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Tumor grading is an essential factor for cancer staging and survival prognostication. The
widely used the WHO grading system defines the histological grade of CRC
adenocarcinoma based on the density of glandular formation on whole-slide images
(WSIs). We developed a fully automated approach for stratifying colorectal cancer (CRC)
patients’ risk of mortality directly from histology WSI relating to gland formation. A tissue
classifier was trained to categorize regions on WSI as glands, stroma, immune cells,
background, and other tissues. A gland formation classifier was trained on expert
annotations to categorize regions as different degrees of tumor gland formation versus
normal tissues. The glandular formation density can thus be estimated using the
aforementioned tissue categorization and gland formation information. This estimation
was called a semi-quantitative gland formation ratio (SGFR), which was used as a
prognostic factor in survival analysis. We evaluated gland formation percentage and
validated it by comparing it against the WHO cutoff point. Survival data and gland
formation maps were then used to train a spatial pyramid pooling survival network
(SPPSN) as a deep survival model. We compared the survival prediction performance
of estimated gland formation percentage and the SPPSN deep survival grade and found
that the deep survival grade had improved discrimination. A univariable Cox model for
survival yielded moderate discrimination with SGFR (c-index 0.62) and deep survival grade
(c-index 0.64) in an independent institutional test set. Deep survival grade also showed
better discrimination performance in multivariable Cox regression. The deep survival grade
significantly increased the c-index of the baseline Cox model in both validation set and
external test set, but the inclusion of SGFR can only improve the Cox model less in
external test and is unable to improve the Cox model in the validation set.

Keywords: tumor grading, whole-slide histopathology image, colorectal cancer, deep learning, gland formation,
Pathology and clinical outcomes
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1 INTRODUCTION

Though there has been intense research interest in molecular
prognostic and predictive factors, visual histology examination
continues to be the most dependable predictor of survival in
patients with colorectal cancer (CRC). Pathologists define the
“reference standard” of tumor grading by evaluating visual
characteristics, such as nuclear atypia, mitotic activity, and
morphological features. New features have been proposed as
histopathological prognostic factors, such as poorly differentiated
clusters (PDCs) (1), tumor budding (2), and tumor-infiltrating
lymphocytes (TILs) (3). In routine clinical practice,
prognostication by pathologist-reported overall tumor grade
remains the basis for “standard care” in CRC (4–6).

The objective of this study was to evaluate the potential
performance of “deep learning” models for individualized
survival time predictions directly from histopathology whole-
slide images (WSIs) of CRC.

Over 90% of all CRC are adenocarcinoma arising in epithelial
cells of colorectal mucosae. The widely used WHO visual grading
system defines histological tumor grade based on the density of
gland-forming regions (7) on WSI. Tumors are classified as well
differentiated, moderately differentiated, poorly differentiated, or
undifferentiated, depending on the percentage of the tumor that is
gland forming, at>95%, 50%–95%,5%–50%, and<5%, respectively;
however, visual grading has some obvious limitations. First, visual
estimation of gland formation (GF) density might be highly
subjective (8), and grade assignment thus implies significant
inter-observer variability (9–11). Second, quantitative calculation
ofGF is not presently performed duringmanual tumor grading due
to the lack of tools that work onWSI. Third, theWHOtumor grade
alone does not appear to be a sufficiently strong biomarker for
personalized therapy decision making.

Numerous publications to date have demonstrated the potential
application of deep learning convolutional neural networks (CNNs)
for image-based tissue classification and survival prognostication
tasks, including on CRC WSI (12, 13). Clinical parameters, such as
TIL density and tumor–stroma ratio, have been quantified
automatically and accurately using CNNs (12, 14) but fall short of
predicting outcome. Other modeling works do predict outcomes of
CRC patients, either from WSI or by first computing surrogate
indicators (15, 16) such as the tumor–stroma ratio (12) and the
proportion of different tissues types present in the WSI (13). These
approaches revealed the deep connection between WSIs and
outcomes, and we hypothesize that a direct approach applying
deep learning on the entire WSIs may provide new prognostic
markers beyond the traditional clinical parameters.

