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Abstract
DNA methylation is an epigenetic modification that provides stability and diversity to the cellular phenotype. It is
influenced by both genetic sequence variation and environmental factors, and can therefore potentially account for
variation of heritable phenotypes and disorders. Therefore, methylome-wide association studies (MWAS) are promising
complements to genome-wide association studies (GWAS) of genetic variants. Of particular interest are methylation
sites (CpGs) that are created or destroyed by the alleles of single-nucleotide polymorphisms (SNPs), as these so-called
CpG-SNPs may show variation in methylation levels on top of what can be explained by the sequence variation. Using
sequencing-based data from 1132 major depressive disorder (MDD) cases and controls, we performed a MWAS of
970,414 common CpG-SNPs. The analysis identified 27 suggestively significant (P < 1.00 × 10−5) CpG-SNPs associations.
Furthermore, the MWAS results were over-represented (odds ratios ranging 1.36–5.00; P ranging 4.9 × 10−3–8.1 × 10−2)
among findings from three recent GWAS for MDD-related phenotypes. Overlapping loci included, e.g., ROBO2, ASIC2,
and DCC. As the CpG-SNP analysis accounts for the number of alleles that creates CpGs, the methylation differences
could not be explained by differences in allele frequencies. Thus, the results show that the MWAS and GWASs provide
independent lines of evidence for the involvement of these loci in MDD. In conclusion, our methylation study of MDD
contributes novel information about loci of relevance that complements previous findings and generates new
hypothesis about MDD etiology, such as that the functional effects of genetic association may be partly mediated and/
or enhanced by the methylation status in these loci.

Introduction
Major depressive disorder (MDD) is a complex disorder

that is characterized by persistent dysphoria and is often
accompanied by considerable morbidity1–3 and mortal-
ity2,4. Because MDD has a lifetime prevalence of almost
15%5, tends to start early in life6, and is often chronic7,8, it
is the leading contributor to disability worldwide9,10. In

comparison with other (psychiatric) disorders, discerning
the biological basis of MDD has been difficult. Only very
recently, a number of genetic variants were identified and
replicated11,12. However, these variants had small effect
sizes and explained only a small proportion of the disease
risk.
DNA methylation is an epigenetic modification that

provides stability and diversity to the cellular phenotype.
Because methylation is dynamic in nature and can be
altered by environmental factors, it can potentially
account for key clinical features of MDD such as its epi-
sodic nature or mediate the effects of environmental risk
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factors such as stress13–15. Therefore, methylome-wide
association studies (MWAS), which test a genome-wide
set of methylation sites for association with an outcome of
interest, are promising complements to genome-wide
association studies (GWAS) of genetic variants. Of par-
ticular interest are methylation sites (CpGs) that are
created or destroyed by single-nucleotide polymorphisms
(SNPs). These sites, commonly referred to as CpG-SNPs,
may show variation in both methylation and sequence,
and may therefore convey information beyond either of
the two data types alone. However, methylation-
dependent association signals in CpG-SNPs are not cap-
tured by GWAS and are very poorly captured by a regular
MWAS. Therefore, a specific CpG-SNP analysis is needed
to detect these signals.
Regular GWAS studies detect differences in allele fre-

quencies between cases and controls. In contrast, a CpG-
SNP analysis tests whether groups of cases and controls
with the same genotype show differences in methylation
at these sites. Thus, these two analyses capture different
signals. Similarly, while a regular MWAS detects differ-
ences in methylation it does not account for differences in
genotype and will therefore often lack the statistical power
to detect association signals for CpG-SNPs. A CpG-SNP
MWAS remedies this by including information on the
actual genotypes of each subject.
Furthermore, the link between sequence variation and

methylation levels at these sites may allow CpG-SNPs to
function as important cis-regulatory polymorphisms that
connect genetic variation to variation in methylation. For
example, the alleles present and the methylation levels
observed at a specific CpG-SNP have been associated with
a variety of regulatory functions16–19. In addition, in a
high-density analysis of methylation quantitative trait
locus (meQTL), CpG-SNPs were involved in the majority
of all identified meQTLs20.
To study whether CpG-SNPs contribute to MDD dis-

ease risk, we used a sequencing-based approach that
provides nearly complete coverage of all CpGs21,22,
including close to 1 million CpG-SNPs. To further
explore the MWAS findings and their potential relevance
for MDD, we also tested for their overlap with results
from recent GWASs.

