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Estimating the volume and age of water stored
in global lakes using a geo-statistical approach
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Lakes are key components of biogeochemical and ecological processes, thus knowledge about

their distribution, volume and residence time is crucial in understanding their properties and

interactions within the Earth system. However, global information is scarce and inconsistent

across spatial scales and regions. Here we develop a geo-statistical model to estimate the

volume of global lakes with a surface area of at least 10 ha based on the surrounding terrain

information. Our spatially resolved database shows 1.42 million individual polygons of natural

lakes with a total surface area of 2.67� 106 km2 (1.8% of global land area), a total shoreline

length of 7.2� 106 km (about four times longer than the world’s ocean coastline) and a total

volume of 181.9� 103 km3 (0.8% of total global non-frozen terrestrial water stocks). We also

compute mean and median hydraulic residence times for all lakes to be 1,834 days and 456

days, respectively.

DOI: 10.1038/ncomms13603 OPEN

1 Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9. w Present address: School of Aquatic and
Fishery Sciences, 1122 Boat Street NE, Box 355020, University of Washington, Seattle, Washington 98195-5020, USA. Correspondence and requests for
materials should be addressed to B.L. (email: bernhard.lehner@mcgill.ca).

NATURE COMMUNICATIONS | 7:13603 | DOI: 10.1038/ncomms13603 | www.nature.com/naturecommunications 1

mailto:bernhard.lehner@mcgill.ca
http://www.nature.com/naturecommunications


T
he role of lakes in the global hydrological and
biogeochemical cycles is intimately tied to their geometric
characteristics of surface area, depth, stored water volume

and shoreline length. In addition, the rate of water flowing into
and out of lakes depends on their location within the river
network, which then defines their hydraulic residence
(or turnover) time, that is, the average time that water spends
in a lake. Spatially explicit knowledge of all these parameters is
crucial for understanding and modelling a wide variety of
Earth system processes and interactions with the environment,
including hydrological budgets1; carbon or methane exchange
rates2; sediment trapping3; heat fluxes and coupled weather and
climate effects4; dissolved silica retention5; the cycling of
pollutants and nutrients6; as well as associated ecological
processes such as lake productivity7; species richness8; food
chain dynamics9; and inland fishery yields10.

In the absence of globally consistent data describing the
multitude of lake parameters, statistical models have been
developed that use readily available lake characteristics such as
surface area or perimeter as proxies for interpolating large-scale
processes11, yet these simplifications pose critical limitations.
For instance, despite recent efforts to revise global carbon models,
most estimates of fluxes in and out of inland waters default to
multiplying an average flux by the total surface area of lakes in a
region12 resulting in wide confidence intervals and high
uncertainties.

Data on the volume and depth of lakes on a global scale
are scarce and inconsistent. Previous estimates of the total
global volume of water contained in lakes ranged from 166 to
275� 103 km3 (refs 13–16), with more recent figures converging
to 176–180� 103 km3 (refs 17–19). However, these estimates are
not spatially explicit, are based on incomplete data sets of lake
distribution or use simple extrapolation methods that rely on a
limited set of variables. Moreover, our attention typically focuses
on large lakes, resulting in the oversight of small lentic water
bodies when analysing continental- to global-scale systems.
Various authors showed the importance of small lakes for
processes ranging from evaporation to sediment trapping,
greenhouse gas emissions, catchment interactions, lake mixing,
diagenetic reactions or aquatic habitat conservation20–23. In
particular, while large lakes might dominate processes driven by
volume or surface area due to their prevalence at a global scale,
small lakes contribute more to the total aquatic–terrestrial
interface than large lakes24. It remains inconclusive how
different size classes might relate in terms of residence time.

The gap in explicit lake volume data is largely due to the fact
that our ability to produce bathymetric maps from limnological
surveys is severely constrained by a combination of both technical
and operational challenges and the sheer amount of water
bodies on Earth. Despite increasingly precise and accurate geo-
positioning technologies, satellite imagery and computational
cartography25, the bathymetric map creation process through
acoustic profiling and interpolation remains a time- and cost-
intensive method, as it requires extensive field work by qualified
technicians followed by lengthy data analyses. Furthermore,
while optical remote sensing methods have been widely used
for bathymetric mapping of coastal benthic habitats for
several decades26 these techniques are still limited to shallow
environments and favourable water conditions27.

In this article, we use a literature review in combination with a
novel geo-statistical model to produce a consistent estimate of
lake volumes at the global scale for virtually all lakes with a
surface area of at least 10 ha (0.10 km2). The main assumption of
this model is that the land surface topography surrounding a
given lake can be used as a predictor of lake bathymetry. The
model is trained and validated on 12,150 existing records of lake

depth and then applied to a new global data set—termed
HydroLAKES—that was compiled as part of this project and
contains the shoreline polygons of 1.43 million individual lakes
and reservoirs. Hydraulic residence time, that is, the average age
of lake water, is estimated for each lake using discharge estimates
derived from a global hydrological model at high spatial
resolution. It should be noted that throughout this article, every
effort is made to distinguish ‘natural lakes’ from ‘human-made
reservoirs’; yet the general term ‘lake’ is used in all instances
where this distinction is considered non-critical.

Results
Global lake abundance and characteristics. HydroLAKES
distinguishes 1.43 million individual polygons of natural lakes
and human-made reservoirs with a surface area of at least 10 ha.
Natural lakes cover a total of 2.67� 106 km2 or 1.8% of global
land area (Table 1), while large human-made reservoirs (that is,
all reservoir polygons Z10 ha from the Global Reservoir and
Dam database28) add another 0.26� 106 km2 or 0.2% of global
land area.