To date, no study has shown a survival prediction model on the
WHO’s grading system by either a direct or indirect approach. As
mentioned above, the most widely accepted method of tumor
grading is GF percentage. Therefore, we aim to predict survival
outcomes on GF by both the clinical parameter (GF) and the deep
learning-based biomarker. It is our hypothesis that the GF
percentage can be estimated by an artificial intelligence (AI)
model, and subsequently, an AI model can derive a better
prognostic marker from spatial heatmaps of GF compared to
the estimated GF percentage.
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The organization of our work is as follows. First, we
developed separate CNN models i) for gland-forming region
classification (we hereafter refer to these as tumor differentiation
spatial heatmaps) and ii) for automatic segmentation of tissue
type regions on the entire WSI. Next, we trained a deep learning
Cox proportional hazards model using the aforementioned
spatial heatmaps and tissue type segmentation masks as input.
We evaluated the prognostic performance among these
alternative stratification options for the primary outcome of
overall survival (OS). This work combines two well-known The
Cancer Genome Atlas (TCGA) public datasets as training and
internal validation, and then we added a new private institutional
dataset of Chinese subjects as an independent external test set.
2 MATERIALS AND METHODS

2.1 Patients and Datasets
Training and validation datasets consisted of TCGA Colon
Adenocarcinoma (TCGA-COAD) and Rectum Adenocarcinoma
(TCGA-READ) that have been described in detail elsewhere.
Briefly, the former contains data from 454 colon and 7
rectosigmoid junction cancer patients, with 983 WSIs (H&E-
stained) and an optical magnification factor of 40 (0.25 µm/pixel)
or 20 (0.5 µm/pixel). We chose the highest magnification possible
to provide detailed data for AI classifiers and sampled tiles that
contain enough information for classifying tissues types and GFs,
which were confirmed by our pathologists. The latter comprises
364 H&E-stained WSIs derived from 91 rectal, 71 rectosigmoid
junctions, and 6 colon cancer patients also with a magnification
factor of 40. For the OS model construction, we excluded only
WSIs that had nomatching survival records. Thus, 857WSI (out of
983) and 297 WSI (out of 364) from TCGA-COAD and TCGA-
READ, respectively, were used for training. Our local institutional
dataset consisted of 108 H&E-stained WSIs with a magnification
factor of 40 from 108 eligible patients treated from 2008 to 2009.
The WSIs in the local dataset were all formalin-fixed paraffin-
embedded (FFPE) slides rather than frozen slides in TCGA dataset
for validating survival outcomes better. The inclusion criteria of the
institutional dataset were as follows: i) follow-up data were
available, ii) epithelial tissues covered an area of at least 20% on
WSI, and iii) theWSI was clear enough for human grading and free
from large contaminated regions.

Written informed consent from all institutional patients
(050432-4-1911D) and ethics board approval had been
obtained. The overall training procedure is as described
sequentially in the following subsections and is supported by
the illustration in Figures 1A, B.

2.2 Acquisition of Whole-Slide Image
Classification Heatmaps
Spatial heatmaps of tissue classification and GF classification
were necessary to obtain the estimated tumor grading and
develop the survival prediction models. Two independent
supervised deep learning classifiers were trained to generate
these spatial heatmaps. To segment new WSI, we implemented
May 2022 | Volume 12 | Article 833978
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a sliding window to span the entire WSI (Figure 1B). The
reference labels for classification were manually annotated by
institutional experts, and internal measures had been taken to
reduce inter-observer error. For the tissue classifier, each region
of interest (ROI) was classified as epithelium, stroma, immune
Frontiers in Oncology | www.frontiersin.org 3
cells, other tissues, and background. To train the GF classifier,
each ROI was then classified by visual inspection as “GF3”
(paucity of gland-forming cells), “GF2” (complex or irregular
tubules with cribriform morphology glands), “GF1” (simple
tubules only), or “X” (normal epithelial cells). The details of
A

