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Identification of key genes and
mechanisms of epicardial
adipose tissue in patients with
diabetes through bioinformatic
analysis
Huiping Yang, Bingquan Xiong, Tianhua Xiong,
Dinghui Wang, Wenlong Yu, Bin Liu and Qiang She*

Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University,
Chongqing, China

Background: In recent years, peri-organ fat has emerged as a diagnostic

and therapeutic target in metabolic diseases, including diabetes mellitus.

Here, we performed a comprehensive analysis of epicardial adipose tissue

(EAT) transcriptome expression differences between diabetic and non-

diabetic participants and explored the possible mechanisms using various

bioinformatic tools.

Methods: RNA-seq datasets GSE108971 and GSE179455 for EAT between

diabetic and non-diabetic patients were obtained from the public functional

genomics database Gene Expression Omnibus (GEO). The differentially

expressed genes (DEGs) were identified using the R package DESeq2, then

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment were analyzed. Next, a PPI (protein–protein interaction)

network was constructed, and hub genes were mined using STRING and

Cytoscape. Additionally, CIBERSORT was used to analyze the immune cell

infiltration, and key transcription factors were predicted based on ChEA3.

Results: By comparing EAT samples between diabetic and non-diabetic

patients, a total of 238 DEGs were identified, including 161 upregulated genes

and 77 downregulated genes. A total of 10 genes (IL-1β, CD274, PDCD1, ITGAX,

PRDM1, LAG3, TNFRSF18, CCL20, IL1RN, and SPP1) were selected as hub

genes. GO and KEGG analysis showed that DEGs were mainly enriched in the

inflammatory response and cytokine activity. Immune cell infiltration analysis

indicated that macrophage M2 and T cells CD4 memory resting accounted for

the largest proportion of these immune cells. CSRNP1, RELB, NFKB2, SNAI1,

and FOSB were detected as potential transcription factors.

Conclusion: Comprehensive bioinformatic analysis was used to compare

the difference in EAT between diabetic and non-diabetic patients. Several

hub genes, transcription factors, and immune cell infiltration were identified.

Diabetic EAT is significantly different in the inflammatory response and
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cytokine activity. These findings may provide new targets for the diagnosis

and treatment of diabetes, as well as reduce potential cardiovascular

complications in diabetic patients through EAT modification.

KEYWORDS

bioinformatic analysis, diabetic, EAT, IL-1β, CD274, inflammatory response, Nf-κB,
immune infiltration

Introduction

Diabetes mellitus is a chronic metabolic disease
characterized by hyperglycemia and defective or resistant
insulin secretion. As people’s dietary habits and lifestyles
change, the prevalence of diabetes continues to rise (1).
A previous epidemiological study revealed that approximately
462 million people had type 2 diabetes (T2DM) in 2017, which
is equivalent to 6.28% of the world’s population (2), and more
than 1 million deaths can be attributed to diabetes every year,
making it the ninth leading cause of death. Meanwhile, people
with diabetes have a higher risk of cardiovascular disease
(3). Obesity, hypercholesterolemia, hypertriglyceridemia, and
elevated blood pressure are considered major risk factors for
combined cardiovascular disease in patients with diabetes (4).

Epicardial adipose tissue (EAT), a brown fat tissue (5)
located between the epicardium and myocardium and directly
surrounding the coronary arteries (6), is an active endocrine
organ (7). EAT can synthesize and secrete adipokines, free
fatty acids, chemokines, interleukins, etc. Studies have shown
that decreased expression of mitochondrial stress genes in
EAT in patients with coronary heart disease may aggravate
atherosclerosis (8). Due to the lack of fascia segmentation, EAT
shares the same blood circulation and microcirculation with
myocardium (9). Therefore, increased EAT mass causes a high
risk of cardiovascular disease and other metabolic syndrome
(10). Several studies suggest that the mass of EAT is higher in
diabetic patients than in non-diabetic patients, in spite of type
1 DM or type 2 DM, BMI, and total body fat (11, 12). Due
to its unique anatomical location and biological activity, EAT
can be an important risk factor involved in the development
of diabetic cardiovascular disease and leads to death (13).

Abbreviations: EAT, epicardial adipose tissue; GEO, Gene Expression
Omnibus; DEGs, differentially expressed genes; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; T2DM, type 2
diabetes; PPI, protein–protein interaction; TFs, transcription factors;
NCBI, National Center for Biotechnology Information; CABG, coronary
artery bypass grafting; VR, valve replacement; TFEA, transcription factor
enrichment analysis; BP, biological processes; CC, cell component;
MF, molecular function; CT, computed tomography; MRI, magnetic
resonance imaging; SAT, subcutaneous adipose tissue; EMT, epithelial to
mesenchymal transition.

