounced transcription-based
alteration [246]. Based on the stimulatory properties of AgNPs on keratinocyte proliferation and
migration and fibroblast differentiation, which contributes to the promotion of wound contraction,
the impact of AgNPs on proliferation and differentiation of MSCs was analyzed [247,248]. AgNPs
successfully promoted MSC proliferation and osteogenic differentiation in vitro. In vivo experiments
using a femoral fracture model in mice support the preliminary observations, as AgNPs encapsulated
in collagen were able to accelerate callus formation and fracture gap closure. Though the exact
impact of AgNPs in this process remains elusive, the authors suggested that the possible chemotactic
impact of AgNPs on MSCs and fibroblasts, as well as induction of MSC proliferation and osteogenic
differentiation, was responsible for the observed effects [249]. Despite the here reported beneficial
impacts of AgNPs on hard-and soft-tissue related cells, further studies will have to elucidate the
clinical practicability relevance of AgNPs application in the promotion of osteogenesis.

3.12. Strontium (Sr2+)

Strontium (Sr) is an alkaline earth metal and belongs to the group 2 elements of the periodic table.
Although it is considered as a non-essential element, there is growing interest concerning the effects of
Sr on cells of the bone. This interest is based upon the fact that strontium ranelate has been used in
Europe as a therapeutic drug for the treatment of osteoporosis since 2004. Osteoporosis is a serious
systemic skeletal disorder and is becoming a major health problem due to rapid population aging.
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As osteoporosis leads to dramatic changes of the skeleton in terms of markedly decreased bone mass
and reduced bone quality, as well as altered architecture at the macroscopic and microscopic levels,
the disease is associated with a high incidence of osteoporotic fractures.

The use of Sr for the treatment of osteoporosis is based upon its dual mode of action: Sr influences
both osteoblasts and osteoclasts and gives rise to increased bone formation capacity of osteoblasts and
decreased bone resorption activity of osteoclasts [250–254]. Due to its similarity to calcium, the effects
of Sr are largely mediated by the calcium sensing receptor (CaSR), which is a membrane-bound receptor
expressed in osteoblasts and osteoclasts [255–258]. In response to Sr, intracellular signaling pathways
are activated, resulting in enhanced proliferation and differentiation of mesenchymal stem cells and
osteoblasts along with increased mineralization and deposition of extracellular matrix [250,255,259] by
activating the Wnt/Catenin signal pathway [250,260]. Additionally, in response to the activation of this
pathway, OPG (osteoprotegerin) levels of osteoblasts and their precursors increase, whereas RANKL
(receptor activator of nuclear factor κB ligand) expression of the cells decreases [261]. The expression
patterns in favor of OPG suppress differentiation of osteoclasts and limit the extent of bone resorption.
Similar effects are observable in the course of direct interaction of Sr with the extracellular domain of
the CaSR: downstream cascades stimulate diacylglycerol (DAG9-protein kinase C (PKC) βII which
in turn induces osteoclast apoptosis [257]. In a recent in vitro study, Sr could be detected by means
of mass spectrometry within the cytoplasm of osteoclasts which were cultivated in combination
with a Sr-enriched calcium phosphate cement. Cell differentiation of the osteoclasts was therefore
delayed [262]. However, the mechanism by which the ions enter the cells, and to what extent
intracellular Sr deposition influences cell signaling, must still be clarified.

Besides the beneficial effects on bone metabolism, systemic administration of strontium ranelate
increases the risk of cardiovascular diseases [263]. Therefore, its use is restricted to patients who show
no signs of heart and circulatory diseases.

For the benefit of osteoporotic patients and in light of the effects of Sr on bone remodeling,
combinations of Sr with bone substitutes might represent a successful approach to overcome the
adverse effects of systemic administration of strontium ranelate. Accordingly, Sr is used for apatite
coatings of orthopedic and dental implants [264–266], and is incorporated into different bone
cements [262,267–273]. Because of their subsequent substitution by natural bone in the course of
physiological remodeling, it has been proposed that calcium phosphate-based cements ensure the
local release of Sr [274], and therefore might represent ideal bone substitutes for the osteoporotic bone.
According to this suggestion, stable incorporation of Sr into the crystal lattice of the bone mineral is
based upon remodeling activities of osteoblasts and osteoclasts (for a review see [275]), and Sr uptake is
especially high in newly formed bone tissue [276]. So placed at the disposal of the bone cells, Sr might
locally regulate their activities as well as the bone healing process in the course of further remodeling.