B

C

FIGURE 1 | The overview of the workflow. (A) The workflow of annotating labels and generating trainable patches. Our pathologists annotated rectangular
annotations and related labels from original WSI. We then randomly sampled trainable patches from annotations and balanced the ratio of labels before training.
(B) the workflow of developing gland formation and tissue category classifiers and generating spatial heatmaps. We used window sliding technique to generate
masks of tissue categories and probability maps of tumor gland formation and other tissue types from classifiers. (C) The workflow of calculating SGFR and deep
survival grade. The epithelium masks were specifically applied to gland formation heatmaps, which were further used in both calculating SGFR and developing
SPPSN. WSI, whole-slide image; SGFR, semi-quantitative gland formation ratio; SPPSN, spatial pyramid pooling survival network.
May 2022 | Volume 12 | Article 833978
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developing the above two classifiers, including the reference label
annotation method, are reported in Supplementary Materials
S1.1–S1.4.
2.3 Semi-Quantitative Assessment for
Gland Formation Ratio
The percentage of the tumor that is gland forming should be
calculated to be able to use the WHO stratification system, which
can be indirectly assessed by using the abovementioned
differentiation maps and tissue category masks. We first focus
on the gland regions, which were indicated by category masks,
and then estimated the percentage of a gland-forming tumor
using the spatial differentiation heatmaps with masks of the
gland (Figure 1C).

In clinical practice, the estimation of the degree of GF is largely
interpretive and lacks standardization for pathologists (8);
therefore, the actual GF percentage could not be calculated
exactly according to the current WHO definition. So we had to
estimate the GF percentage by assigning a semi-quantitative GF
ratio (SGFR) in the following manner. We assumed that GF2
regions (complex or irregular tubules with cribriform morphology
glands and nuclear polarity partially lost, which sit between gland-
forming and non-gland-forming regions) have an arbitrarily
assigned weight of 0.5. To spread the weights uniformly, we
assigned a weight of 1 to GF1 regions and correspondingly
weight 0 to GF3 regions and then excluded all normal tissues.
We further assumed the SGFR would be a weighted average of all
GF1, GF2, and GF3 in tumor-containing regions as described
above will be a reasonably close semi-quantitative approximation
of the percentage of gland-forming tumors according to the
WHO. The detailed formula of SGFR is provided in
Supplementary Material S2.
2.4 Spatial Pyramid Pooling
Survival Network
Spatial pyramid pooling survival network (SPPSN) was trained to
predict the hazard of death using information derived fromWSI. A
“DeepSurv” neural network has been proposed (17) for predicting
hazards on time and event data. The input to the network is
designed to be a patient’s baseline data. The hidden layers of the
network consist of a fully connected layer of nodes, followed by a
dropout layer. Therefore, the DeepSurv networks require one-
dimensional input data with uniform size. This cannot be
applied for our GF spatial heatmaps and category masks, since
their shapes obviously change fromWSI toWSI. The SPP layer was
initially proposed in the field of object detection (18) and has the
ability to use arbitrary shape input data. A patient’s data can be
transformed into one-dimensional uniform data and thus can be
applied to the DeepSurv networks. We thus combined the SPP
layer and the DeepSurv networks as an SPPSN and applied it to
developing our survival prognostication (Figure 1C).

For the input data of the SPPSN, we first applied the
epithelium tissue type masks for the GF heatmaps since linear
predictor maps due to the GF classifier can only be used on
Frontiers in Oncology | www.frontiersin.org 4
gland-forming regions (Figure 1C). The input of the SPPSN
consists of i) masked GF maps; ii) masks of stroma, immune
cells, other tissues, and background; and iii) thumbnails of the
original WSI. These were concatenated as the input layer of
the SPPSN.

To develop the OS model, input data derived from both
COAD and READ sets combined were randomly split into
training and validation in an 80:20 ratio. The SPPSN consists
of 1 SPP layer, 3 linear layers, and 1 activation layer. We
performed the log-rank test to examine the OS distribution
between the validation set and training sets. The p-value was
0.70, which indicated that the OS distribution between the
validation set and training set had no statistical difference. The
detailed architecture and training parameters of the SPPSN are
provided in Supplementary Material S1.5.
2.5 Statistical Analysis
For the GF classifier and tissue type classifier, we used an area under
the curve of the receiver operating curve (AUC) and the confusion
matrix to evaluate the model discrimination performance.