The shoreline length of all natural lake polygons combined
stretches for a total of 7.2� 106 km, plus another 0.5� 106 km for
large reservoirs. Given the observation that shoreline length is
dominated by smaller lake size classes (Table 1; also confirmed
by Winslow et al.24) we assume that these estimates are
significantly underestimating global shoreline length as lakes
below 10 ha are not included. Also, our results depend on map
scale (in the case of HydroLAKES 1:100,000 and coarser; see
Methods) that defines how finely the shorelines are resolved, and it
has been observed that a doubling of measurement resolution will
cause shoreline length to increase by 15% (ref. 24). In comparison,
the global ocean coastline length has been calculated to measure
1.6� 106 km at a consistent map scale of 1:250,000 (ref. 29). Thus,
the shoreline length of lakes and reservoirs Z10 ha is estimated to
be roughly four times longer than the global ocean shoreline, even
if scaling effects are accounted for.

According to our study, all natural lakes of at least 10 ha in size
contain a total of 181.9� 103 km3 of water, representing 0.8%
of total global non-frozen terrestrial water stocks, which is
equivalent to 1.7% of all the predominantly fresh groundwater on
Earth19. When large human-made reservoirs are added, the
storage volume increases to 187.9� 103 km3. Of this combined
amount, 40.2% is contained in the Caspian Sea and another
33.2% in the next four largest lakes, while total reservoir storage
represents 3.2% (Fig. 1 and Table 1). If spread over the world’s
landmass, the total water volume would form a layer B1.26 m in
depth, representing 1.7 times the amount of precipitation over
land each year30. While the mean depth of all lakes, computed as
the sum of lake depths divided by the total number of lakes,
is only 3.9 m due to the high number of small lakes, the global
area-weighted mean depth, calculated as the total volume divided
by the total area of all lakes and reservoirs, is estimated to be
64.2 m. Grouping all natural lakes into bins using logarithmic
area and volume size classes (Table 1 and Fig. 2a, respectively)
shows that the largest lakes contribute the most to global lake
volume. In contrast, no clear size pattern emerges for the
contribution to total surface area.

As has been proposed in the literature28,31, we observe a
roughly 10-fold increase in the number of natural lakes from one
logarithmic size class (using surface area) to the next smaller one,
confirming that the global distribution of natural lakes and their
sizes is scale-invariant down to at least 0.1 km2 for surface area,
and can be approximated with a Pareto distribution model
(Fig. 3). Using this model to extrapolate the next smaller size class
of lakes, we estimate that there are 21.2 million natural lakes with
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a surface area of at least 0.01 km2 (1 ha), representing a total of
3.23� 106 km2 or 2.2% of global land area. Similarly, we
extrapolate that there are 25.4 million natural lakes with a
volume of at least 0.00001 km3 (the equivalent of a lake with an
area of 0.01 km2 and a depth of 1 m), storing a total water volume
of 182.9� 103 km3.

In terms of regional distribution, areas with high lake densities
are nearly all encompassed within the extent of the last glacial
maximum in Northern Canada and Scandinavia as well as in

some areas of Alaska and Russia (Fig. 4a), with some smaller
hotspots found in the alpine zones of the Andes, Rockies and
Himalayas. Divergent plate boundaries with deep tectonic lakes
such as observed in the African Rift Valley, as well as large
floodplains such as in the Amazon Basin or in coastal China are
also places where lakes are prominent features of the landscape.
The global distribution of lake volume (not shown) follows the
same general trends as lake area, though alpine zones and rift
valleys with deep lakes tend to hold more water than areas where

Table 1 | Distribution and morphometric characteristics of lakes worldwide.*

Spatial unit Number
of lakes

(103)

Area
(103 km2)

Limnicity
(% lake

area)

Shoreline
length

(103 km)

Average
shoreline

developmentw

Volume
(103 km3)

Average
depth

(m)

Residence
time (years)

Mean Median

Size class (km2)
0.1–1 1,241.2 348.4 0.2 3,637.6 1.6 1.3 3.5 4.4 1.2
1–10 165.1 411.0 0.3 2,022.3 2.2 2.5 5.4 8.2 1.4
10–100 13.4 331.6 0.2 862.4 3.7 3.8 10.4 17.5 2.0
100–1,000 1.22 313.5 0.2 412.3 6.1 6.5 19.6 66.1 4.1
1,000–10,000 0.115 313.3 0.2 158.5 7.8 10.0 32.3 81.4 4.2
410,000z 0.018 959.1 0.6 79.0 5.8 157.8 139.6 102.4 12.3

World
Natural lakes Z10 ha 1,421.0 2,676.8 1.8 7,172.2 1.7 181.9 3.8 5.0 1.2
Incl. large reservoirsy 1,427.7 2,926.7 2.0 7,661.9 1.7 187.9 3.9 5.0 1.2
Natural lakes Z1 ha 21,152.4|| 3232.2 2.2 NA NA 182.9z NA NA NA

Continent
North Americaww 991.9 1,229.5 5.1 4,990.9 1.8 36.6 3.7 4.5 1.4
Europe# 280.7 781.2 3.4 1,264.5 1.5 103.8 4.6 7.4 1.6
Asia** 66.2 274.8 0.9 391.7 1.6 7.3 2.9 5.9 0.3
South America 53.8 103.7 0.6 296.7 1.6 3.1 3.3 1.6 0.2
Africa 15.2 232.0 0.8 120.1 1.7 30.6 2.5 3.5 0.3
Oceaniazz 13.2 55.7 0.7 108.3 1.6 0.4 2.8 7.7 0.8