3.13. Vanadium (V+)

Vanadium is a trace element present in basically all living organisms and is predominantly stored
within the bone tissue [277]. Because of its growth factor mimicking properties, it was previously
suggested that vanadium might positively influence osteogenesis [278,279]. An early study analyzing
the impact of vanadium derivatives on osteoblast-like UMR106 cells reported enhanced proliferation,
alkaline phosphatase activity and even differentiation [280]. As insulin supplementation ameliorates
negative effects of diabetes on bone regeneration and local insulin treatment enhances fracture healing
in healthy rats, the insulin-mimetic properties of vanadium are currently being investigated as a safe
and cost-efficient alternative to insulin supplementation [281,282].

Intramedullary delivery of an organic vanadium salt (vanadyl acetylacetonate) in a rat femoral
fracture model significantly promoted cell proliferation, vascular endothelial growth, callus cartilage
formation and mineralization and considerably increased torque to failure compared to treatment
with saline control solutions [236]. A vanadium-loaded collagen scaffold was recently described by
Cortizo and colleagues; although vanadium loading increased membrane permeability, no changes
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in the collagen structure were observed. Furthermore, attachment, growth and osteoblastic as well
as chondrocytic differentiation of rBMPCs was improved by loading vanadyl acetylacetonate onto
collagen membranes [283]. Vanadium coating of titanium implants was also shown to enhance
fibroblast attachment and proliferation, which suggests potential benefits in soft tissue healing by
vanadium treatment [284]. Taken together, published data demonstrate vanadium to be an interesting
metal with great potential in regulating both angiogenesis and osteogenesis; however, further studies
are required to support these preliminary findings.

3.14. Zinc (Zn2+)

Zinc is an essential trace element that is pivotal for proper immune system functioning, cell
division and for skeletal development and therefore has been implemented into biomaterials for
orthopedic and dental applications [285–287]. Furthermore, zinc and zinc alloys are promising
biomaterials as load-bearing scaffolds as they have similar mechanical properties to mammalian
bone, especially Zn2+ ions, which have a multitude of physiological functions. Zinc led to increased
ECM mineralization in hMSC culture by promoting the expression of ALP and osteopontin [288].
Also, with respect to SMCs, a concentration-dependent behavior was found in the presence of
Zn2+ in vitro. In the range 80–120 µM, a change in biological response was observed by inhibition
of viability and proliferation [289]. When Zn was used in different titan coatings, the measured
expression of Zn-transporters (ZnT1 and ZIP1) suggested that cells prefer Zn2+ present at the
biomaterial interface rather than plain diffusion of Zn2+ ions in the surrounding medium [290].
Additional studies on the actions of zinc supplementation in osteogenesis reported enhanced
collagen deposition and mineralization of osteoblast like MC3T3-E1 cells, antagonizing effects on
osteoclastogenesis with simultaneous promotion of osteoblastogenic differentiation and increased
osteoblast activity mediated by zinc supplementation in a concentration-dependent manner [291–293].
Zinc phosphate-loaded barrier membranes showed excellent anti-microbial properties, capable of
inhibiting bacterial colonization upon membrane exposure and avoiding potential infections [294].
To further analyze beneficial properties of zinc in GBR procedures, cross-linked gelatin membranes
loaded with zinc hydroxyapatite powder were compared to cross-linked collagen membranes in a
rat calvarial defect model. After a period of 6 weeks, bone defect fill was 80 ± 2%, 60 ± 5% and
40 ± 2% for the zinc-loaded gelatin membrane, the collagen membrane and the unfilled control group,
respectively, demonstrating the tremendous potential for the application of zinc in bone regeneration
approaches [295]. Antibacterial effects, excellent biocompatibility and stimulatory impact on the
activity of osteoblast-like MG63 cells were also recently reported for nanocomposites of carboxylated
graphene oxide sheets decorated with zinc oxide nanoparticles, emphasizing the potential application
of zinc in nanoparticle formulations for tissue engineering [296].