For the evaluation of SGFR, we used a Harrell concordance
(c-index) and the Kaplan–Meier curve log-rank test on TCGA
dataset. To construct the Kaplan–Meier curves, we used three
subgroup definitions based on the WHO’s definitions (cutoff
points of 0.05, 0.5, and 0.95) and an optimized cutoff (19).
Optimized cutoff andWHO were compared for validating SGFR.
The optimized cutoff point was obtained by the R package
of “maxstat.”

We used a c-index for evaluating the performance of SGFR
and deep survival grade from the SPPSN. A Kaplan–Meier curve
log-rank test was adopted for performance evaluation as well. A
Spearman’s correlation test was applied to determine any
correlation between SGFR and deep survival grade. Next, we
analyzed common potential OS influencing factors (sex, age,
vascular invasion, and American Joint Committee on Cancer
(AJCC) stage) in TCGA set and local set in a univariable Cox
regression. A multivariable Cox regression of significant factors
in the validation set from the last step was developed as the
baseline model for comparison. Finally, the SGFR and deep
survival grade were separately added into a reference Cox
regression model for investigating these grades’ significance
and prediction-enhancing power. The performance of the two
grades was evaluated and compared using the above
multivariable Cox regression models. The calibration curves of
Cox regression models were also performed to show the detail.
3 RESULTS

The clinical case-mix comparison of included patients with ROI
annotations and available follow-up from the three datasets used
in this study are given in Table 1. Note that the p-value is for the
difference between the combined TCGA dataset and the local
institutional dataset since the former was used as the discovery
set and only the latter was the independent test set.
May 2022 | Volume 12 | Article 833978
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3.1 Performance of the Tissue Classifier
and the Gland Formation Classifier
The AUC indices of each tissue type of segmentation were
calculated, corresponding to discrimination of epithelium,
stroma, immune cells, other, and background. The tissue
classifier showed strong discriminating ability (AUC = 0.981,
0.977, 0.972, 0.979, and 0.999 for epithelium, stroma, immune
cells, other, and background, respectively; micro-average AUC =
0.987, macro-average AUC = 0.982) (Figure 2A). Likewise, the
AUC indices for gland-forming tumors and normal glandular
tissue classification were calculated, corresponding to
discrimination between GF1, GF2, GF3, and X. The GF
classifier also showed strong discrimination performance
(AUC = 0.983, 0.963, 0.963, and 0.981 for G1, G2, G3, and X,
respectively; micro-average AUC = 0.973, macro-average AUC =
0.973) (Figure 2B). To illustrate the results of tissue classification
and gland-forming grades, we show a representative example of
a WSI and its maps in Figure 3. The original WSI is
Frontiers in Oncology | www.frontiersin.org 5
shown (Figure 3A) together with an overlay of the tissue type
mask (Figure 3B), only the gland-forming regions overlaid on
the WSI (Figure 3C), and finally, the GF differentiation spatial
heatmap within the gland-forming regions overlaid on the WSI
(Figure 3D). The color on the differentiation heatmap
corresponds to the linear predictor of the GF model as shown
on the color bar adjacent to Figure 3D.

3.2 Evaluation and Validation of Semi-
Quantitative Gland Formation Ratio on
Dataset of The Cancer Genome Atlas
As stated in method section 2.3, we calculated SGFR using the
strata of WHO compared with optimized cutoffs. The c-index for
SGFR was 0.552, which indicated that the GF percentage
possessed poor prediction power. The Kaplan–Meier curves are
shown in Figure 4. For the WHO’s cutoff method, only a few
WSIs belong to the high-differentiation (>0.95) or un-
differentiation (<0.05) class. In detail, the number of un-
TABLE 1 | Patient characteristics for the datasets of TCGA-COAD, TCGA-READ, and the local institution.