Materials and methods
Description of the NESDA sample
DNA from blood was obtained from 1200 individuals

from the Netherlands Study of Depression and Anxiety
(NESDA). MDD was diagnosed using the DSM-IV-based
Composite International Diagnostic Interview (CIDI ver-
sion 2.1) that was administered by specially trained
research staff23. In addition, to a current MDD diagnosis,
cases had a score >14 on the IDS-SR30

24, a 30-item self-

report measure of depression symptoms. Controls had no
lifetime psychiatric disorders and an IDS-SR30 score <14.
The sample selection was further based on good quality
GWAS genotype information available from a previous
investigation25 (for a summary description, see the Sup-
plementary Note). For further details about NESDA, and
demographic and clinical characteristics of participants
used for the present study, see Table S1. The study was
approved by the ethical committees of all participating
locations, and participants provided written informed
consent.

Assaying the methylome with MBD-Seq
We assayed the methylome using an optimized protocol

for methyl-CG binding domain sequencing (MBD-Seq)
that provides almost complete coverage of all CpGs in the
genome21. In short, we used ultrasonication to shear
genomic DNA into, on average, 150 bp fragments fol-
lowed by enrichment with MethylMiner™ (Invitrogen) to
capture the methylated fraction of the genome. The
captured fragments were eluted and used to create a
barcoded sequencing library for each methylation capture.
Labeled sequencing fragment libraries were pooled in
equal molarities and sequenced on a NextSeq500 instru-
ment (Illumina). To ensure consistency in the sample
preparation, MethylMiner captures and library construc-
tions were both performed using Biomek NxP robotics
(Beckman Coulter). Samples were performed in a ran-
domized order and all labtecnical procedures were per-
formed blind to any phenotype information. The
sequence reads were aligned to the human reference
genome (hg19/GRCh37) using Bowtie226.

Data processing and quality control
Quality control and data processing (Supplementary

Note) were performed using our RaMWAS Bioconductor
package, which is specifically designed for large-scale
methylation studies. After rigorous quality control of
samples, reads, and CpGs, 1132 subjects (320 controls and
812 cases) with an average of 48.7 million reads per
sample (=81.9% of all reads) remained. For each of these
individuals, our dataset included commonly methylated
high-quality methylation information for 21,869,561
CpGs27. Among these, 970,414 were common CpG-SNPs
(CpGs created/destroyed by SNPs with minor allele fre-
quency > 10%) that were used for MWAS. To identify the
CpG-SNPs we used directly genotyped and imputed
genotype information (Supplement) from the NESDA
participants. The imputed SNPs were filtered by imputa-
tion R2 ≥ 0.9 and minor allele frequency ≥ 0.1 in cases and
controls. Finally, an in silico experiment described else-
where28 was used to remove CpG-SNPs in loci showing
alignment problems.
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MWAS of CpG-SNPs
To test for association between the methylation level at

each CpG-SNP and MDD, we performed a regression
analysis with four sets of covariates. First, we regressed
out 19 assay-related variables (i.e., potential technical
artifacts) including the quantity of methylation-enriched
DNA captured, sample batches, and peak location22.
Second, we regressed out the demographic variables age
and sex. Third, to avoid confounding due to cell-type
heterogeneity, we regressed out blood cell type propor-
tions as estimated by the methylation data29 using MBD-
Seq “reference methylomes” we generated after isolating
all common cell types in blood30. Fourth, principle com-
ponent analysis was used to capture any remaining
unmeasured source of variation. Specifically, using a scree
test we selected the first principle component.
The MWAS was performed by fitting the following

regression equation:31

Y ¼ b0 þ b1CpG � SNP þ b2 CpG � SNP ´MDDð Þ
þb3MDDþ b4X1 þ ¼ þ bkXk þ E;