Countries with most lakesyy

Canada 879.8 856.5 8.6 4,498.1 1.8 12.6 3.7 4.6 1.5
Russia 201.2 667.4 4.0 832.9 1.4 102.2 4.5 9.5 2.5
USA 102.5 340.3 3.6 427.1 1.6 23.5 3.4 3.3 0.8
China 23.8 81.0 0.9 144.7 1.6 1.0 3.4 6.5 0.4
Sweden 22.6 34.3 7.7 119.9 1.6 0.5 4.8 2.7 1.1
Brazil 20.9 31.4 0.4 122.3 1.8 0.2 2.5 0.6 0.1
Norway 20.0 13.9 4.3 86.7 1.7 0.3 7.0 2.1 0.8
Argentina 13.6 27.9 1.0 67.7 1.5 0.6 2.2 3.6 0.7
Kazakhstan 12.4 61.9 2.3 84.6 1.5 0.4 1.9 16.7 3.5
Australia 11.4 49.5 0.6 92.8 1.6 0.1 2.3 9.0 1.2

Largest lakes by volume
Caspian Sea NA 377.0 NA 15.8 7.3 75.6 201 295.4 NA
Lake Baikal NA 32.0 NA 2.7 4.2 23.6 739 374.6 NA
Lake Tanganyika NA 32.8 NA 2.1 3.3 18.9 577 402.6 NA
Lake Superior NA 81.8 NA 5.2 5.2 12.0 147 132.5 NA
Lake Malawi NA 29.5 NA 1.7 2.8 7.7 261 218.5 NA
Lake Michigan NA 57.7 NA 2.9 3.4 4.9 84 82.0 NA
Lake Huron NA 59.4 NA 8.9 10.3 3.6 60 12.3 NA
Lake Victoria NA 67.2 NA 7.4 8.1 2.6 41 50.4 NA
Great Bear Lake NA 30.5 NA 5.3 8.6 2.2 72 130.3 NA
Kara-Bogaz-Gol NA 18.7 NA 1.0 2.0 1.9 101 NA NA

NA, not applicable.
*Unless noted otherwise, data refer to all natural lakes Z 10 ha (0.1 km2) contained in the HydroLAKES database including regulated (natural) lakes and small unreported reservoirs.
wShoreline development measures the degree of deviation of a lake’s surface shape from a circle; a value of 1 implies a perfectly circular shape and higher values indicate increased shoreline sinuosity.
zIncludes all lakes 10,000–100,000 km2 and Caspian Sea.
yAll reservoir polygons Z10 ha from GRanD database28.
||Extrapolated using a Pareto distribution model for lakes 0.01–0.35 km2.
zExtrapolated using a Pareto distribution model for lakes 0.00001–0.0005 km3.
#Includes all of Russia.
**Includes Middle East and Turkey.
wwIncludes Mexico, the Caribbean and Central America.
zzIncludes Australia, New Zealand, Micronesia, Melanesia and Polynesia.
yyInternational lakes are assigned to only one country based on the location of the lake outlet; the Caspian Sea is assigned to Russia (and thus Europe).
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shallower lakes were formed by continental glaciers (for example,
on the Canadian Shield) or by fluviatile processes (see lake depth
distribution on Fig. 4b).

Hydraulic residence times. The mean lake residence time com-
puted for all natural lakes with a surface area of at least 10 ha,

calculated as the sum of individual lake residence times divided
by the total number of lakes, is 1,834 days (about 5.0 years), while
the median is 456 days. The discrepancy between these statistics
stems from the skewed frequency distribution of residence times,
which is dominated by smaller lakes with residence times below
the average (Fig. 2b). Some lakes show much longer residence
times; this generally applies to large lakes located in areas with
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Figure 1 | Global distribution of water volume stored in lakes and reservoirs with a surface area of at least 10 ha. Total volume is 187.9� 103 km3.

Data for large lakes are empirical, while volumes of medium and small lakes are modelled. Data for large and medium human-made reservoirs are from the

Global Reservoir and Dam (GRanD) database28. Distinction between fresh and saline water is only available in the empirical data for large lakes.
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little discharge or small catchment areas such as Lake Baikal
with an estimated residence time of 375 years (reported as
321 years32). Others display very short residence times; this may
indicate lakes situated within a larger river channel that are
flushed rather rapidly by river discharge; but may also include
some errors due to incorrect co-registration of lake outfalls to the
river network in our model (such as small oxbow lakes being
assigned to the main-stem river).

Overall, we find a trend of shorter residence times for smaller
lakes and longer residence times for larger lakes, yet there is
significant scatter among this result, and long residence times can
occur throughout the entire lake size spectrum. Finally, the
average age of all lake water, calculated as the volume-weighted
average of all residence times, is 255 years. This estimate,
however, is strongly dominated by the influence of the most
voluminous lakes (Table 1).

Discussion
This study investigated the relationship between lake geometry,
surrounding landscape characteristics and lake bathymetry. Our
geo-statistical model confirmed earlier studies in that, beyond
lake surface area, the variables with the most predictive power are
based on expressions of the variation in elevation around the
lakes. We found that the depth of lakes is generally best reflected
by the slope of their immediate surroundings (that is, within
100 m of the shoreline), which is in agreement with earlier
studies, such as that of Sobek et al.33 who used a similar approach
based on the maximum slope within 50 m of the shoreline.
Despite its larger extent, the statistical performance of our
global model is comparable to that of regional studies, including a
recent model developed for 55,000 lakes in Quebec, Canada34

(see Methods for more model comparisons).
The limited amount of globally consistent data on the

geological age of the landscape and the various morphological
processes involved in shaping lakes constrained the ability of our
model to differentiate between different lake types. This lack of
data places an inherent limit on the degree of variance in lake
depths that can be explained. There is an exceptional diversity of
lakes in terms of formation processes, including fluvial, aeolian,
landslide or volcanic origins, which highly influence their

morphometry35,36. Ideally, each of these types should be treated
by customized sub-models. Furthermore, different bathymetry
may be due to differential rates of sedimentation, which in turn
depend on variations in geology, climate and vegetation in the
associated upstream catchment.