TCGA-COAD TCGA-READ Local dataset p-Value

Number of subjects 451 155 106 -
Primary cancer p < 0.0001
Colon 444 (98%) 5 (3%) 104 (98%) (Fisher’s exact test)
Rectosigmoid 7 (2%) 65 (42%) 0 (0%)
Rectal 0 (0%) 83 (54%) 2 (2%)
Other 0 (0%) 2 (1%) 0 (0%)
Biological sex 0.113
Male 240 (53%) 87 (56%) 66 (62%) (Pearson’s test)
Female 211 (47%) 68 (3%) 40 (38%)
Years of diagnosis 1998–2013 Not reported 2008–2009 –

Mean age (range) 70 (31–90) 67 (31–90) 57 (27–78) p < 0.0001 (U test)
Overall staging 0.136
I 71 (16%) 33 (21%) 10 (9%) (Pearson’s test)
II 170 (38%) 49 (32%) 39 (37%)
III 123 (27%) 50 (32%) 37 (35%)
IV 64 (14%) 23 (15%) 20 (19%)
Not known 23 (5%) 0 (0%) 0 (0%)
Median survival time (months) 101 52 Not reached -
Median follow-up time (months) 30 26 87
May 2022 | Volume
TCGA-COAD, The Cancer Genome Atlas Colon Adenocarcinoma; TCGA-READ, The Cancer Genome Atlas Rectum Adenocarcinoma.
A B

FIGURE 2 | ROC curves of the tissue classifier and the gland formation classifier (A) showed ROC curves of the tissue classifier. The AUC were 0.987, 0.982,
0.981, 0.977, 0.972, 0.979 and 0.999 for micro-average ROC, macro-average ROC, epithelium, stroma, immune cells, other and background, respectively. (B)
showed ROC curves of the gland formation classifier. The AUC were o.973, 0.973, 0.983, 0.963, 0.963 and 0.981 for micro-average ROC, macro-average ROC,
GF1, GF2, GF3 and X, respectively.
12 | Article 833978
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differentiationWSIs and high-differentiationWSIs were 5 and 18,
respectively, compared to a total of 1,157 valid WSIs. Therefore,
we only focus on medium- and low-differentiation groups whose
log-rank test p-values were 0.02. The median cutoff method
showed no statistically significant differences (p-value 0.26).
Frontiers in Oncology | www.frontiersin.org 6
The optimized cutoff method indicated only one best point for
SGFR (p = 0.01). Optimized cutoff also indicated the optimal
threshold of 0.49, which ends up being very close to the WHO’s
proposed cutoff point of 0.5, and the WHO’s proposed cutoff
point could stratify WSIs well by itself (p = 0.01 vs. p = 0.02).
3.3 Comparison of Percentage of Gland
Formation and Deep Survival Grade
3.3.1 Univariable Analysis
We applied a Cox model and derived Kaplan–Meier curves using
the SGFR and deep survival grade on both validation set and test
set (Table 2). We need to note that the SGFR value is inversely
correlated to hazard (i.e., higher GF percentage means higher
differentiation status and consequently leads to lower hazard),
and thus the hazard ratios of SGFR came out as negative. In the
validation set, SGFR showed no significant discriminatory
performance, while deep survival grade performed better with
a higher c-index and a p-value below 0.05. In the test set, both
SGFR and deep survival grade showed significant discriminatory
performance, and deep survival grade had a higher c-index
of 0.64.

For Kaplan–Meier curves, we chose a median cutoff method
because the WHO’s cutoff point did not work in deep survival
grade and an optimized cutoff point was not suitable for
comparison. In the validation set, the Kaplan–Meier curve log-
rank p-value of SGFR was 0.69, while that of deep survival grade
was 0.02 (Figure 5). In the test set, the p-value of SGFR was
slightly higher than 0.05 (0.07) and that of deep survival grade
was 0.02 (Figure 5). In both the validation set and test set, the
deep survival grade showed better prediction ability than the GF
percentage according to univariable analysis.