where Y are the CpG scores, b0 is the intercept of the
regression line, b4…bk the effects of covariates, and E are
the residual effects. The CpG-SNP is coded as 0, 1, and 2,
which corresponds to having 0, 1, or 2 copies of the SNP
allele that creates/destroys the CpG relative to the refer-
ence genome. MDD is coded 0 for controls and 1 for
cases. Figure 1 describes nine scenarios for how the
regression lines change with alterations of the b2 and b3
parameters, when b1 is equal to 1. A non-zero value of
parameter b1 indicates that the site is methylated with the
amount of methylation being proportional to the number
of CpGs (i.e., has a methylation quantitative locus or
“meQTL effect”). Parameter b2 estimates the case-control
difference at the CpG-SNP site that is proportional to the
number of CpGs (i.e., the “CpG-SNP dose effect”). Para-
meter b3 captures case-control differences from nearby
sites and thus do not depend on the number of CpG
creating alleles of the SNP (i.e., a “local effect”). MBD-Seq
assays the methylation of regions that are about the size of
the sequenced fragments (~150 bp). Therefore, part of the
differences observed at the CpG-SNP may reflect the
effects of nearby CpGs resulting in non-zero values b3. In
the overall association (i.e., “CpG-SNP MWAS”) we tested
the null-hypothesis, H0: b2= b3= 0.

Permutation of CpG-SNP MWAS to study the null
distribution
To test if the lambda observed for the MDD CpG-SNP

MWAS was caused by associations to the outcome vari-
able, or if it was caused by that the test statistic dis-
tribution did not follow the theoretical null we used
permutations. Using exactly the same dataset, we

performed MWAS for 100 permutations of the MDD
outcome variable and recorded the lambdas. Next, the
observed association P-values from the MDD CpG-SNP
MWAS were corrected for the average permutation-
obtained lambda.

Replication of cumulative MWAS signals by resampling
To study the significance of the cumulative MWAS

signals, we used the “ramwas7riskScoreCV” function in
RaMWAS. Specifically, the function uses elastic nets32–34

as implemented in the R Glmnet package. Elastic nets are
akin to multiple regression analysis but suitable for our
scenario where the number of predictors is much larger
than the number of observations. Elastic nets were fitted
by setting the alpha parameter to zero (i.e., ridge regres-
sion that retains all predictive sites in the model). To
avoid overfitting, k-fold cross-validation is used35. That is,
the sample was randomly partitioned into k= 10 equal
sized subsamples. Of the k subsamples, k−1 are used as a
“training” set to fit the elastic net and obtain weights for
each predictive methylation site. The estimated weights
are then used in the remaining “test” set to predict the
outcome from the methylation data. By alternating the
subjects used in the training and test sets, predictions are
obtained for all subjects in the study. RaMWAS repeats
the entire cycle of CpG-SNP selection through MWAS
followed by estimation of prediction weights using elastic
nets for each of the k-folds. Because both the selection of
CpG-SNPs and estimation of their weights are not affec-
ted by the participants in the test set, we obtain unbiased
predictions of the outcome for each subject. Furthermore,
the score of CpG-SNPs is for an important part deter-
mined by the number of CpGs. To capture only effects
associated with MDD, we removed the effect of the
number of CpGs from the methylation score prior to
conducting the “in sample” replication. By testing whether
these methylation predictions are significantly correlated
with actual MDD status, we performed an “in sample”
replication of the cumulative MWAS signal.

Permutation-based enrichment test of overlap
To perform enrichment tests of the overlap between

datasets we used the “shiftR” R-package. shiftR first maps
the two datasets to each other based on chromosomal
location. In our analyses, no flanking regions were used.
Thus, for SNPs we considered a single base position and
for CpGs we considered two bases. Next, the P-values are
used to cross-classify each mapped marker in the two
datasets as being in the top or bottom. Based on the
resulting 2 by 2 tables as input, shiftR tests the null
hypothesis that the enrichment odds ratio equals 1. To
perform these test, shiftR uses circular permutations36.
Specifically, through fast bitwise operations, it shifts the
mapping of the two datasets by a single random integer in
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each permutation. This approach to generate the
empirical test statistic distribution under the null
hypothesis preserves the correlational structure of the
data. We used 1 million permutations for each test.
Multiple thresholds can be specified to define “top find-
ings” (i.e., for our analyses we used the top 1 and 5%). To
account for this “multiple testing”, the same thresholds
are used in the permutations where the test statistic dis-
tribution under the null hypothesis is generated from the
most significant (combination of) thresholds.