As with any model, errors in the underpinning data sets
represent a substantial source of uncertainty (Supplementary
Discussion). Accordingly, identifying whether the over- and
underestimations found in the model predictions are due to
reference data errors or modelling errors is an arduous task.
Given the uncertainties, we caution from interpreting volume
estimates for single lakes, as individual errors can be very large.
Rather, our results are designed for use in regional to global scale
studies, where errors are reduced due to data aggregation.
We believe that progress in the resolution and accuracy of
elevation data set holds promise for the improvement of future
global lake depth estimates.

Previous estimates of the number and total surface area of lakes
have varied widely (Fig. 5 and Supplementary Table 1), with total
surface area ranging from about 2 to 5 million km2. Some of this
variation can be attributed to different definitions and inclusion
or exclusion of certain lake sizes or types (for example, fresh
versus saline or permanent versus intermittent). Our new
estimate of 2.67� 106 km2 for 1.42 million natural lakes
Z10 ha, and 3.23� 106 km2 for 21.2 million natural lakes
Z1 ha, respectively, are generally exceeding older estimates
indicating the comprehensiveness of HydroLAKES. At the same
time our results stay below some higher estimates of the past
decade31,37, which we believe is due to our enhanced ability to
differentiate natural lakes from reservoirs, as well as variations in
the statistical extrapolation of smaller lakes.

More recently, Verpoorter et al.38 proposed much higher
global estimates of lakes and lake area (Fig. 5 and Supplementary
Table 1) and attributed the soaring number of small lakes to
improvements in the resolution of satellite sensors. In this regard,
however, a significant caveat lies in the difficulty to distinguish
lakes from other open water features including rivers, reservoirs
and inundated floodplains or wetlands. Producing ‘lake-only’ data
sets typically requires extensive supervised classification and
manual adjustments39. As HydroLAKES underwent thorough
manual corrections to detect and remove fluvial features as well as
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large reservoirs (see Methods), our reversal to lower ‘lake-only’
numbers may indicate a possible inflation of global lake estimates
through remote sensing imagery due to misclassifications or
differences in defining lakes versus rivers and wetlands. Also,
as opposed to the polygon structure of HydroLAKES, spectral
classification of raster-based remote sensing data38,40 cannot
easily distinguish individual functional water bodies, and is
therefore better suited to represent continuous surface water
masks rather than discrete objects.

Furthermore, current remote sensing data sets mostly represent
a snapshot of surface water on Earth at a given time, and thus
may fail to consistently capture intermittent water bodies or
historic maximum water extents. In contrast, topographic
maps often integrate knowledge over much longer time
periods to delimit lakes. However, this apparent limitation of
remote sensing imagery also provides an opportunity for future

advancements as it allows for the dynamic monitoring of
water extent and storage variations over time using
multi-temporal data sets41,42.

Our total volume estimate for natural lakes Z10 ha of
181.9� 103 km3 is similar to those found in the literature of the
past decades17–19 (Supplementary Table 1). Estimates for the
largest global lakes seem particularly robust. For example, our
data matches the estimate of Tamrazyan16 of 160,600 km3 for
lakes over 6,000 km2 nearly exactly. Without the 10 most
voluminous lakes, we estimate that the remaining world lakes
contain 28,991 km3 of water, while Shiklomanov and Rodda19,
and Ryanzhin et al.18 estimated 23,265 and 26,465 km3,
respectively. It remains important to note, however, that we
rely on depth estimates from literature for all lakes larger than
500 km2 (see Methods), thus the amount of modelled lake volume
accounts for only 12,224 km3, or about 6.5% of total global lake
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volume. Also, our volume estimate does not take seasonal
fluctuations into account.

This study provides the first global data set where each lake is
individually assigned a residence time, which is a required metric
for understanding and managing lentic ecosystems and the effect
of anthropogenic disturbance on inland waters in general43.
Despite the mentioned limitations and errors, we believe that our
estimates provide a reasonable first-order proxy of residence
times for regional assessments, yet require further validation and
adjustment when investigating individual lakes. Our new finding
of 5 years for the mean global hydraulic residence time of all lakes
Z10 ha falls within the range provided by L’vovich14 who
calculated the ‘total rate of exchange of surface water on land’ as 7
years. On the other hand, Korzoun et al.44 approximated global
lake residence time to be 17 years in their widely cited work19,45.
It should be noted, however, that these previous estimates only
relate aggregated global or regional freshwater stocks and fluxes
and are thus conceptually different to our new method of
calculating lake-specific residence times by taking the actual
location of each lake within the drainage network into account.
Our lower estimate is evidence of the fact that the surface–water–
land interface is dominated by lakes with smaller volumes (see
Table 1), resulting in a relatively faster cycling of water through
these systems than if they were lumped and related to regional
flows.

In conclusion, we believe that the findings of this study support
an enhanced understanding of the role of lakes in the Earth

system by defining a robust and reliable global database of
lake distribution and characterization. For the field of global
limnology to achieve its full potential, data on lake area, volume
and depth are ‘of rudimentary importance’46. The model
presented here aims to be a stepping-stone towards providing
this information. It relies on estimating lake bathymetry based on
literature as well as a novel statistical approach that was derived
by combining and analysing numerous existing lake data sets in
conjunction with surrounding topography data. Despite these
advancements, continued efforts to conduct actual bathymetric
measurements remain the most vital component for future
improvements in global lake volume estimation.

The model results presented here contribute to the Hydro-
LAKES database, a spatially resolved object-oriented baseline data
set where each uniquely identified lake polygon comes with a
suite of morphometric attributes: surface area, perimeter, mean
depth, volume and residence time. As every lake polygon is linked
via its pour point to the river network of the HydroSHEDS
database47, a variety of additional characteristics are readily
available for each lake’s catchment area, such as average
discharge, or can be derived by incorporating auxiliary data
layers, such as landscape characteristics or population statistics.