3.3.2 Baseline Multivariable Cox Regression Model
We applied a Cox regression model on single factors of age, sex,
vascular invasion, and AJCC pathology stage in the validation set
(Table 2). Then we selected significant factors of age, vascular
invasion, and AJCC pathology stage III and IV to build
A B C

FIGURE 4 | Kaplan–Meier curves of semi-quantitative gland formation ratio (SGFR) with cutoff method of WHO, median, and optimized. According to WHO’s
grading system, the WSIs can be grouped into high differentiation (high, SGFR > 0.95), medium differentiation (medium, 0.5 < SGFR < 0.95), low differentiation (low,
0.05 < SGFR < 0.50), and un-differentiation (un, SGFR < 0.05), and the related Kaplan–Meier curves are shown in panel (A, B) KAPLAN–Meier curves of WSIs with
SGFR higher than median (high) and SGFR lower than median (low). (C) Kaplan–Meier curves of WSIs with SGFR higher than optimized cutoff point (high) and SGFR
lower than optimized cutoff point (low). WSIs, whole-slide images.
FIGURE 3 | Visual presentation of tissue category and gland formation.
(A) Thumbnail of original WSI. (B) The fusion map of the thumbnail and tissue
category map. Different colors represent corresponding tissue categories, and
the details can be seen in the right side legend. (C) The fusion map of the
thumbnail and the epithelium mask selected from panel (B, D) The fusion
map of the thumbnail and gland formation from the linear predictor on panel
(C) epithelium mask. WSI, whole-slide image.
May 2022 | Volume 12 | Article 833978
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multivariate Cox regression models and apply them on the
validation set and test set as baseline models for further
reference (Figure 5).

3.3.3 Performance Comparison in Multivariable Cox
Regression Model
We added the GF percentage or deep survival grade separately
into the baseline Cox model (Section 2.5) as extra information.
The forest plot of Cox regression models is shown in Figure 6.
When the GF percentage was added to the baseline model (GF
enhanced model), it showed no significant performance as an
independent hazard factor, and the c-index of the model could
not be increased in the validation set, while SGFR enhanced the
c-index from 0.74 to 0.76 in the test set. When deep survival
grade was added (deep survival grade enhanced model), it
showed significant performance as an independent hazard
factor, and the c-index was increased from 0.75 to 0.77 in the
validation set and from 0.74 to 0.77 in the test set. Hence, deep
survival grade possessed an advantage over the GF percentage
and enhanced the prediction power of a Cox model based solely
on traditional clinical parameters. We also investigated
Frontiers in Oncology | www.frontiersin.org 7
calibration curves of Cox models, and the results are provided
in Supplementary Material S3.
4 DISCUSSION

This study has been a Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) (20) Type 3 study combining model development
and independent validation as one scope of work. We developed
and externally validated a CNN model for assigning the GF
percentage and a deep survival grade for CRC, based on
automated quantitative analysis of WSI. Overall classification
accuracy was over 90% for tissue classification and over 85% for
GF classification; however, the dominant mode of failure
appeared to be the incorrect assignment of GF2 to either
normal tissue or high GF tumor slides.

Interpretability of the tissue and GF models was enhanced by
providing pathologists with a color-coded composite map as
output, as an overlay onto the original WSI. To examine SGFR,
we compared the optimized cutoff point of SGFR and theWHO’s
FIGURE 5 | Kaplan–Meier curves of semi-quantitative gland formation ratio (SGFR) and deep survival grade in validation set and test set. SGFR and deep survival
grade were grouped into high group (higher than median) and low group (lower than median) and applied Kaplan–Meier curves in both validation set and test set.
TABLE 2 | Univariable Cox models for each metric.