Three GWAS
Three independent (meta-analysis of) GWASs were

recently reported for MDD or related phenotypes. Similar
to the phenotyping in the NESDA sample, the 23andMe
study12 and the study by the Converge Consortium37

determined phenotype status using information about
current or prior MDD diagnosis. In contrast, the GWAS
meta-analysis performed by the Social Science Genetics
Association Consortium (SSGAC)11 studied depressive
symptoms, which for the majority of the individuals
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Fig. 1 Overview of possible scenarios for the regression lines. Keeping the b0 and b1 parameters constant while altering the b2 and b3
parameters result in nine possible scenarios for the regression lines. The b0 parameter is kept at 0.2 and b1 (the meQTL effect) is equal to 1 for all plots.
The value for the b2 parameter (the dose effect) was altered between a value equal to zero (0; left column), a positive value (0.5; middle column), and
a negative value (−0.5; right column). Similarly, the value for the b3 parameter (the local effect) was altered between a value equal to zero (0; top
row), a positive value (0.25; middle row), and a negative value (−0.25; bottom row). A non-zero value for b3 means that the locus is affected by a case-
control differences from nearby CpGs (i.e., a “local effect”). This effects is independent of the effect from b2 and can either enhance or (partly) diminish
the dose effect
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(>105,000 individuals out of 161,460) were assessed based
on self-reported frequency an individual had experienced
feelings of unenthusiasm/disinterest and depression/
hopelessness during the past 2 weeks. Thus, this assess-
ment was not a clinical diagnosis of depression nor a
validated method for assessing depression symptoms. In
contrast, when SSGAC studied neuroticism, an MDD-
related phenotype, the status for the majority of indivi-
duals was assessed using a validated questionnaire that
applied different harmonized neuroticism assessment
batteries (n= 63,661) and a 12-item version of the
Eysenck Personality Inventory Neuroticism38 (n=
107,245). Therefore, for the purpose of comparison with
our MWAS for MDD, we used the SSGAC GWAS meta-
analysis results of neuroticism11.
For calculating the enrichment test statistic, shiftR

classifies markers as being among the top vs. bottom
results. However, from the 23andMe study, we could only
get access to the P-values from the top 10,000 SNPs. To
address this restriction we used SNPs retained in the
multiple Psychiatric Genetic Consortia (http://www.med.
unc.edu/pgc) studies after quality control. After removing
the 10,000 top 23andMe SNPs, we assumed that these

common and QC’ed SNPs were likely tested or were in
LD with tested SNPs in the 23andMe study but yielded P-
values lower than those of the top 10,000. The top 10,000
SNPs all had P-values < 10−5. To define a second
threshold for the 23andMe study, we also selected the 745
SNPs with P-values < 10−8. To account for this “multiple
testing”, the same two thresholds were used in the per-
mutations. To maximize the compatibility of the analysis,
all GWAS datasets were subjected to the same procedure
as used for the 23andMe study.

Results
Methylome-wide CpG-SNP analysis
We utilized the methylation data in combination with

genotype information from the same individuals to per-
form a MWAS involving 970,414 common CpG-SNPs.
Permutations of the MWAS generated an average lambda
of 1.02 with a 95% confidence interval from 1.0087 to
1.0321. Thus, as shown in the Q-Q plot (Fig. 2a), the
slightly inflated lambda (lambda= 1.062) observed for the
MDD CpG-SNP MWAS is likely caused by a combination
of true associations and by that the test statistic dis-
tribution did not follow the theoretical null distribution.

Fig. 2 Q-Q plots and Manhattan plot of CpG-SNP MWAS. a Quantile-Quantile plot of the CpG-SNP MWAS before correction. The observed P-
values, on a –log10 scale, are plotted against their expected values (gray main diagonal line) under the null hypothesis assuming none of the sites
have an effect. Yellow lines indicate the 95% confidence intervals (CI). b Quantile-Quantile plot of the CpG-SNP MWAS after correction for
permutation-obtained lambda. The deviation of P-values from the main diagonal indicates that, even after correction, there are potentially many
markers associated with MDD. c Manhattan plot of the CpG-SNP MWAS. The plot shows the MWAS P-values on a –log10 scale (y-axis) by their
chromosomal location (x-axis). The dashed line marks the threshold for suggestively significant findings (P= 1 × 10−5)
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As it would be practically non-feasible (too time-con-
suming) to obtain permutation P-values for each site we
instead control for the deviation in the theoretical null
distribution. Thus, the P-values were corrected for the
average permutation-obtained lambda (Fig. 2b).
The Manhattan plot (Fig. 2c) shows 27 suggestively