Therefore, modification of EAT may be a therapeutic target to
reduce cardiovascular load in diabetic patients.

With the fast development of high throughput technologies,
the study of differences in gene expression profiles between
diseases and controls through gene microarrays or sequencing
technologies has become a powerful tool for screening
pathogenic genes and finding therapeutic targets (14).
Bioinformatics technology can integrate and analyze huge
amounts of molecular biology data to screen out changes in
gene expression, biological processes, and protein levels during
the development of diseases (15) thus becoming a significant
tool in the diagnosis and treatment of clinical diseases. In
this study, we obtained two transcriptome expression datasets
GSE108971 and GSE179455 from Gene Expression Omnibus
(GEO) and deeply analyzed the functions of DEGs (differentially
expressed genes), related pathways, core modules, immune
infiltration, and potential transcription factors (TFs), aiming to
provide new targets for the diagnosis and treatment of diabetes,
as well as reduce potential cardiovascular complications in
diabetic patients through EAT modification.

Materials and methods

Original data acquisition

Transcriptome profiles, namely, GSE108971 and
GSE179455, were obtained from the National Center
for Biotechnology Information (NCBI) GEO database
(16). The RNA expression of GSE108971 was assayed on
GPL11154, and GSE179455 was assayed on GPL24676.
All participants had severe or non-severe coronary artery
disease and underwent elective open-chest coronary artery
bypass grafting (CABG), heart valve replacement (VR),
or combined (CABG/VR). Participants were divided into
two groups based on whether they had T2DM. EAT
was collected over the body of the right ventricle or
proximal right coronary artery. The GSE108971 dataset
consisted of 8 EAT samples from 5 diabetic and 3 non-
diabetic human patients. The GSE179455 dataset included
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12 EAT samples from 5 diabetic participants and 7
samples from controls.

Data pre-processing by DESeq2

First, raw counts of the two datasets were annotated
with official gene symbols using the annotations file from
the Ensembl database. The count files were merged into one
file through a Perl script. DESeq2, designed for count data,
provides methods to test for differential expression by the use of
negative binomial generalized linear models (17). The estimates
of dispersion and logarithmic fold changes incorporate data-
driven prior distributions. Here, we used the R software (version
4.1.21) package “DESeq2” to obtain DEGs between diabetic and
non-diabetic groups. Then, we performed minimal prefiltering
to keep only rows that had at least 10 reads in total. We used
the DESeqDataSetFromMatrix function to construct the input
matrix. Subsequently, DESeq2 estimated the size factors of each
gene to normalize and batch correct the sequencing depth and
RNA composition. Next, we adjusted the variance by applying
a variance stabilizing transformation (VST) to the normalized
count to improve PCA visualization and hierarchical clustering.
The PCA plot showed that the intracluster difference of a single
sample GSM5418471 from GSE179455 was many times larger
than the intercluster differences in the data (Supplementary
Figure 1). Therefore, we removed this single outlier and reran
the DESeq2 analysis. We also used the limma package to
visualize the effect of batch-effect removal. Details for data
processing, Perl script, and R analysis scripts are shown in
Supplementary Datasheet 1.

Identification of differentially
expressed genes

The DEGs between diabetic and non-diabetic samples were
identified using the “DESeq2” package in R using an expression
count profile. P-value < 0.01 and | log2FC| > 1 were considered
statistically significant. Visualization of DEGs was realized by a
volcano map and heatmap using the R packages “ggpubr” (18)
and “pheatmap.”

Gene ontology and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analysis of
differentially expressed genes

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID2) is a powerful online tool to provide

1 https://www.R-project.org/

2 http://David.ncifcrf.gov/home.jsp

systematic and comprehensive functional annotation
information for the large-scale gene or protein lists (19).
In this study, Gene Ontology (GO) terms (including biological
process, molecular function, and cellular component) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment were analyzed using DAVID (version 6.8). The
threshold was set at a P-value < 0.05.