Beyond providing a mapping repository, HydroLAKES also
offers a structured framework to which additional information
can be added in support of subsequent analyses. We consider it
particularly promising to combine the object-oriented features
and current attributes of the HydroLAKES database with
ecological information such as species and biodiversity distribu-
tions and/or with the dynamic capabilities of multi-temporal
remote sensing imagery to monitor seasonal variations. These
combinations would offer a new perspective on eco-hydrological
assessments regarding the state and future of global lakes and
could establish a baseline for lake monitoring as required by
global inland water ecological research programs48. We hope that
HydroLAKES will promote this endeavor as a new source of
information for scientists, managers and decision-makers
to be used in biogeochemical models, river network routing,
environmental planning or ecological applications at the
global scale.

Methods
Topographic data. All topographic calculations were performed in a Geographic
Information System (GIS) environment on the elevation data provided by
EarthEnv-DEM90 (ref. 49), a composite global 3 arc-second (B90 m) digital
elevation model spanning from 60� S to 83� N. Slope data were computed based on
Horn’s method50 with latitudinal corrections for the distortion in the XY spacing of
geographic coordinates by approximating the geodesic distance between cell
centres.

Empirical data on lake depths and volumes. Bathymetric and/or depth data for
12,150 natural lakes were obtained from 14 existing national and international data
sets (Supplementary Table 2), the majority being from the USA, Canada and
Europe; and own compilations based on about 40 peer-reviewed articles. Data that
were originally provided as bathymetric lines or in raster format were converted
into volumetric and depth estimates using 3D GIS procedures. Supplementary
Fig. 1 provides a map overview of the spatial distribution of the reference data.

Of the 12,150 lake records, 7,049 were used as training data for developing the
model of lake depth, and 5,101 were used as independent validation data. To
achieve the best possible model performance, higher quality data was preferred for
model training while the validation data were either of limited reliability or from
regions that were already well represented in the training data set. In particular,
we refrained from training our model with data from the Global Lake Database
(GLDB)51, a commonly applied global lake depth data set for parameterization in
numerical weather prediction and climate models, as only few GLDB depth
estimates contain a reference; we therefore perceived its quality as not consistent
and difficult to judge. Nevertheless, we included GLDB as an independent
validation data set because of its ability to cover lakes outside of our training data
set, serving as a benchmark to test model performance in untrained regions.

The Svenskt Vattenarkiv (SVAR) from the Swedish Meteorological and
Hydrological Institute was split in halves to serve for both training and validation
purposes by random sampling from logarithmic lake size classes (0.1–1, 1–10,
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10–100 and 100–500 km2). In cases of overlap between SVAR and GLDB, priority
was given to SVAR due to its higher data quality, and the corresponding record of
GLDB was removed. Finally, the Quebec data set by Heathcote et al.34 was used as
independent validation data as it provided similar lake types as the Ontario training
data set. The inclusion of extensive training and validation data from British
Columbia, Ontario, Quebec and Sweden was particularly important to adequately
account for lakes in boreal regions, which represent the largest portion of
world lakes.

In addition, large lakes—here defined as those over 500 km2—were given special
attention as their geomorphologic characteristics, including depth, are often
determined by highly unique and complex interactions of different formation
processes and geologic constraints. For these 347 lakes, we refrained from
modelling their volume and instead used empirical mean depth estimates from
about 170 additional sources, the great majority being peer-reviewed or
governmental and institutional documents including a global compilation by
Herdendorf52. Finally, the storage capacities of 6,797 large reservoirs or regulated
lakes were added mostly from the Global Reservoir and Dam (GRanD) database
(version 1.1)28.

Discharge data. To compute the individual hydraulic residence time of each lake,
we used estimates of long-term (1971–2000) average ‘naturalized’ discharge
provided by the state-of-the-art global integrated water model WaterGAP (model
version 2.2 as of 2014)53. The data were spatially downscaled from their original 0.5
degree pixel resolution (B50 km at the equator) to the 15 arc-second (B500 m)
resolution of the global HydroSHEDS river network47 using geo-statistical
approaches54.

HydroLAKES polygon layer. To apply the lake volume model, a global database of
all lakes with a surface area of at least 10 ha was generated, comprising the
shoreline polygons of 1,427,688 individual water bodies. This novel data set aims to
be as comprehensive and consistent as possible at a global scale and contains both
freshwater and saline lakes, including the Caspian Sea, as well as human-made
reservoirs and regulated lakes. We created the HydroLAKES database by
compiling, correcting and unifying several near-global and regional data sets
(Supplementary Table 3), foremost the SRTM Water Body Data55 for regions from
56� S to 60� N, and CanVec56 for most North American lakes.

If the original data were provided in raster format, they were first vectorized
using boundary smoothing procedures to create polygons. Other main processing
steps in the creation of HydroLAKES included manual identification and removal
of river and wetland polygons; removal of duplicates and overlapping polygons;
dissolving of segmented polygons into individual lake entities; correction of corrupt
or incorrect polygon geometry; removal of small islands (o3 ha) within lakes;
smoothing of water body shorelines to reduce inconsistencies between data sets of
different initial resolution; and establishing a 10 ha (0.10 km2) cut-off based on lake
surface area. A more detailed description of the production steps is provided in a
technical documentation that is distributed together with the database.