Zinc ions released from zinc-doped tricalcium phosphates were able to enhance TRAP and ALP
activity of hBMSCs and to regulate multinuclear giant cell formation and activity of RAW264.7
macrophages [297]. De novo bone formation in a canine ectopic implantation model was only
induced by the addition of zinc to TCPs, however, not by TCPs alone, whereby the rate of new
bone formation was coherent with zinc concentration [297]. Zinc is also an attractive candidate for
the development of coatings in order to promote the integration of implants. Regarding this matter, a
study analyzed rBMSC activity in response to zinc-loaded titanium oxide coatings and the impact of
zinc-supplementation on osseointegration in a rat implantation model. In comparison to TiO2 coatings
without zinc, osteogenic gene expression was upregulated in rBMSCs cultivated on zinc-doped
TiO2 coatings, and early-stage new bone formation as well as bone contact ratio were increased
in vivo [290]. Yu and colleagues further reported increased osteogenic differentiation and mineralized
matrix deposition in rat bone marrow-derived pericytes (BM-PCs) and significant promotion of new
bone formation around titanium implants in osteopenic rabbits with the application of zinc-modified
calcium silicate coatings. Molecular analysis revealed that zinc exerts these actions by regulating
the TGF-β/Smad signaling pathway, which is pivotal for osteoblastogenesis [298]. Reports on zinc
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in biomedical applications for tissue engineering, especially with regards to the positive impacts on
osteoblastogenesis, osteoblast activity and tissue mineralization, are promising for improving implant
osseointegration, accelerating bone regeneration and inhibiting biofilm formation.

3.15. Others

There are other metals and their corresponding ions which have been demonstrated to have
an effect on the bone regeneration process [195]. Webster et al. have shown a higher adsorption
of calcium, vitronectin and collagen on yttrium-doped HAp [299]. Others including zirconium
and also molybdenum are used in different metal alloys which are used for orthopedic and dental
applications [300]. The latter metals are primarily used to achieve specific material properties. There
are additional metals that play a role as implant materials, especially titanium, which builds up a
very stable oxide layer, and thus, can be considered almost inert under physiological conditions [301].
Nevertheless, for titanium and its alloys, it was shown that released titanium enhanced the release of
bone resorbing cytokines from LPS-stimulated monocyte cultures [302]. Long-term in vivo studies
in baboons revealed an increased titanium ion concentration in urine as well as enhanced levels in
tissues [303]. Nevertheless, no toxic effects were observed up to 8 years after implantation.

4. Conclusions

The existing bone substitute materials only provide osteoconductive healing capacities, and most
of the newly developed tissue engineering strategies are still not applicable in the daily clinical routine.
The presented overview of the physiological mode of action of different metal ions and their influence
on the process of bone tissue regeneration has shown that their addition to existing bone substitute
materials may alter the inflammation and foreign body response or the onset of bone regeneration as
well as material durability. Another important problem is the availability and the cost of suitable bone
grafting material for the increasing need of an aging population.

It is obvious that different parameters play an important role in the use or the combination of
metals with existing biomaterials. Furthermore, it has been demonstrated that the concentration of the
released metal ions plays a crucial role for the bone formation process. Thereby, it would be beneficial
to have the ions present in close vicinity of the implanted biomaterial, as bone regeneration should
preferably occur directly at the implant site. On the other hand, metals can be incorporated into
scaffolds, which support a continuous release to support early induction of osteoblast differentiation,
as they can control transcriptional regulators like Runx2 and therefore osteogenesis.

There is still ongoing work investigating specific effects as well as possible synergistic effects of
metal ions with other synthetic materials on the differentiation into osteogenic lineage. Therefore,
it is necessary to plan and run additional experiments and studies in almost every scientific field to
develop the suitable biomaterial patients need.
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89. Piconi, C.; Condo, S.G.; Kosmač, T. Alumina-and zirconia-based ceramics for load-bearing applications. In
Advanced Ceramics for Dentistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–253.

