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Abstract: Optimization of extrusion-based bioprinting (EBB) parameters have been systematically
conducted through experimentation. However, the process is time- and resource-intensive and not
easily translatable to other laboratories. This study approaches EBB parameter optimization through
machine learning (ML) models trained using data collected from the published literature. We inves-
tigated regression-based and classification-based ML models and their abilities to predict printing
outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite
bioinks. In addition, we interrogated if regression-based models can predict suitable extrusion pres-
sure given the desired cell viability when keeping other experimental parameters constant. We also
compared models trained across data from general literature to models trained across data from one
literature source that utilized alginate and gelatin bioinks. The results indicate that models trained on
large amounts of data can impart physical trends on cell viability, filament diameter, and extrusion
pressure seen in past literature. Regression models trained on the larger dataset also predict cell
viability closer to experimental values for material concentration combinations not seen in training
data of the single-paper-based regression models. While the best performing classification models
for cell viability can achieve an average prediction accuracy of 70%, the cell viability predictions
remained constant despite altering input parameter combinations. Our trained models on bioprinting
literature data show the potential usage of applying ML models to bioprinting experimental design.

Keywords: machine learning; artificial intelligence; classification; regression; random forest; extrusion-
based bioprinting; 3D bioprinting; alginate; gelatin; 3D printing

1. Introduction

Three-dimensional (3D) bioprinting is a bottom-up fabrication approach to create
tissue-mimetic structures through the precise deposition of biomaterials. Extrusion-based
bioprinting (EBB) is a subset of this technique, dispensing biomaterials through a con-
tainer using pressure exerted pneumatically or mechanically. Due to its ability to produce
constructs with the desired structural stability, precision in microstructure creation and
cellular arrangement, and versatility in biomaterial, cell density, and additive usage, EBB
has emerged as a leading technology for the regenerative medicine field. In particular, EBB
has been utilized for damaged organ or tissue replacement or in vitro tissue creation for
drug development and disease modelling.

When live cells are embedded within the biomaterials used, a combination of mate-
rial parameters and printer settings impact the cells’ viability when extruded, including
nozzle outlet diameter, material concentration, and operating temperature. In addition,
these parameters affect the ability of the biomaterials to produce precise geometries, also
known as printability. Thus far, the optimization of EBB parameters has been mainly
conducted through systematic wet-lab experimentation. This process can be laborious,
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and the information gained can be difficult to translate towards different biomaterials and
printers.