The resolution of the underpinning source data ranged from 1:24,000 to 1:1
million for the data in vector format, and from 30 to 250 m pixels for the data in
raster format. Due to these inconsistencies in scale and the various polygon
transformations, including smoothing and generalization steps during the map
consolidation process, the resulting resolution of the global HydroLAKES database
cannot be strictly defined. However, regional comparisons with maps at a variety of
known resolutions, as well as tests using shoreline scaling laws24 suggest the
following scales as best approximation: about 1:100,000 for Canada and Alaska
(that is, accounting for two thirds of global lakes); about 1:250,000 for Europe and
all areas below 60� N outside of Canada (that is, accounting for most of the global
landmass); and about 1:1 million for the remaining areas (that is, northern Russia
and Greenland). Therefore, the resulting map scale is estimated to be between
1:100,000 and 1:250,000 for most lakes globally, with some coarser ones at
1:1 million.

A spatial co-registration between HydroLAKES and the river network of the
HydroSHEDS database47 was established by linking each lake to the most
downstream river pixel that drains the lake. This pour point is typically near the
lake’s shoreline but can also fall inside a polygon for terminal lakes in endorheic
basins. HydroLAKES was also combined with the GRanD database28 to identify
and flag 6,797 polygons as large reservoirs or regulated lakes.

Topographic lake depth. Before applying geo-statistical models, we investigated
the deterministic estimation of lake volumes using geospatial tools to explicitly
simulate the bathymetry inside each lake (Supplementary Fig. 2a). The underlying
assumption of this approach is that a lake’s bathymetry is typically formed by the
same geophysical processes as the surrounding landscape36 and that therefore the
terrain slope around a lake can be extrapolated into the lake to represent its shape
(Supplementary Fig. 2b). Each lake pixel’s depth can then be calculated as the
product of the tangent of the slope and the distance from the shore. In the simplest
case, this can be achieved through linear expansion of the slope into the middle of
the lake. In reality, however, the bottom of many lakes tends to flatten towards the
centre to form a bowl-like shape due to the accumulation of sediments. This can be
approximated with more advanced extrapolation or splining techniques. We tested

a variety of GIS-based methods including power functions where depth was
derived as [(distance from shore)x � tan(slope)] using values of 0.90, 0.95 and
0.97 for the exponent x.

Furthermore, we compared different approaches on how to sample and
allocate the available shoreline slope values, following two basic concepts
(Supplementary Fig. 2c). In the first concept, each pixel in the lake is assigned the
slope value of the closest pixel on shore. In the second concept, all pixels in the lake
are assigned the average slope value of all pixels within a given distance around the
lake. While the former approach is more spatially explicit by incorporating local
terrain variations as well as the geometric shape of the water body, the latter
characterizes the landscape in a more general way with a single slope proxy
representing the surrounding topography. For the first approach, we controlled for
potential outliers and data artefacts that can affect local slope calculations by
applying smoothing filters; that is, we calculated the mean slope within a 3� 3,
5� 5 and 7� 7 neighbourhood and ultimately selected the 3� 3 kernel. For the
second approach, we tested a variety of different buffer distances around the lake,
ranging from a single pixel width to 1,000 m. Finally, all pixel depths of a lake were
averaged to calculate the mean ‘topographic depth’ (Dt) per lake.

To constrain computing efforts, we conducted initial tests to identify the best
method of determining Dt using empirical reference depth data for 173 European
lakes located in a variety of geomorphologic settings, mostly clustered in the Baltic
countries, the Alps and Ireland. Comparisons between different extrapolation
methods and settings were performed through visual examination of the data as
well as goodness-of-fit tests. Although the various models performed differently for
the test regions, the gains in predictive power from applying different extrapolation
functions and settings did not follow a clear pattern. Thus we selected the simplest
approach of linearly extending the slope of the closest shoreline pixel to the centre
of the lake and applied this method to all 7,049 reference lakes of the training data
set to estimate their mean topographic depth.

Supplementary Fig. 3 shows the resulting scatterplot between predicted and
reference mean depths for different regions. While we observe a good overall trend,
there is also a clear tendency in the model to overestimate lake depth. We believe
that at least part of this error can be explained by our neglect to represent
sedimentation effects through adjusting (flattening) of the simulated lake bottom.
However, as global sedimentation rates are not readily available, we refrained from
further investigating deterministic or region-specific solutions and instead
continued to use ‘topographic depth’ only as a predictor variable within
statistical models.

Geo-statistical model development. Most statistical models that aim to predict
lake volumes have used lake surface area as a proxy, often relying on a power
relationship between the two parameters57,58. However, in analogy to the concept
of ‘topographic lake depth’ as explained above, it can be generally postulated that
deep lakes preferentially occur in mountainous regions while plains are indicative
of shallower lakes. Based on this principle, multiple studies drew statistical
relationships between the topography surrounding a lake and its depth using
a variety of terrain indices for the prediction, such as elevation ranges and
slopes33,59–62. Most recently, Heathcote et al.34 developed an empirical model to
estimate the mean and maximum lake depths of over 55,000 lakes in Quebec,
Canada, using a multiple linear regression based on surface area and an index of
topographic variation within a buffer zone around the lake as the predictor
variables.

Following the same conceptual approaches, we tested a large variety of methods
and equations, including those suggested in previous studies, to estimate the
volume of our 7,049 empirical lake records. In particular, we investigated a
multitude of regression equations of different types and complexities to predict lake
depth using an array of 41 predictor variables that describe topographic landscape
and lake geometry characteristics, including slopes and elevation ranges in varying
buffer distances from the shoreline; lake surface area; perimeter; shape factors; and
shoreline development (that is, the ratio of the length of the lake shoreline to the
perimeter of a circle of equal area to that of the lake36). As part of the model
development process, we also tested the novel proxy of ‘topographic lake depth’ as
an alternative predictor variable.

Following the approach of Håkanson and Peters59, different lake size classes
were distinguished (that is, 0.1–1, 1–10, 10–100 and 100–500 km2) and specific
regression coefficients were derived for each class. The separation into groups
allows for the use of scale-appropriate, customized predictor variables per size class
and limits the extent to which large lakes dominate parameter results by avoiding
unequal probability sampling.