Establishment and analysis of
protein–protein interaction network

The Search Tool for the Retrieval of Interacting Genes
(STRING3) is an online database of known and predicted
protein–protein interactions (20). In this study, the protein–
protein interaction (PPI) network of the above-mentioned
DEGs was constructed using STRING (version 4.8), with a
threshold of medium confidence ≥ 0.4. Cytoscape (version
3.9.1) is an open-source software project for integrating and
visualizing molecular interaction networks (21). CytoHubba
(version 0.1), a plug-in for Cytoscape, predicts and explores
important nodes and subnetworks using 11 topological
algorithms (22). Finally, 10 genes of the PPI network were
selected as hub genes according to the degree score through
MCC algorithms. Then, GO term analysis of these hub genes
was carried out using DAVID. In addition, two significant
modules were identified based on the molecular complex
detection (MCODE) plug-in, an algorithm that detects densely
connected regions in large PPI networks (23). The inclusion
criteria were degree cutoff = 2, node score cutoff = 0.2,
K-core = 2, and maximum depth = 100.

Immune cell infiltration analysis

CIBERSORT, an online analytic tool from the Alizadeh
Lab and Newman Lab, estimates the abundances of immune
cell types (24) using gene expression data. The above-
mentioned gene expression normalized profile was uploaded to
CIBERSORT, and the percentages of 22 kinds of immune cells
(mainly B cells, T cells, NK cells, monocytes, and macrophages)
were analyzed using the deconvolution algorithm. Then, bar
plots, heatmaps, co-heatmaps, and violin plots were used to
visualize the immune infiltration results through R.

Transcription factors prediction and
analysis

Transcription factors are a class of protein molecules
that perform the function of regulating gene expression by

3 http://string-db.org
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recognizing specific DNA sequences. ChEA34 is a web-based
transcription factor enrichment analysis (TFEA) tool that ranks
TFs associated with submitted gene lists (25). It assembles
ENCODE, ReMap, and some independently published CHIP-
seq data and also integrates transcription factor co-expression
data within RNA-seq data from GTEx, TCGA, and ARCHS4. In
this study, the DEGs list was submitted to ChEA3, and the top 5
TFs were identified.

Results

Preprocessing of datasets

In this study, 9 EAT samples of diabetic patients and
10 samples of non-diabetic patients from GSE108971 and
GSE179455 were finally included and analyzed. The RNA
expression raw counts were normalized and batch corrected.
Figure 1A shows that the standard deviation is roughly
constant along the whole dynamic range for the variance

4 https://amp.pharm.mssm.edu/ChEA3

stabilized data. The dispersion plot in Figure 1B shows the
final estimates shrunk from the gene-wise estimates toward
the fitted estimates. The cluster dendrogram in Figure 1D
shows that the overall correlation between samples was high
(>0.9), indicating that there were no other outlier samples.
Supplementary Figure 2 shows that samples from two batches
were separated. While the limma package visualized the
removal of batch-effect, the samples were clustered together
after batch correction (Figure 1C). In summary, these plots
elaborated that our data were of good quality and that
differential expression analysis could be performed after
preprocessing.

Identification of differentially
expressed genes in diabetic epicardial
adipose tissue

The inclusion criteria for DEGs were P-value < 0.01
and | log2FC| > 1. Then, the differential expression analysis
was performed using DESeq2. Heatmap visualized significant

FIGURE 1

Preprocessing of the two datasets. (A) Effects of transformation on the variance. (B) Dispersion plot. (C) PCA plot after batch corrected.
(D) Cluster dendrogram of 19 samples.
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differences in gene expression between diabetic and non-
diabetic EAT (Figure 2A). Finally, a total of 238 DEGs
were identified, including 161 upregulated genes and 77
downregulated genes (Figures 2B,C).

Gene ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analysis of differentially
expressed genes

Database for Annotation, Visualization, and Integrated
Discovery was used to identify enriched biological themes (GO
terms and KEGG pathways). P-value < 0.05 was regarded
as statistically significant. GO analysis results showed that
changes in biological processes (BP) were mainly enriched
in the inflammatory response and cellular response to tumor
necrosis factor (Figure 3A). Changes in cell components
(CC) were mainly enriched in the extracellular region and

extracellular space. Changes in molecular function (MF)
were mainly enriched in integrin binding and cytokine
activity. More details of GO analysis results are shown in
Table 1. KEGG pathway analysis revealed that DEGs were
mainly enriched in cytokine–cytokine receptor interaction,
IL-17 signaling pathway, and VEGF signaling pathway
(Figure 3B and Table 2). The top 3 functional pathway
analyses mapped the corresponding genes are shown in
Figure 3C.