A potential solution to expedite EBB experimental design is through machine learn-
ing (ML). ML is a subset of artificial intelligence models that can analytically identify
relationships among input parameters and predict desired outcomes based on said re-
lationships. The application of ML to improve additive manufacturing processes has
been well documented, including the predecessor technology to EBB, fused deposition
modeling (FDM) [1]. ML has mainly been used to optimize printing and geometric design
parameters to further improve material properties [2–4] and optimize material usage [5].
Structural and geometric detection have also been aided through the use of ML through
optical [6] and acoustic sensors [7]. The inclusion of ML in 3D bioprinting is relatively new,
although unique contributions have been made thus far. Shi et al. implemented a multi-
layer perceptron-based artificial neural network trained with computational fluid dynamics
simulations of droplet formation and flow behavior to predict classification-based droplet
behavior using voltage, nozzle diameter, bioink surface tension, and bioink viscosity input
parameters for a drop-on-demand bioprinting system [8]. Experimental validation of six
different input parameter combinations that were predicted to produce single, satellite,
or no droplets confirmed for each case that experimental results matched with droplet
formation predictions. The same group developed a multi-objective optimization design
method using gradient descent-optimized, fully connected neural networks to form single
droplets based on optimized voltage, nozzle diameter, bioink viscosity, and bioink surface
tension in comparison to randomly set voltages, bioinks with arbitrary surface tensions and
viscosities, and printer nozzle diameter [9]. Specific to EBB, ML has been used for iterative
optimization of printability. Lasso regression was used to optimize printed structures in a
support bath structure using both the underlying physical parameters that are not directly
manipulated along with the directly manipulated experimental variables [10]. The benefit
of using this model was that a specific combination of construct height, support bath mate-
rial concentration, and retraction distance was found to retain print fidelity while printing at
a faster speed. Another iterative study applied Bayesian Optimization on an initial dataset
of printability scores based on material and EBB printing parameters, of which parameter
combinations were predicted with new experimental results to improve printability scores
until an optimal parameter combination was met with the highest possible printability
score [11]. This process resulted in needing 4 to 47 experiments to find optimal parameter
combinations compared to using a total possible number of experiments ranging from 6000
to 10,000 determined by the Bayesian Optimization algorithm. Conev et al. also exam-
ined random forest regressor and classifier capabilities in determining printed construct
quality using a previous EBB dataset containing systematic examination of poly(propylene
fumarate) [12,13]. Results indicated satisfactory labeling performance from both random
forest models. The common theme amongst the above studies is that living cells were not
used. Incorporating cellular parameters and predicting cellular performance in bioprinted
constructs appears to be the next step in ML incorporation in bioprinting. Lee et al. tested
cell viability based on collagen, hyaluronic acid, and fibrin formulations predicted using
the relative least general generalization algorithm along with multiple regression modeling
for printability [14]. On top of maintaining suitable shape fidelity, cell-laden scaffolds with
optimized material concentrations exhibited increasing cell proliferation and migration up
to 28 days after printing. Xu et al. developed a model based on ensemble learning for cell
viability prediction in stereolithography-based bioprinting [15]. Prediction performance on
10% of the dataset used showed a coefficient of determination (R2) score of 0.953, indicating
high goodness-of-fit for viability prediction of new parameter combinations.

In this study, we applied ML to assist in experimental designs of alginate/gelatin-
based hydrogel with cells, of which we will refer to as bioink. The database we utilized
contains bioink material concentration, solvent used, polymer crosslinking information,
printing settings, cell viability, and printability results accrued from 75 EBB manuscripts
over the past 13 years. Shown through previously mentioned studies, data used for
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bioprinting ML model training and testing has only been gathered from and applied
within group. To our knowledge, our compilation of experimental data and parameters
reported from different bioprinting laboratories for ML applications is the first of its kind.
The database contains 617 unique instances of cell viability and 339 unique instances of
printability. We analyzed the ability of ML regression and classification techniques to
accurately and precisely predict cell viability and printability outcomes based on certain
combinations of material, biological, and printer parameters. Furthermore, we used
the trained models to provide cell viability and printability predictions based on input
parameters for an extrusion based bioprinter.

2. Materials and Methods
2.1. Dataset Creation

A datasets of 617 instances corresponding to a unique cell viability value and a dataset
with 339 instances corresponding to a unique filament diameter value were collected
from 75 EBB papers found through the search terms TS = Extrusion AND (Bioprinting
OR Bioink) and TS = (Extrusion OR Extrud*) AND (Bioprint* OR Bioink*) AND (alginate*)
AND (gelatin*) AND (viability OR viable* OR surviv* OR death OR proliferat*) in Web of
Science. Material concentration, solvent usage, crosslinking mechanism and duration,
printer settings, observation duration, cell viability, and filament diameter were recorded
for each unique instance of either cell viability and/or filament diameter. When cell
viability data was presented in graphical form, PlotDigitzer software (http://plotdigitizer.
sourceforge.net, last accessed on 22 May 2021) was used to estimate cell viability values in
relation to the viability scales they were presented against. Filament diameter values were
extracted (via PlotDigitizer) from images provided in different manuscripts corresponding
to different times of observation after printing. The datasets created are available through
the Open Science Framework [16].