significant loci (P < 1.00 × 10−5 after lambda correction)
across the genome (Table 1). In Fig. S1, we show the
regression plots for all the 27 sites. Twenty-five (92.6%) of
the sites showed that the methylation levels were

dependent on the number of CpG alleles (i.e., there was a
significant meQTL effect) and 23 sites (85.2%) showed
that this effect was different between cases and controls
(i.e., there was a significant CpG-SNP dose effect). Thus,
the associations observed for the two sites lacking CpG-
SNP dose effects, as well as for the two sites that did not
show significant meQTL effects, are likely caused by local
effects from nearby CpGs.
Focusing on the 23 CpG-SNPs with both meQTL and

CpG-SNP dose effects, we identified five sites (21.7%) with

Table 1 CpG-SNP MWAS findings with P < 1.00e-5

Chr. Position (bp) Gene meQTL effect CpG-SNP dose effect Local effect CpG-SNP MWAS

Beta P-value Beta P-value Beta P-value Corrected P-value

4* 111,642,419 0.7905 5.38E-17 −0.5752 2.17E-07 0.0131 8.22E-01 1.37E-07

6*R 89,399,125 RNGTT 0.5802 6.54E-12 −0.4285 1.15E-05 0.0439 3.75E-01 8.11E-07

7*R 50,638,462 0.1557 3.21E-02 −0.3998 4.50E-06 0.0005 9.93E-01 8.14E-07

16* 11,045,718 CLEC16A 0.5358 2.39E-12 −0.201 2.29E-02 −0.1615 3.28E-03 1.09E-06

21 15,628,668 ABCC13 0.5026 2.10E-10 0.4714 7.79E-07 −0.0467 3.95E-01 1.48E-06

6*R 89,399,133 RNGTT 0.5226 3.51E-10 −0.4055 2.61E-05 0.0489 3.18E-01 1.56E-06

15 73,204,661 0.5514 6.76E-20 0.2885 3.53E-05 0.017 7.15E-01 1.68E-06

2 121,561,733 GLI2 0.3263 1.27E-08 0.277 3.59E-05 −0.0625 3.64E-01 1.80E-06

6* 160,652,677 SLC22A2 1.2566 2.99E-70 −0.3981 4.86E-07 0.057 1.79E-01 2.03E-06

7* R 152,831,050 0.8992 1.91E-46 −0.2612 2.25E-04 −0.3831 3.00E-07 2.47E-06

3* 62,786,520 CADPS 1.3587 1.30E-80 −0.3623 2.48E-06 0.0072 8.45E-01 2.51E-06

2 231,351,298 SP100 0.7877 8.99E-46 0.2316 2.33E-04 0.0265 5.81E-01 2.63E-06

19* 28,066,083 1.0848 7.70E-90 −0.1779 2.38E-03 −0.0676 1.18E-01 2.84E-06

5 12,652,832 CT49 0.7771 4.22E-49 0.2577 2.53E-05 0.0061 8.82E-01 2.88E-06

8* 80,627,057 1.0881 2.56E-104 −0.1471 5.42E-03 −0.0544 2.58E-01 3.27E-06

8* 25,147,472 DOCK5 1.1061 5.52E-58 −0.2184 4.19E-03 −0.0949 6.20E-02 3.48E-06

8* 3,190,003 CSMD1 0.4985 2.96E-16 −0.1445 4.05E-02 −0.1214 7.17E-02 4.28E-06

10 83,266,584 0.0338 5.95E-01 −0.3749 5.65E-07 0.3099 7.66E-05 4.37E-06

4 13,762,888 0.0642 2.36E-01 0.0668 2.95E-01 −0.212 4.16E-06 4.49E-06

1* R 221,200,361 0.7162 5.21E-27 −0.2521 1.15E-03 −0.2787 7.41E-07 5.15E-06

10* R 116,028,591 VWA2 0.2869 3.87E-05 −0.2984 2.68E-04 −0.239 1.81E-06 5.75E-06

4 R 8,327,194 0.5927 2.07E-16 0.0094 9.10E-01 0.2675 1.12E-04 6.41E-06

14 90,682,467 0.8614 6.29E-66 −0.0534 3.30E-01 −0.1368 1.96E-02 6.94E-06

6* R 107,694,468 PDSS2 0.4479 9.31E-09 −0.4037 7.64E-06 −0.0267 6.10E-01 7.20E-06

14* R 53,232,347 STYX 0.9249 6.43E-75 −0.2267 3.52E-05 −0.3222 1.00E-06 7.49E-06

8* R 61,460,116 RAB2A 0.1289 4.16E-02 −0.3582 1.56E-06 −0.1248 2.28E-03 8.09E-06

3* 54,329,568 CACNA2D3 0.7707 3.49E-43 −0.2019 1.52E-03 −0.0461 3.62E-01 8.74E-06

The overall association tests both the CpG-SNP dose effect (b2) and local effect or H0: b2= b3= 0, meQTL tests H0: b1= 0, CpG-SNP dose effect tests H0: b2= 0, and
local effect tests H0: b3= 0. All data corresponds to the effect of the CpG creating allele. R indicates that the SNP destroys the CpG allele in the reference genome, and