Validation set Test setMetrics

c-Index log HR p-Value c-Index log HR p-Value

Age 0.70 0.065 <0.001 0.56 −0.01 0.38
Sex 0.51 −0.07 0.94 – – –

Vascular invasion 0.64 1.12 <0.001 0.57 0.58 0.11
AJCC stage III and IV 0.65 0.91 0.004 0.69 2.43 <0.001
SGFR 0.52 −0.44 0.66 0.62 −7.15 0.07
Deep survival grade 0.64 1.73 0.008 0.64 3.53 0.02
May 202
2 | Volume 12 | Article
AJCC, American Joint Committee on Cancer; SGFR, semi-quantitative gland formation ratio.
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proposed cutoff point. Our results indicate that SGFR has
moderate prediction ability on stratifying CRC patients whose
optimized cutoff point was close to the WHO’s proposed cutoff
point of 50%. However, the WHO’s proposed cutoff points of 5%
and 95% were unable to be compared in TCGA dataset due to the
low sample size. Our optimized cutoff algorithm also indicated
that there exists only one cutoff point in TCGA dataset, which
supports a two-tiered grading system (21). In external validation
datasets, we found that the GF percentage still possessed
moderate prediction ability but cannot increase the c-index of
the multivariable baseline Cox regression model, which may
allude to the limitation of the GF percentage in clinical usage. To
discover a new indicator on GF beyond the GF percentage, we
developed the SPPSNmodel, which provided a deep survival grade.
Frontiers in Oncology | www.frontiersin.org 8
Compared to the GF percentage, deep survival grade possessed a
higher c-index on itself and could increase the c-index of a baseline
clinical Cox model. Therefore, the deep survival grade shows a
more promising potential on outcome prediction and even on
clinical therapy than SGFR.

The quality of WSIs may illustrate the difference of GF
percentage discrimination between TCGA dataset and the local
dataset. The overall quality of TCGA’s WSIs was lower than that
of a local dataset. The low-quality WSIs such as stained WSIs,
WSIs with little regions of epithelium tissue, and highly folded
WSIs were common in TCGA set, while WSIs in the local dataset
all contained adequate and clear epithelium tissues for tumor
grading. Consequently, the GF percentage of the local dataset’s
WSIs was more stable and reliable due to better quality.
A B

D

E F

C

FIGURE 6 | Cox regression forest plot of baseline model, baseline + Semi-quantitative gland formation ratio (SGFR) model and baseline + deep survival grade
model. (A, B) are the baseline multivariable Cox models of age, AJCC and vascular invasion for validation set and test set, respectively. (C, D) are multivariable Cox
models of age, AJCC, vascular invasion and SGFR for validation set and test set, respectively. (E, F) are multivariable Cox models of age, AJCC, vascular invasion
and deep survival grade for validation set and test set, respectively.
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Our approach has a few advantages over a traditional
pathology visual grading workflow. First, a trained machine
algorithm is able to exhaustively slide a window of attention
over an entire WSI and generate a composite picture of the most
probable grade in each window. This helps the pathologist by
providing an intuitive visual overview for assigning a tumor
grade, along with the heterogeneity within the sample. In effect,
the GF model has auto-segmented tumor subregions in the WSI
according to their most likely differentiation grade. All of the
original WSI information has been retained for closer scrutiny
and more precise human review, if so desired.

Calculating the GF percentage was not done within the scope
of this present study. This additional feature would be easily
performed once the composite maps have been generated.
Additionally, this abovementioned workflow will be efficient,
objective, and reproducible, which might not always be assured
among human observers. There is less chance that a small but
significant WSI region might be accidentally overlooked by a
human rater. Furthermore, the speed of grading WSIs can be
revolutionized by the automatic calculation of SGFR. We also
compared the performance of SGFR with human-grading
differentiation grade in the test set. The human-grading
differentiation grade also shows moderate discriminable ability
for stratifying survival outcomes, with a c-index that was close to
our SGFR. However, similar to SGFR, the human-grading
differentiation grade increases less the c-index of baseline Cox
regression model than that of deep survival grade and is also less
significant than deep survival grade as an independent factor.
Although both SGFR and human-grading differentiation grades
were imprecise estimations of the WHO’s differentiation grading
system, they still show some value in stratifying survival
outcomes. The performance of human-grading differentiation
grade can be seen in Supplementary Material S4.

Beyond the traditional GF percentage, we also provide a
stronger indicator of deep survival grade. Exploring a new
indicator from CRC WSIs was previously conducted by several
research groups (12, 13, 15, 16). There are two major differences
between our work and previous works. First, our SPPSN is the
first model that analyzed GF, which can bridge the deep learning
output and clinical explanation. Deriving an indicator from a
WSI can face the problem of balancing global and local
information. The global information is derived from the whole
WSI, while the local information uses local regions to represent
the whole WSI. Most previous works adopted global information
for outcome prediction such as ensemble score of tiles fromWSIs
(16), weighted classification results (13), or tumor–stroma ratio
(12). However, pathologists could assess overall tumor grade
either based on a qualitative impression of the sum of global
histologic features, or the highest grade of local features observed
anywhere in the neoplasm, or the relative proportion of the
undifferentiated tumor, or the degree of differentiation along the
advancing edge (8). Therefore, both global information and local
information were adopted in pathologists’ grading, and simply
using one of the two is incomplete. Bychkov et al. included
global and local information (15) by long short-term memory
method, but the process was still different from pathologists’ grading.
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Our SPPSN, however, included global information and local
information with several levels by SPP layers, and this process was
similar to the pathologists’ grading procedure.