90. Zhang, J.; Liu, W.; Schnitzler, V.; Tancret, F.; Bouler, J.-M. Calcium phosphate cements for bone substitution:
Chemistry, handling and mechanical properties. Acta Biomater. 2014, 10, 1035–1049. [CrossRef] [PubMed]

91. Prati, C.; Gandolfi, M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications.
Dent. Mater. 2015, 31, 351–370. [CrossRef] [PubMed]

92. Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating
technologies and biomedical applications. Materials 2017, 10, 334. [CrossRef] [PubMed]

93. González-Vázquez, A.; Planell, J.A.; Engel, E. Extracellular calcium and CaSR drive osteoinduction in
mesenchymal stromal cells. Acta Biomater. 2014, 10, 2824–2833. [CrossRef] [PubMed]

94. Silver, I.; Murrills, R.; Etherington, D. Microelectrode studies on the acid microenvironment beneath adherent
macrophages and osteoclasts. Exp. Cell Res. 1988, 175, 266–276. [CrossRef]

95. Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J.
The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer
and 3D culture. Biomaterials 2005, 26, 4847–4855. [CrossRef] [PubMed]

96. Barradas, A.M.; Fernandes, H.A.; Groen, N.; Chai, Y.C.; Schrooten, J.; van de Peppel, J.; van Leeuwen, J.P.;
van Blitterswijk, C.A.; de Boer, J. A calcium-induced signaling cascade leading to osteogenic differentiation
of human bone marrow-derived mesenchymal stromal cells. Biomaterials 2012, 33, 3205–3215. [CrossRef]
[PubMed]

97. Wagner, A.-S.; Glenske, K.; Henß, A.; Kruppke, B.; Rößler, S.; Hanke, T.; Moritz, A.; Rohnke, M.; Kressin, M.;
Arnhold, S. Cell behavior of human mesenchymal stromal cells in response to silica/collagen based xerogels
and calcium deficient culture conditions. Biomed. Mater. 2017, 12, 045003. [CrossRef] [PubMed]

98. Wagner, A.-S.; Glenske, K.; Wolf, V.; Fietz, D.; Mazurek, S.; Hanke, T.; Moritz, A.; Arnhold, S.; Wenisch, S.
Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium
with special regard to connexin 43. Ann. Anat. Anat. Anz. 2017, 209, 18–24. [CrossRef] [PubMed]

99. Ye, J.; Ai, W.; Zhang, F.; Zhu, X.; Shu, G.; Wang, L.; Gao, P.; Xi, Q.; Zhang, Y.; Jiang, Q. Enhanced proliferation
of porcine bone marrow mesenchymal stem cells induced by extracellular calcium is associated with the
activation of the calcium-sensing receptor and ERK signaling pathway. Stem Cell Int. 2016, 2016. [CrossRef]
[PubMed]

100. Huang, Z.; Cheng, S.-L.; Slatopolsky, E. Sustained activation of the extracellular signal-regulated kinase
pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J. Biol. Chem.
2001, 276, 21351–21358. [CrossRef] [PubMed]

101. Dvorak, M.M.; Siddiqua, A.; Ward, D.T.; Carter, D.H.; Dallas, S.L.; Nemeth, E.F.; Riccardi, D. Physiological
changes in extracellular calcium concentration directly control osteoblast function in the absence of
calciotropic hormones. Proc. Natl. Acad. Sci. USA 2004, 101, 5140–5145. [CrossRef] [PubMed]

102. Brown, E.M.; MacLeod, R.J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev.
2001, 81, 239–297. [CrossRef] [PubMed]

103. Olszak, I.T.; Poznansky, M.C.; Evans, R.H.; Olson, D.; Kos, C.; Pollak, M.R.; Brown, E.M.; Scadden, D.T.
Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Investig.
2000, 105, 1299–1305. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s002239900645
http://www.ncbi.nlm.nih.gov/pubmed/10341027
http://dx.doi.org/10.1172/JCI113417
http://www.ncbi.nlm.nih.gov/pubmed/3350964
http://dx.doi.org/10.1007/s12011-012-9523-5
http://www.ncbi.nlm.nih.gov/pubmed/23065425
http://dx.doi.org/10.1007/BF01351843
http://www.ncbi.nlm.nih.gov/pubmed/8287325
http://dx.doi.org/10.1007/s12011-010-8861-4
http://www.ncbi.nlm.nih.gov/pubmed/20886309
http://dx.doi.org/10.1016/j.actbio.2013.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24231047
http://dx.doi.org/10.1016/j.dental.2015.01.004
http://www.ncbi.nlm.nih.gov/pubmed/25662204
http://dx.doi.org/10.3390/ma10040334
http://www.ncbi.nlm.nih.gov/pubmed/28772697
http://dx.doi.org/10.1016/j.actbio.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24525034
http://dx.doi.org/10.1016/0014-4827(88)90191-7
http://dx.doi.org/10.1016/j.biomaterials.2005.01.006
http://www.ncbi.nlm.nih.gov/pubmed/15763264
http://dx.doi.org/10.1016/j.biomaterials.2012.01.020
http://www.ncbi.nlm.nih.gov/pubmed/22285104
http://dx.doi.org/10.1088/1748-605X/aa6e29
http://www.ncbi.nlm.nih.gov/pubmed/28425919
http://dx.doi.org/10.1016/j.aanat.2016.09.005
http://www.ncbi.nlm.nih.gov/pubmed/27746221
http://dx.doi.org/10.1155/2016/6570671
http://www.ncbi.nlm.nih.gov/pubmed/27123007
http://dx.doi.org/10.1074/jbc.M010921200
http://www.ncbi.nlm.nih.gov/pubmed/11292824
http://dx.doi.org/10.1073/pnas.0306141101
http://www.ncbi.nlm.nih.gov/pubmed/15051872
http://dx.doi.org/10.1152/physrev.2001.81.1.239
http://www.ncbi.nlm.nih.gov/pubmed/11152759
http://dx.doi.org/10.1172/JCI9799
http://www.ncbi.nlm.nih.gov/pubmed/10792005