Protein–protein interaction network
construction and hub genes
recognition

The PPI network of DEGs was constructed using
STRING with a medium confidence ≥ 0.4 and visualized
using Cytoscape (Figure 4). In total, 149 nodes and 254
edges were involved in this PPI network. Then, 10 genes

FIGURE 2

Identification of all differentially expressed genes (DEGs) between diabetic and non-diabetic EAT. (A) The heatmap of DEGs. Red represents
upregulated genes; blue represents downregulated genes. (B) The volcano plot of 238 DEGs. Upregulated genes were in red dots;
downregulated genes were in blue dots. P-value < 0.01 and | log2FC| > 1. (C) Numbers of DEGs. 161 genes were upregulated; 77 genes were
downregulated. DEGs, differentially expressed genes; EAT, epicardial adipose tissue.
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(IL1B, CD274, PDCD1, ITGAX, PRDM1, LAG3, TNFRSF18,
CCL20, IL1RN, and SPP1) were selected as hub genes using
plugin cytoHubba (Figures 5A,B). The abbreviations, full
names, and detailed functions of hub genes are shown in
Table 3. We also identified two core modules using MCODE
(Figures 5C,D).

Immune cell infiltration analysis

Immune cell infiltrate deconvolution was obtained from 9
diabetic and 10 non-diabetic EAT using CIBERSORT analysis.
Among 22 immune cell types, 21 kinds were detected in
one or more patients, except for dendritic cells resting
(Figures 6A,B). Interestingly, macrophage M2 and T cells
CD4 memory resting made up the largest proportion of these
immune cells. Correlation analysis among 20 immune cell
types revealed that the activated dendritic cells and macrophage
M0 had the strongest positive correlation (γ = 0.88), while

the resting and activated NK cells had the strongest negative
correlation (γ = –0.68) (Figure 6C). Additionally, the analysis
of the ratio in all types of immune cells showed that
the number of mast cells activated in diabetic EAT was
significantly higher than that in non-diabetic EAT (P < 0.05)
(Figure 6D).

Transcription factors prediction and
analysis

Transcription factors were predicted using the online TFEA
tool ChEA3. The DEGs list was submitted to the web page, and
then 5 potential TFs were obtained according to mean rank
by combining multiple databases (Table 4). The smaller the
mean rank, the higher the certainty of prediction. The top 5
predicted TFs were CSRNP1, RELB, NFKB2, SNAI1, and FOSB.
The TFs-DEGs regulatory network and GO analysis are shown
in Figure 7.

FIGURE 3

Gene Ontology and KEGG pathway enrichment analysis of DEGs between diabetic and non-diabetic EAT. (A) The significant GO terms
(biological process, cellular component, and molecular function) of 238 DEGs. (B) The significant KEGG pathway analysis of DEGs.
P-value < 0.05. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. (C) Functional pathway analysis of corresponding
genes and the top 3 related pathways.
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Discussion

Diabetes mellitus is a group of metabolic diseases
characterized by a chronic increase in blood glucose levels.
Currently, the prevalence and incidence of diabetes mellitus
are rising dramatically worldwide and have become an
important cause of cardiovascular disease (26). Visceral

TABLE 1 Gene Ontology (GO) functional enrichment analysis of
differentially expressed genes (DEGs).