After comparing a large range of models and settings (for more details see
below), we identified a multi-variable statistical model as the best performing
method for predicting lake depth and volume at a global scale. The model produces
an estimate of mean depth for each lake that is then multiplied by the lake polygon
surface area to obtain lake volume.

Model comparisons and selection. A main goal of the model selection process
was to develop a parsimonious model for the data at hand, while avoiding the risk
of overfitting. Many of the investigated 41 predictor variables were significantly
correlated to the mean lake depth as well as to each other. This stems from the fact
that a large portion of these candidate predictors represent the same characteristic,
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yet applied to different buffer sizes around the lakes (for example, elevation range
within buffers of 1 and 2 km width). Thus, to avoid multicollinearity, only a limited
number of variables were tested simultaneously in the multiple regression models.
Multicollinearity was assessed using the variance inflation factor, together with
observations of coefficient parameters (for example, parameters of unlikely sign or
magnitude) following Belsley et al.63

After testing both simpler (for example, using surface area as the only predictor
variable) and more complex methods (for example, non-linear models or
classification and regression trees), statistical model types ranging from simple
linear to multiple log-linear regressions were chosen for further investigation. The
following six main model types represent typical stages of model complexity (see
Supplementary Table 4 for equations): Model 1: a simple linear regression using
surface area as the only predictor; Model 2: a simple linear regression using mean
topographic lake depth as the only predictor; Model 3: a simple linear regression
using surface area together with a topographic variable as suggested by Heathcote
et al.34 (that is, the difference between lake surface area and mean landscape
elevation within a buffer width equal to 25% of the diameter of a circle that
represents the lake area); Model 4: group-specific multiple regressions using the
same predictors as Model 3; Model 5: group-specific multiple regressions using
surface area together with terrain and lake shape variables as predictors; Model 6:
group-specific multiple regressions using surface area together with topographic
lake depth and other terrain and shape variables as predictors.

We compared a large number of different instances of these six model types
using visual examinations and interpretation of the resulting scatterplots
(Supplementary Figs 4 and 5). While the significance of tested predictor variables
was a requirement for their inclusion in a model, their performance and ultimately
their selection was determined by a variety of statistical indices (Supplementary
Table 5) including the adjusted correlation coefficient (R2); the root-mean-square
error (RMSE); the mean absolute error (MAE); and the symmetric mean absolute
percent error ðSMAPE ¼ 100� 1

N

P observed� predicted valuej j
ðobserved valueþ predicted valueÞ=2Þ.

Both Models 3 and 4 using surface area and the topographic variable from
Heathcote et al.34 as the predictors performed well, particularly for small lakes, yet
were not as satisfactory as Models 5 and 6, in part as they yielded more skewed
predictions for large lakes. Model types 5 and 6 showed the best performances and
delivered overall equivalent results. Model 5 was ultimately selected for application
due to its simpler calculation method (that is, it does not require the GIS-based
calculation of topographic depth for every lake), and its best-fit equations were
determined as presented in Supplementary Table 4. It should be noted, however,
that despite its inability to enhance our current model performance we believe that
the new proxy of ‘topographic lake depth’ can potentially improve bathymetry
estimates if combined with regional information regarding lake morphological
types, as it incorporates local terrain and shape characteristics.

Model 5 was able to reduce the SMAPE for the predicted mean depth of all
lakes from 64.1% (simplest model type 1) to 47.4% while increasing R2 from 0.16 to
0.51. Also, Model 5 yielded the least biased estimate of volume for the entire data
set—reduced from 43% to o1%, respectively. Improvements in predictions were
particularly strong for larger lakes but remained marginal for smaller ones. It
should be noted that Models 3 and 4 performed slightly better than Model 5 when
compared for Quebec data only, indicating their adequacy in the region for which
their topographic variable was originally developed34.

As a general observation, all models performed much better when analysing
volume estimates (maximum R2 of 0.91) as compared to depth estimates
(maximum R2 of 0.51). This can be explained by volume being derived through
multiplication of average depth with lake surface area—the latter being an observed
value with little uncertainty—which makes volume a highly constrained variable.
Nevertheless, while the predictive power of our model may be better described by
its ability to estimate average depth, the ultimate goal of the desired model was to
provide volume estimates for which high correlations were achieved.

Validation and uncertainty of statistical model results. To validate our results
and to quantify the uncertainty of the regression models as well as the potential
bias inherent in the sample of lakes used for model training, we performed a two-
pronged validation analysis. First, a bootstrapping analysis was performed on the
multiple regression models and lake size classes using 10,000 replicates following
Fox and Weisberg64 (results are presented in Supplementary Table 5). This analysis
confirmed that the uncertainty and potential bias in the regression coefficients,
performance indices and total predicted volume are generally within acceptable
ranges, yet with less predictive power for smaller lakes in comparison with larger
ones. However, we found that variability identified by resampling with replacement
generally increased from smaller to larger lakes. This can be attributed to the
paucity of data for large lakes and the increasing range of depths that larger lakes
can have. Moreover, as lake size increases, the link between the mean depth of a
lake and its surrounding landscape becomes more tenuous in terms of
geomorphology. For the smallest lakes in our data set (0.1–1 km2), we found the
95% confidence intervals of the SMAPE and the linear regression R2 to be
46.9–49.8% and 0.20–0.27, respectively, whereas for the largest lakes
(100–500 km2), the 95% confidence interval of the SMAPE was 45.6–70.2% with
much higher R2 values of 0.59–0.83.