Int. J. Mol. Sci. 2018, 19, 826 23 of 32

104. Glenske, K.; Wagner, A.-S.; Hanke, T.; Cavalcanti-Adam, E.A.; Heinemann, S.; Heinemann, C.; Kruppke, B.;
Arnhold, S.; Moritz, A.; Schwab, E.H. Bioactivity of xerogels as modulators of osteoclastogenesis mediated
by connexin 43. Biomaterials 2014, 35, 1487–1495. [CrossRef] [PubMed]

105. Yamauchi, M.; Yamaguchi, T.; Kaji, H.; Sugimoto, T.; Chihara, K. Involvement of calcium-sensing receptor in
osteoblastic differentiation of mouse MC3T3-E1 cells. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E608–E616.
[CrossRef] [PubMed]

106. Hu, F.; Pan, L.; Zhang, K.; Xing, F.; Wang, X.; Lee, I.; Zhang, X.; Xu, J. Elevation of extracellular Ca2+ induces
store-operated calcium entry via calcium-sensing receptors: A pathway contributes to the proliferation of
osteoblasts. PLoS ONE 2014, 9, e107217. [CrossRef] [PubMed]

107. Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.
Cell Res. 2002, 12, 9. [CrossRef] [PubMed]

108. Parekh, A.B.; Putney, J.W., Jr. Store-operated calcium channels. Physiol. Rev. 2005, 85, 757–810. [CrossRef]
[PubMed]

109. Wen, L.; Wang, Y.; Wang, H.; Kong, L.; Zhang, L.; Chen, X.; Ding, Y. L-type calcium channels play a
crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells.
Biochem. Biophys. Res. Commun. 2012, 424, 439–445. [CrossRef] [PubMed]

110. Heinemann, S.; Heinemann, C.; Wenisch, S.; Alt, V.; Worch, H.; Hanke, T. Calcium phosphate phases
integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate
the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013, 9, 4878–4888. [CrossRef]
[PubMed]

111. Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products
from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [CrossRef] [PubMed]

112. Beck, G.R. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J. Cell. Biochem. 2003,
90, 234–243. [CrossRef] [PubMed]

113. Shih, Y.-R.V.; Hwang, Y.; Phadke, A.; Kang, H.; Hwang, N.S.; Caro, E.J.; Nguyen, S.; Siu, M.; Theodorakis, E.A.;
Gianneschi, N.C.; et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells
through adenosine signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 990–995. [CrossRef] [PubMed]

114. Hoffman, N.J.; Penque, B.A.; Habegger, K.M.; Sealls, W.; Tackett, L.; Elmendorf, J.S. Chromium enhances
insulin responsiveness via AMPK. J. Nutr. Biochem. 2014, 25, 565–572. [CrossRef] [PubMed]