Term Count P-value

Biological process

GO:0006954∼inflammatory response 18 5.07E-06

GO:0071356∼cellular response to tumor
necrosis factor

9 2.35E-04

GO:0007267∼cell-cell signaling 11 3.13E-04

GO:0042493∼response to drug 12 5.54E-04

GO:0098609∼cell-cell adhesion 9 0.001525

GO:0070301∼cellular response to hydrogen
peroxide

6 0.001549

GO:0006915∼apoptotic process 17 0.001631

GO:0071222∼cellular response to
lipopolysaccharide

9 0.001674

GO:0009615∼response to virus 7 0.001697

GO:0009410∼response to xenobiotic stimulus 10 0.00181

Cellular component

GO:0005576∼extracellular region 50 4.54E-07

GO:0005615∼extracellular space 43 1.58E-05

GO:0005886∼plasma membrane 83 6.84E-05

GO:0005856∼cytoskeleton 16 0.00104

GO:0009986∼cell surface 17 0.002009

GO:0031012∼extracellular matrix 10 0.002436

GO:0016323∼basolateral plasma membrane 9 0.005082

GO:0005887∼integral component of plasma
membrane

28 0.00884

GO:0001533∼cornified envelope 4 0.027448

GO:0009897∼external side of plasma
membrane

11 0.03066

Molecular function

GO:0005178∼integrin binding 9 6.84E-04

GO:0015349∼thyroid hormone
transmembrane transporter activity

3 2.83E-03

GO:0005125∼cytokine activity 8 8.10E-03

GO:0005262∼calcium channel activity 5 9.58E-03

GO:0004222∼metalloendopeptidase activity 6 0.014207

GO:0003700∼transcription factor activity,
sequence-specific DNA binding

13 0.032941

GO:0015173∼aromatic amino acid
transmembrane transporter activity

2 0.035146

GO:0005516∼calmodulin binding 7 0.035777

GO:0002020∼protease binding 5 0.040826

GO:0016286∼small conductance
calcium-activated potassium channel activity

2 0.046586

obesity is associated with metabolic disorders, including
insulin resistance, impaired glucose tolerance, T2DM, and
polycystic ovary syndrome (27). The role of visceral fat in the
development and progression of T2DM has been extensively
studied. Recently, the relationship between EAT and diabetes
has attracted a great deal of interest. EAT is the visceral adipose
tissue located between the myocardium and epicardium. EAT is
an active endocrine organ, capable of secreting many cytokines,
growth factors, vasoactive factors, anti-inflammatory, and pro-
inflammatory factors (28), and its thickness can be measured
using echocardiography, cardiac multidetector computed
tomography (CT), and cardiac magnetic resonance imaging
(MRI) (29). In patients with heart failure, increased UPR and
autophagy in EAT compared to subcutaneous adipose tissue
(SAT) are expected to be an early biomarker for identifying
cardiomyopathy and a new therapeutic target (30).

Studies have shown that EAT thickness has the potential
to predict glucose abnormalities, with significantly increased
EAT thickness in patients with insulin resistance and impaired
glucose tolerance (31). EAT thickness is higher in type 2
diabetic patients with subclinical atherosclerosis (32). Moreover,
increased trans and bound fatty acids in EAT may contribute to
the development and progression of atherosclerosis in diabetic
patients (33). Notably, it has been shown that EAT overexpresses
lipoprotein receptors, such as low-density lipoprotein receptor
1 and very low-density lipoprotein receptor, playing a role
in the changes in lipid metabolism normally associated with
type 2 diabetes (34). In general, EAT mass and thickness are
significantly increased in diabetic patients, and EAT could be a
new independent predictor of diabetes as well as a new target
for diabetes drug therapy (35), providing new horizons for
clinical treatment. Moreover, EAT lacks tissue demarcation with
the myocardium and shares an unobstructed microcirculation,
thus becoming sensors for adverse systemic inflammation and
metabolic disorders in the heart (36). Thus, it is of great
significance to explore the difference in gene expression between
diabetic and non-diabetic EAT.

In this study, bioinformatics analysis was used to determine
the transcriptional effect of T2DM on EAT. Our results
showed that the gene expression of EAT in diabetic patients is
significantly different from that of non-diabetic patients. A total
of 238 DEGs were identified with 161 genes upregulated and 77
genes downregulated. Genes associated with inflammation and
cytokines are significantly altered in diabetic EAT.

Gene ontology analysis demonstrated that DEGs were
mainly enriched in the inflammatory response, cellular response
to tumor necrosis factor, cytokine activity, and cell-cell
signaling. KEGG pathway analysis showed that cytokine–
cytokine receptor interaction, IL-17 signaling pathway, and
VEGF signaling pathway were highly enriched in the diabetic
EAT samples. Inflammation is thought to contribute to the
development and maintenance of many chronic diseases,
including atherosclerosis and diabetes (37). Previous studies
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TABLE 2 The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs.

Term Count Genes P-value

hsa04060: Cytokine-cytokine receptor
interaction

13 IL11, IL1RN, TNFRSF12A, MSTN, TNFSF15,
CCL20, TNFRSF18, INHBA, TNFRSF10D,

IL18RAP, CCL7, IL1B, CRLF2

6.96E-04

hsa04370: VEGF signaling pathway 5 NOS3, SH2D2A, JMJD7-PLA2G4B, SPHK1,
NFATC2

0.008589

hsa04657: IL-17 signaling pathway 6 FOSL1, CCL7, CCL20, IL1B, LCN2, TNFAIP3 0.009305

hsa04979: Cholesterol metabolism 4 ABCG8, LIPG, APOA1, APOB 0.030981

hsa04512: ECM-receptor interaction 5 TNN, ITGA8, SPP1, THBS1, GP5 0.032578

hsa05235: PD-L1 expression and PD-1
checkpoint pathway in cancer

5 MAP2K3, CD274, NFATC2, PDCD1, BATF 0.033761

FIGURE 4

Protein–protein interaction network of proteins constructed by the DEGs. The network included 149 nodes and 254 edges. Medium
confidence = 0.40; PPI, protein–protein interaction.
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FIGURE 5

Identification of hub genes and two core modules. (A) The top 10 most significant hub genes identified using the plugin cytoHubba. (B) GO
analysis of 10 hub genes. (C,D) Two key modules identified by MODE.

have shown that EAT is a source of multiple inflammatory
mediators and cytokines in patients at high risk for heart disease
(38, 39). Therefore, diabetes may activate genes in different
pathways of EAT to respond to inflammation and accelerate the
progression of cardiovascular disease.