The second validation approach consisted of comparing the estimates of our
best performing Model 5 against the independent empirical lake volume data of the

5,101 lakes in our validation data set (see Supplementary Table 2 for data sources).
Overall the model performance was satisfying for unobserved lakes given the
breadth of world lakes analysed (Supplementary Figs 1 and 6). Spatially, the model
tends to underestimate the depth and volume of deep lakes in young mountainous
regions such as the Andes or the European Alps, whereas lakes in low-relief areas
of northwestern Russia, Finland and Sweden tend to be overestimated. No clear
bias is visible for other regions of the world.

When computed for the entire validation data set, the SMAPE between
predicted and reference volume was 48.8%, that is, nearly identical to the SMAPE
of the training data (47.4%). The modelled mean depths explained 46.3% of the
variance in reference mean depths and 91.6% of the variance in reference volumes,
but underestimated the total volume of lakes in the validation data by 16.5%
(predicted¼ 1,503 km3, observed¼ 1,800 km3). This can be attributed primarily to
the abundance of deep alpine lakes in the validation data set, which the model
tends to underestimate. When considering only those 190 lakes outside of North
America and Europe for which validation data were available, and which were
under-represented in the training data, the SMAPE increased to 64.4% and the R2

of the regressions for mean depth and volume were 66.8% and 86.5%, respectively.
Here the model underestimated volume by 28.3% (predicted¼ 549 km3,
observed¼ 765 km3), again largely due to underestimation of deep lakes in alpine
areas of Argentina and the South Island of New Zealand.

Volume calculations. We used Model 5 and its regression coefficients as shown in
Supplementary Table 4 to predict the log10 of mean depths for all 1.42 million
natural lakes smaller than 500 km2 in the HydroLAKES database. Lake mean
depth was then obtained by back-transforming the log10 of the predicted mean
depths and adding a bias-correction for log–log regressions as suggested by
Ferguson65 and applied by Heathcote et al.34:

Dbias-corrected ¼ 10log10 D̂�exp 2:65�s2
� �

ð1Þ

where Dbias-corrected is the bias-corrected predicted mean depth, log10D̂ is the
uncorrected predicted mean depth calculated by applying Model 5, s2 is the
residual variance from Model 5 and 2.65 is a constant.

Extrapolation of smaller lakes. To extrapolate the number, area and volume of
lakes smaller than 10 ha in size, we fitted a line to the full empirical cumulative
distribution of all natural lake polygons that are contained in the HydroLAKES
database using least-square regression. We found that a power law model,
specifically the Pareto distribution, provides a satisfactory fit for both surface area
and volume (Fig. 3). Least-square regression was shown to result in minimal biases
when applied to a full empirical cumulative distribution with large amounts of data
and an appropriate threshold in the lower and upper tail66,67. We thus truncated
our data at the lower end at 0.35 km2 and 0.0005 km3, respectively, to exclude
increasingly incomplete data records; and at the upper end at 10,000 km2 and
1,000 km3, respectively, to exclude increasingly random large lakes from the
statistical assessment.

As it has been suggested that other models, in particular a log-normal
distribution, could equally describe lower-truncated lake size distributions68,
we also fitted log-normal and exponential distribution functions to the empirical
data using maximum-likelihood techniques. However, the power law (Pareto)
distribution model provided a superior fit to the data.

Using surface area as the size criterion, the trend found in the Pareto model
indicates that the global distribution of natural lakes is scale-invariant, that is, there
is a 10-fold increase in the number of lakes from one logarithmic size class to the
next. In fact, the coefficient of the linear fit is nearly equal to � 1 (Fig. 3a):

N ¼ 164; 698 A� 1:05434 ð2Þ
where N is the number of lakes larger than area A (km2) (R2¼ 0.999). We find a
similar relationship when using volume as the size class criterion (Fig. 3b):

N ¼ 1; 596:9 V � 0:84038 ð3Þ
where N is the number of lakes larger than volume V (km3) (R2¼ 0.999). A
flattening of the curve is observed for lakes below 0.0005 km3 due to the truncation
of our lake data set at 10 ha.

Based on these scaling relationships, we derived estimates for the number of
smaller lakes as well as their total surface area and volume using Pareto class means
as suggested by Downing et al.31 To curtain uncertainty, and given that McDonald
et al.37 found a departure from the power law distribution for lake sizes below
B0.001 km2, we capped our extrapolation at a lake size of 0.01 km2 to avoid a
deterioration of the results. We combined all existing records contained in
HydroLAKES for lakes Z0.35 km2 and Z0.0005 km3, respectively, with the
extrapolated results for lakes below these thresholds.

Hydraulic residence time calculation and validation. We calculated lake
residence time as the ratio between lake volume and the estimated discharge rate at
the lake’s pour point, assuming that all lakes are well-mixed and that evaporation
and seepage are negligible. For lakes with high evaporation rates or losses to
groundwater, the flux term would increase and residence times would become
shorter, while lakes that do not destratify seasonally, such as Lake Baikal or
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Tanganyika, may contain much older water than the residence time suggests.
Nevertheless, the residence time as calculated here—also called ‘theoretical water
residence time’ by some limnologists due to the described shortcomings—is a
widely accepted proxy45. Despite inconsistencies in these definitions, we achieved
a good correlation (R2¼ 0.57) between our modelled residence times and
documented values of 374 natural lakes provided by the European Waterbase69

and Kalff45.

Data availability. The HydroLAKES database is offered for free for scientific and
educational applications at http://www.hydrosheds.org. All figures were produced
with data from the HydroLAKES database. All data used in the development of the
HydroLAKES polygon database are publicly available and cited in Supplementary
Table 3. All data used in the training and validation of the model of lake depth are
listed in Supplementary Table 2. Data from public sources used in the training and
validation of the model are available from the corresponding author upon request.
Some data that support the findings of this study are subject to availability
restrictions (for example, Ontario Ministry of Natural Resources; Quebec lake
depth data34) and were used under license for the current study, and so are not
publicly available.
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