115. EFSA. Scientific Opinion on Dietary Reference Values for Chromium. EFSA J. 2014, 12, 3845. [CrossRef]
116. Raghunathan, V.K.; Tettey, J.N.; Ellis, E.M.; Grant, M.H. Comparative chronic in vitro toxicity of hexavalent

chromium to osteoblasts and monocytes. J. Biomed. Mater. Res. Part A 2009, 88, 543–550. [CrossRef] [PubMed]
117. Ning, J.; Henderson, C.; Grant, M. The cytotoxicity of chromium in osteoblasts: Effects on macromolecular

synthesis. J. Mater. Sci. Mater. Med. 2002, 13, 47–52. [CrossRef] [PubMed]
118. Schröck, K.; Lutz, J.; Mändl, S.; Hacker, M.C.; Kamprad, M.; Schulz-Siegmund, M. Co(II)-mediated effects

of plain and plasma immersion ion implanted cobalt-chromium alloys on the osteogenic differentiation of
human mesenchymal stem cells. J. Orthop. Res. 2015, 33, 325–333. [CrossRef] [PubMed]

119. Drynda, S.; Drynda, A.; Kekow, J.; Lohmann, C. AB0074 Influence of Cobalt and Chromium ions on TGF-BETA
Expression and Mineralization of Bone Forming Cells IN-VITRO; BMJ Publishing Group Ltd.: London, UK, 2017.
[CrossRef]

120. Fan, W.; Crawford, R.; Xiao, Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated
bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 2010, 31, 3580–3589.
[CrossRef] [PubMed]

121. Yuan, Y.; Hilliard, G.; Ferguson, T.; Millhorn, D.E. Cobalt inhibits the interaction between hypoxia-inducible
factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α. J. Biol. Chem. 2003,
278, 15911–15916. [CrossRef] [PubMed]

122. Tanaka, T.; Kojima, I.; Ohse, T.; Ingelfinger, J.R.; Adler, S.; Fujita, T.; Nangaku, M. Cobalt promotes
angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model.
Lab. Investig. 2005, 85, 1292. [CrossRef] [PubMed]

123. Birgani, Z.T.; Fennema, E.; Gijbels, M.J.; de Boer, J.; van Blitterswijk, C.A.; Habibovic, P. Stimulatory effect of
cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular
model in goats. Acta Biomater. 2016, 36, 267–276. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.biomaterials.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24268200
http://dx.doi.org/10.1152/ajpendo.00229.2004
http://www.ncbi.nlm.nih.gov/pubmed/15547142
http://dx.doi.org/10.1371/journal.pone.0107217
http://www.ncbi.nlm.nih.gov/pubmed/25254954
http://dx.doi.org/10.1038/sj.cr.7290105
http://www.ncbi.nlm.nih.gov/pubmed/11942415
http://dx.doi.org/10.1152/physrev.00057.2003
http://www.ncbi.nlm.nih.gov/pubmed/15788710
http://dx.doi.org/10.1016/j.bbrc.2012.06.128
http://www.ncbi.nlm.nih.gov/pubmed/22771798
http://dx.doi.org/10.1016/j.actbio.2012.10.010
http://www.ncbi.nlm.nih.gov/pubmed/23072829
http://dx.doi.org/10.1016/j.biomaterials.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21292319
http://dx.doi.org/10.1002/jcb.10622
http://www.ncbi.nlm.nih.gov/pubmed/14505340
http://dx.doi.org/10.1073/pnas.1321717111
http://www.ncbi.nlm.nih.gov/pubmed/24395775
http://dx.doi.org/10.1016/j.jnutbio.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/24725432
http://dx.doi.org/10.2903/j.efsa.2014.3845
http://dx.doi.org/10.1002/jbm.a.31893
http://www.ncbi.nlm.nih.gov/pubmed/18306314
http://dx.doi.org/10.1023/A:1013630401959
http://www.ncbi.nlm.nih.gov/pubmed/15348204
http://dx.doi.org/10.1002/jor.22765
http://www.ncbi.nlm.nih.gov/pubmed/25469667
http://dx.doi.org/10.1136/annrheumdis-2017-eular.6218
http://dx.doi.org/10.1016/j.biomaterials.2010.01.083
http://www.ncbi.nlm.nih.gov/pubmed/20153522
http://dx.doi.org/10.1074/jbc.M300463200
http://www.ncbi.nlm.nih.gov/pubmed/12606543
http://dx.doi.org/10.1038/labinvest.3700328
http://www.ncbi.nlm.nih.gov/pubmed/16127428
http://dx.doi.org/10.1016/j.actbio.2016.03.031
http://www.ncbi.nlm.nih.gov/pubmed/27000550


Int. J. Mol. Sci. 2018, 19, 826 24 of 32
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