Then, the PPI network of DEGs was constructed; IL-
1β, CD274, PDCD1, ITGAX, PRDM1, LAG3, TNFRSF18,
CCL20, IL1RN, and SPP1 were selected as hub genes.
We speculate that these differential molecules in EAT may
be involved in the pathophysiological processes of diabetic
cardiovascular complications.

The most significant gene in the diabetic EAT was IL-1β.
IL-1β is an important mediator of the inflammatory response,
participating in cell proliferation, differentiation, and apoptosis.
IL-1β is crucially involved in the pathogenesis of coronary
atherosclerotic diseases (CAD) (40). Anti-inflammatory therapy
targeting IL-1β reduced cardiovascular events in a randomized
trial (41). In addition, regional IL-1β in EAT was an independent
risk factor for persistent atrial fibrillation (42). Therefore, IL-1β

in EAT might be a target to reduce cardiovascular inflammation
and complication. CD274 and its ligands (PD-L1 and PD-L2)
deliver inhibitory signals that regulate the balance between

T-cell activation, tolerance, and immunopathology (43). It is
critical for cancer immune evasion and thus has become one of
the major targets in anticancer immunotherapy (44). T2DM is
a kind of chronic metabolic disease and can alter the immune
status of EAT. CD274 may become an immunotherapy target
in diabetes-related cardiovascular complications. PDCD1 is
a ligand of CD274 and is involved in safeguarding against
autoimmunity (45). In addition, LAG3 may inhibit antigen-
specific T-cell activation in synergy with PDCD1/PD-1, possibly
by acting as a coreceptor for PDCD1/PD-1 (by similarity).
ITGAX encodes the integrin alpha X-chain protein. However,
little is known about the role of ITGAX in EAT, and further
research and exploration are needed in the future. PRDM1
encodes a protein that acts as a repressor of ILβ gene expression.
We speculate that PRDM1 may participate in the autoimmunity
response in diabetic EAT. TNFRSF18 encodes a member of the
TNF-receptor superfamily. TNF has been identified as a key
regulator of the inflammatory response (46). CCL20 belongs
to the subfamily of small cytokine CC genes. Cytokines are a
family of secreted proteins involved in the immunoregulatory
and inflammatory processes. An observational study showed
that CCL20 had a strong association with vascular endothelial
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TABLE 3 Functions of 10 hub genes.

Gene symbol Official full name Function

IL-1β Interleukin 1 beta The protein encoded by this gene is a member of the interleukin 1 cytokine family.
This cytokine is an important mediator of the inflammatory response, and is involved

in a variety of cellular activities, including cell proliferation, differentiation, and
apoptosis. Patients with severe Coronavirus Disease 2019 (COVID-19) present

elevated levels of pro-inflammatory cytokines such as IL-1B in bronchial alveolar
lavage fluid samples. The lung damage induced by the SARS-CoV-2 is to a large

extent, a result of the inflammatory response promoted by cytokines such as IL-1β.

CD274 CD274 molecule This gene encodes an immune inhibitory receptor ligand that is expressed by
hematopoietic and non-hematopoietic cells, such as T cells and B cells and various

types of tumor cells. Interaction of this ligand with its receptor inhibits T-cell
activation and cytokine production. During infection or inflammation of normal
tissue, this interaction is important for preventing autoimmunity by maintaining

homeostasis of the immune response. In tumor microenvironments, this interaction
provides an immune escape for tumor cells through cytotoxic T-cell inactivation.

PDCD1 Programmed Cell Death 1 PDCD1 is an immune-inhibitory receptor expressed in activated T cells; it is involved
in the regulation of T-cell functions, including those of effector CD8 + T cells.
PDCD1 is expressed in many types of tumors including melanomas, and has

demonstrated to play a role in anti-tumor immunity. Moreover, this protein has been
shown to be involved in safeguarding against autoimmunity, however, it can also
contribute to the inhibition of effective anti-tumor and anti-microbial immunity.

ITGAX Integrin Subunit Alpha X This gene encodes the integrin alpha X chain protein. This protein combines with the
beta 2 chain (ITGB2) to form a leukocyte-specific integrin referred to as

inactivated-C3b (iC3b) receptor 4 (CR4). The alpha X beta 2 complex seems to
overlap the properties of the alpha M beta 2 integrin in the adherence of neutrophils

and monocytes to stimulated endothelium cells, and in the phagocytosis of
complement coated particles.