A number of limitations remain to be addressed in future
work. We examined the errors of misclassification and found
that uncertain findings tended to be assigned as GF2. This could
be an undesirable side effect of the dataset being highly
unbalanced with a much greater proportion of GF2
annotations. We attempted to ameliorate this with majority
under-sampling, but it is likely that some vestigial influence
persists in the model. Upon closer inspection, these
disagreements were also present in pathologists’ manual grade
assignments. In real-world clinical practice, the accurate
distinction between GF1 and GF2 can also be difficult for
human experts. Our present results largely reflect the known
difficulty and inherent uncertainty in clinical practice.

Our ground-truth annotations were only provided on so-
called “perfect” regions on WSIs, while in real clinical grading,
there are common defects such as unintended stains and folded
tissues. Our classifiers performed abnormally when there were
defects on WSIs, which reduced the classification accuracy of
models and consequently influenced GF percentage calculation
and deep survival grade prediction.

Of current concern is the misclassification of normal tissue as
GF2 tumors. Such false-positive incidents could lead to
unnecessary intervention and/or psychological distress to
patients. Although the rate of false positives (normal tissue being
misclassified as GF1, GF2, or GF3) appears low in this study, it is
important to note that such errors can happen. Therefore, cautious
clinical commissioning and routine quality assurance of such
classification models are needed if they are included in clinical
practice (22–24). Although this model has not yet been deployed
into routine clinical practice, it has been designed and developed
in close collaboration between data scientists and highly
experienced clinicians; therefore, it is hoped that a clinical
translation gap will be more easily bridged through future work.

In this study, we adopted the WHO’s cutoff point as the
reference to validate the estimation of SGFR. However, the cutoff
points for the WHO four-tiered schema have not been deeply
investigated for their relevance in survival prediction. For
example, there exists an alternative two-tiered grading system
that has been recommended by a multidisciplinary CRC working
group (12), who proposed a 30% cutoff point of gland-forming
regions (13). Although our SGFR’s optimized cutoff point seems
to agree with that of WHO, the SGFR may be not consistent with
real GF percentage on the aspect of distribution.

The grading of CRC WSIs remains to be a complex work due
to the existence in the literature of several different grading
schemas without widespread acceptance and uniform use of any
single system by practicing pathologists (8). However, our
research was conducted only on the WHO’s traditional
definition of the GF percentage regardless of cytologic features.
Tumor budding and TILs, which have been developed as
interesting additive prognostic factors in CRC, were not
included in our model. Thus, more factors considered in CRC
tumor grading can be included in our future works.
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There are other clinical factors with potential influence on
survival that have not been included in the above model. For
instance, different types of surgical and/or drug interventions
have not been taken into account. Second, since the WSIs
contain the resected tumor, there is little information in the
image about the mucosa. Thus, tumor invasion depth and
peritumoral morphology will not be available to the CNN to
train on as potentially important survival features. No tumor
invasion data have been included in the above model.

In conclusion, our study proposed a semi-quantitative
estimation of the GF percentage with moderate discriminatory
ability on stratifying WSIs’ survival outcomes and an optimized
cutoff point similar to the WHO’s cutoff point. This SGFR can be
regarded as a good estimation of the GF percentage and has a
potential application on automatic CRC tumor grading. We also
proposed a novel network architecture (SPPSN) to extract risk
information from WSI. Through SPPSN, a new WSI-based
predictor (deep survival grade) was created with better
performance on stratifying WSIs than that of SGFR. Deep
survival grade also showed better performance in a
multivariable Cox model compared to SGFR.
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