thus the data was converted to reflect the effect of the CpG creating allele. Asterisk indicates sites showing a distinct pattern where methylation increases with the
number of CpG alleles present (positive meQTL effect) but where this increase was attenuated in cases compared to controls (negative CpG-SNP dose effect)
Chr. chromosome
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a positive dose effect. These sites showed a consistent
pattern where the case-control difference gets bigger with
more CpG-creating alleles but where the cases show
higher methylation levels than the controls. The reaming
18 sites (78.3%) showed a negative dose effect. Thus, the
negative dose effect occurred significantly more often (P
= 0.0040) than expected by chance. A negative dose effect
translates to (Fig. 1, right column) a case-control differ-
ence that gets bigger with more CpG-creating alleles and
where the cases show lower methylation levels than the
controls. As was shown in Fig. 1, the CpG-SNP MWAS
associations (detected with MBD-Seq data) is in addition
to a meQTL effect and a dose effect, also influenced by the
local effect from nearby CpGs. This local effect can both
enhance or diminish the CpG-SNP dose effect.
The deviation of the observed P-values from the main

diagonal, observed in the Q-Q plot (Fig. 2b) after cor-
rection for artificial inflation, suggests multiple sites are
potentially associated with MDD. To study the sig-
nificance of the cumulative CpG-SNP MWAS signal for
large portions of the top markers, we used a resampling
approach that fits elastic nets and employs k-fold cross-
validation to avoid overfitting and obtain an unbiased
estimate of the cumulative effect across markers. Results
showed that the cumulative association was significant (P
= 4.01 × 10−8), with the signal coming from the top
15,000 markers.

Overlap between CpG-SNP MWAS and GWAS
When comparing our MWAS results with three recent

GWAS, a significant, or trend toward, enrichment was
observed for all three GWASs when using the top 1% of
results (the 1% threshold) for the CpG-SNP MWAS and
the most stringent threshold for each of the three GWAS
(Table 2). The highest enrichment was observed with the
23andMe study (P= 4.9 × 10−3, OR= 5.00) followed by
SSGAC (P= 3.8 × 10−2, OR= 1.42) and Converge (P=
8.1 × 10−2, OR= 1.36). The overlap included 55 CpG-
SNP sites (Table S2). The most significant site (P= 4.40 ×
10−3) in the CpG-SNP MWAS that overlapped with the

GWAS data was located in the Roundabout, axon gui-
dance receptor, homolog 2 gene (ROBO2). The over-
lapping CpG-SNPs included 26 genes present in GO.
These genes were overrepresented (P < 0.01) in 12 level-5
GO terms (Table 3). The most significant term (P=
4.57 × 10−4) was “Regulation of synapse organization”
which, among other genes, included ROBO2.

Discussion
Here we present the first MWAS of common CpG-

SNPs (CpGs created/destroyed by SNPs with minor allele
frequency > 10%) in MDD cases and controls. The
methylation data were generated using a sequencing-
based approach and involved 970,414 CpG-SNPs and
1132 individuals. Furthermore, we investigated the over-
lap of this study with recent GWAS for MDD, or related
phenotypes. The MWAS suggested that multiple sites are
potentially associated with MDD and resampling showed
that the cumulative signal replicated. Furthermore,
permutation-based enrichment tests suggested significant
overlap with top findings from the MWAS and recent
GWAS.