PRDM1 PR/SET Domain 1 This gene encodes a protein that acts as a repressor of beta-interferon gene
expression. Transcription factor that mediates a transcriptional program in various

innate and adaptive immune tissue-resident lymphocyte T cell types such as
tissue-resident memory T, natural killer and natural killer T cells and negatively

regulates gene expression of proteins that promote the egress of tissue-resident T-cell
populations from non-lymphoid organs.

LAG3 Lymphocyte Activating 3 LAG3 protein: Inhibitory receptor on antigen activated T-cells. Following TCR
engagement, LAG3 associates with CD3-TCR in the immunological synapse and

directly inhibits T-cell activation (By similarity). May inhibit antigen-specific T-cell
activation in synergy with PDCD1/PD-1, possibly by acting as a coreceptor for

PDCD1/PD-1 (By similarity).

TNFRSF18 TNF Receptor Superfamily
Member 18

This gene encodes a member of the TNF-receptor superfamily. The encoded receptor
has been shown to have increased expression upon T-cell activation, and it is thought
to play a key role in dominant immunological self-tolerance maintained by CD25(+)

CD4(+) regulatory T cells. Knockout studies in mice also suggest the role of this
receptor is in the regulation of CD3-driven T-cell activation and programmed cell

death.

CCL20 C-C Motif Chemokine
Ligand 20

This antimicrobial gene belongs to the subfamily of small cytokine CC genes.
Cytokines are a family of secreted proteins involved in immunoregulatory and

inflammatory processes. The CC cytokines are proteins characterized by two adjacent
cysteines. The protein encoded by this gene displays chemotactic activity for

lymphocytes and can repress proliferation of myeloid progenitors.

IL1RN Interleukin 1 Receptor
Antagonist

The protein encoded by this gene is a member of the interleukin 1 cytokine family.
This protein inhibits the activities of interleukin 1, alpha (IL1A) and interleukin 1,

beta (IL1B), and modulates a variety of interleukin 1 related immune and
inflammatory responses, particularly in the acute phase of infection and

inflammation.

SPP1 Secreted Phosphoprotein 1 The protein encoded by this gene is involved in the attachment of osteoclasts to the
mineralized bone matrix. The encoded protein is secreted and binds hydroxyapatite
with high affinity. The osteoclast vitronectin receptor is found in the cell membrane
and may be involved in the binding to this protein. Among its related pathways are
FGF signaling pathway and Toll-Like receptor Signaling Pathways. Gene Ontology

(GO) annotations related to this gene include cytokine activity and extracellular
matrix binding.
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FIGURE 6

Immune cells infiltration analysis of DEGs between diabetic and non-diabetic EAT using CIBERSORT. (A) The relative percentage of 21 immune
cell types. (B) The heatmap of 21 subgroups of immune cells. (C) The correlation analysis among 21 immune cell types. (D) The difference in
immune infiltration between diabetic and non-diabetic EAT samples. Blue columns represent non-diabetic group; red columns represent the
diabetic group.

inflammation, reflected systemic inflammation (47), and thus
may become a potential biomarker of impaired vascular
function in diabetes. Moreover, the CCR6-CCL20 inhibitor has
been identified as possessing a high medicinal potential to
treat autoimmune and inflammatory diseases (48). The protein
encoded by IL1RN is a member of the IL-1 cytokine family.
It inhibits the activities of IL-α and IL-1β and modulates a
variety of IL-1-related immune and inflammatory responses.
SPP1 is involved in the attachment of osteoclasts to the
mineralized bone matrix. Its encoded protein is also a cytokine
that upregulates the expression of IFN-γ and IL-12. SPP1
may play an important role in acute myocardial infarction
after ischemia and reperfusion injury (49). Moreover, SPP1
promotes human cardiac fibroblast fibrosis by reducing p27
expression through the regulation of the PI3K/Akt signaling
pathway (50). We speculate that SPP1 may be involved in
inflammatory phenotypic alterations in the diabetic EAT by
interacting with cytokines.

In addition, our study identified a number of transcription
factors of 238 DEGs. The top 5 were CSRNP1, RELB,
NFKB2, SNAI1, and FOSB. CSRNP1 encodes a protein that
localizes to the nucleus. Expression of this gene is induced

in response to the elevated levels of axin and has the
function of a tumor suppressor. RELB, also known as the
NF-κB subunit, is a pleiotropic transcription factor. Also,
NFKB2 encodes a subunit of the transcription factor complex
nuclear factor NFκB. The NFκB complex is expressed in
numerous cell types and functions as a central activator of
genes involved in inflammation and immune function (51).
SNAI1 is a zinc-finger transcriptional repressor involved in
the induction of the epithelial to mesenchymal transition
(EMT), formation and maintenance of embryonic mesoderm,
growth arrest, survival, and cell migration (52). The FOS gene
family contains 4 members: FOS, FOSB, FOSL1, and FOSL2.