Methylome-wide CpG-SNP analysis
The majority of the associated CpG-SNPs that expres-

sed a significant meQTL effect and a significant dose
effect in the MWAS showed a distinct pattern where
methylation increased with the number of CpG alleles
present, but where this increase was attenuated in MDD
cases compared to controls. Thus, cases often showed less
methylation than controls at the differently methylated
loci. Many possible explanation may exist for this pattern.
However, consistent with a general function of DNA
methylation that protects the integrity of the genome by
inactivating DNA elements39,40, this pattern would be in
agreement with that a portion of potentially damaging
mutations might not be properly silenced in MDD cases.
Interestingly, the same pattern with less methylation
observed in cases than in controls has previously been
observed also in CpG-SNP studies for psychosis using
both blood and brain tissue31.

Overlap between CpG-SNP MWAS and GWAS
Many of the genes implicated by both the MWAS and

the GWASs are of critical importance for neuronal
function. Some of the overlapping gens have previously
been associated with psychiatric disorders. For example,
ROBO2 (roundabout, axon guidance receptor, homolog 2)
is critical for the maintenance of inhibitory synapses in
the adult ventral tegmental area, a brain region important
for the production of dopamine41, and has been impli-
cated in schizophrenia42–44 and bipolar depression45.
ASIC2 (acid-sensing, proton-gated, ion channel 2) plays a
role in neurotransmission46. DCC (deleted in colorectal

Table 2 Results from permutation-based enrichment
tests of CpG-SNP MWAS and recent GWAS

GWAS No. of

mapped sites

No. of

overlapping sites

Odds

ratio

P-value

23andMea 334,613 3 5.00 4.9 × 10−3

Converge 333,655 28 1.36 8.1 × 10−2

SSGAC 333,655 24 1.42 3.8 × 10−2

Strongest enrichment were detected using the top 1% threshold
aDue to limited access to the 23andMe GWAS data, instead of using thresholds
for 1 and 5% the top 745 and 10,000 findings were used. Please see the Methods
for details
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carcinoma—netrin 1 receptor) upregulation in prefrontal
cortex pyramidal neurons causes vulnerability to stress-
induced social avoidance and anhedonia in mouse, and
mutations in DCC have been associated with brain mal-
formation47. Furthermore, DCC has been suggested to
confer susceptibility to depression-like behaviors in mice
and humans48 and was recently associated with mood
instability, which has a strong genetic correlation to
MDD49. In addition, the netrin 1 pathway, which involves
DCC, has been identified as a candidate pathway for
MDD50. Critically, both ROBO2 and DCC interact in
opposing fashion and have strong roles in directing axon
pathfinding in developing neurons51,52. In summary, sev-
eral of the genes detected in the MWAS-GWAS overlap
serve critical biological functions of likely relevance to
MDD etiology.
The overlap between the CpG-SNP MWAS and GWAS

cannot be explained by the allele frequency differences
between cases and controls that produce GWAS signals.
It is true that methylation levels will be higher in the
group with the higher frequency of the SNP allele that
creates the CpG-SNP. However, these methylation dif-
ferences are fully accounted for by the effect of the SNP as
a “covariate” in the model we used for the CpG-SNP
MWAS. Indeed, performing a GWAS with only the SNPs
that were included in the CpG-SNP MWAS showed a
lambda of 0.995 without any strong association signals
(smallest P-value= 5.28 × 10−6). Thus, the CpG-SNP
MWAS and GWAS provide additional and independent
lines of evidence for the involvement of these loci in
MDD.

Conclusion
In the first CpG-SNP MWAS for MDD, we identified

27 suggestively significant sites. A significant number of
these sites showed a negative CpG-SNP dose effect with
less methylation in cases than controls. Furthermore, the
MWAS results were over-represented among findings
from three recent GWASs, which for example added
additional support for the involvement of DCC in MDD.
As the analysis approach prevents the methylation results
to be driven by allele frequency differences between cases
and controls, these results show that MWAS and GWAS
provide additional and independent lines of evidence for
the involvement of these loci in MDD. In conclusion,
CpG-SNP methylation studies of MDD can contribute
novel and biologically relevant information that comple-
ments previous findings detected by regular MWAS or
GWAS alone.

Availability of data and materials
Following local IRB approval individual level methyla-

tion data will be made available via dbGap (submission in
preparation).
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