TABLE 4 The top 5 potential transcription factors of DEGs.

Rank TFs Score Overlapping genes

1 CSRNP1 10.5 23

2 RELB 10.5 54

3 NFKB2 13.0 55

4 SNAI1 14.0 39

5 FOSB 15.0 40
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FIGURE 7

Transcription factors-DEGs coregulatory networks and GO analysis.

The FOS proteins have been implicated as regulators of cell
proliferation, differentiation, and transformation (53). A study
showed that SIRT3 could mediate the intricate profibrotic
and proinflammatory responses of cardiac cells through the
modulation of the FOS pathway (54).

We also analyzed the immune infiltration in the EAT
microenvironment using CIBERSORT. Many studies have been
performed showing increased EAT in diabetic patients, but
in-depth studies on immune cell types and inflammatory
mediator components are lacking. Our analysis found that
there was little difference in the proportion of various types
of immune cells between diabetic and non-diabetic EAT. This
may be attributed to two reasons. First, all patients included
in the study had coronary heart disease or valvular heart
disease and underwent elective open-heart surgery, which
may have triggered the immune response of the organism.
Second, almost all of the diabetic patients included in the
study were taking the glucose-lowering drug metformin, thus
suppressing the immune and inflammatory responses in the
body (55). Thus, diabetes appears to alter certain inflammatory
mediators and cytokines of EAT rather than generate an
effect on the immune phenotype. In addition, macrophage
M2 and T cells CD4 resting are the primary immune cell
types present in EAT.

The anatomical location of EAT is extremely close to the
coronary arteries and myocardium, so the vasoactive molecules,
adipokines, and growth factors it synthesizes are directly
involved in the development of cardiovascular disease through
paracrine and vascular secretion (56). A study using Bulk RNA-
seq revealed that genes related to lipid metabolism (GYS2,
GPAT3, CRAT, FASN, ACADVL, DGAT1, DGAT2, NAT8L,

and SCD) and genes related to adipogenesis (HES1, MXD3,
NR4A2, RGS2, PPP1R15B, ADAMTS1, CEBPD, and DM7A)
were significantly altered in the EAT of diabetic patients. The
levels of immune mediators (TNF-α, IFN-γ, IL-1, IL-6, leptin,
etc.) were also extremely elevated (57). Previous studies have
found increased secretion of leptin and IL-6 and decreased
secretion of cardioprotective lipocalin in EAT in patients with
coronary artery disease, leading to immune cell activation
and inflammatory responses (58). Diabetes alters fatty acid
composition in EAT, and glucose uptake and lipid metabolism
are impaired in EAT in heart failure patients with diabetes
(59). This is in line with the direction of our findings. We
venture to speculate that the above-mentioned molecules may
serve as modification targets for EAT to mitigate the risk of
cardiovascular complications by improving the inflammatory
and lipid metabolic status of diabetic patients. In the future,
more research is needed on the inflammatory infiltration and
immune cell microenvironment of EAT in diabetic patients.

Limitations

Our study first reported differences in gene expression of
EAT between diabetic and non-diabetic patients, but some
limitations still remain. First, the small sample size may have
biased the analysis results. Second, EAT can only be sampled
during cardiac surgery and cannot be collected from healthy
volunteers. Thus, it is difficult to obtain EAT tissues from
humans for experimental validation at the molecular level due
to ethical and moral restrictions.
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Conclusion

In this study, comprehensive bioinformatic analysis was
used to identify the differences in EAT between diabetic and
non-diabetic patients. IL-1β, CD274, PDCD1, ITGAX, PRDM1,
LAG3, TNFRSF18, CCL20, IL1RN, and SPP1 were mined as hub
genes; related pathways included a response to inflammation
response and cytokine–cytokine receptor interaction. CSRNP1,
RELB, NFKB2, SNAI1, and FOSB were regarded as key
transcription factors. Moreover, the immune cells (including
macrophage M2, B cell naïve, T cells CD8, and mast cells
activated) may participate in inflammatory and metabolic
alterations of EAT in diabetic patients. Diabetes mainly alters
the inflammatory response and cytokine activity of EAT and
may have adverse cardiovascular effects through the unique
geographic location and secretory function of EAT.
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