2.2. Machine Learning Experimental Design

We framed the prediction of cell viability, filament diameter, and extrusion pressure as
supervised regression-based and classification-based questions. In the regression models, a
value of cell viability and filament diameter was predicted based on the training set and
compared with the true cell viability and filament diameter values of the test set. For cell
viability classification models, a binary class was created from the numerical cell viability
data by setting a threshold for acceptable cell viability to be equal to or above 80.0%. The
cell viability class was “Acceptable Cell Viability” with values of “Y” for yes and “N” for no.
For filament diameter classification models, a binary class was created from the numeric
filament diameter data by setting a threshold for tolerable filament diameter equal or above
10.0% error [17,18]. This was determined by calculating the absolute difference between
filament diameter and nozzle diameter and dividing by nozzle diameter. The class was
named “Acceptable Filament Diameter” with values of “Y” for yes and “N” for no based
on above criteria. At hydrostatic pressures above 100 kPa, cell metabolic behavior can
become negatively affected [19]. In cell viability instances with stated extrusion pressures,
instances with a pressure above 100 kPa were deemed to have unacceptable extrusion
pressure, while the rest were deemed acceptable. We evaluated three regression learners
in this study: (1) support vector regression, (2) linear regression, and (3) random forest
regression; and three classification learners: (1) random forest classification, (2) logistic
regression classification, and (3) support vector machines.

Evaluation

Metrics used for evaluating regression model performance were the coefficient of
determination (R2) and mean squared error (MSE). R2 is a measure of goodness of fit of
the model on provided data. It indicates the proportion of the variance in the dependent
variable that is explained by independent variables. A perfectly fit model will have a R2

value of one. MSE indicates the average of the squares of errors. Errors are the differences
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between actual values and predicted values. As MSE values become closer to zero, the
lower the overall error becomes for model fit onto data. One regression model was chosen
for prediction usage based on the highest coefficient R2 values and lowest MSE over k-fold
cross validation training evaluation up to k = 10 relative to other models.

Metrics used for evaluating classification model performance were accuracy, precision,
and recall scores. Accuracy represents the percentage of correctly predicted outcomes for
a sample. Precision is calculated by the ratio of true positive prediction over the sum of
true positive and false positive predictions. Precision represents the proportion of correct
predictions over sum of all predictions of the same label. Recall is similar to precision
calculations, but the amount of false positives is replaced by false negatives in predictions.
This value represents the proportion of all instances of the same label that are predicted
correctly. Overall, a classification model was chosen for prediction usage based on the
highest average prediction accuracy over k-fold cross validation training evaluation up to
k = 10.

Chosen models were then utilized to predict acceptable cell viability and filament
diameter from material and printing parameter combinations feasible to conduct in our
laboratory for experimental verification of the predicted values. In addition, extrudability
of low viscosity and high viscosity bioink was also tested using materials and material
concentrations within range of the dataset by predicting the extrusion pressure that would
produce the desired cell viability and filament diameters.

2.3. Data Preprocessing

Within the dataset, null instances for bioink temperature (i.e., syringe temperature)
and printing substrate temperature were set at 22 ◦C as the majority of experiments were
conducted or were assumed to be conducted at room temperature. Additional variables
with more than 50% null values were removed from the dataset and non-printing instances
were also removed (instances with cast molded bioink or other methods with cells cultured
within non-extruded hydrogel). Variables with only null instances and instances of zero
units were removed prior to model usage as available imputation methods of null values
would not provide an accurate representation of actual quantitative values of the variables
used in respective manuscripts. Additional variables with null values and non-zero
instances were imputed through k-nearest-neighbors imputing with a neighbor range of 30.
Categorical data was encoded through one-hot-encoding. Feature selection was performed
by conducting feature importance analysis on variables within the cell viability and filament
diameter datasets using random forest regression. For regression model performance
evaluation, continuous variable instances were normalized through the MinMaxScaler
function (Sci-kit Learn package, Python 3.7).

2.4. Dataset Training Size Variation

Cross-validation of datasets was used to test training size variation by varying how
many folds the training data was divided into. The greater the number of folds, the greater
the number of instances used for training. For each model, performance metrics were
compared by k-fold cross validation with k values of 2, 5, and 10.

2.5. Intrastudy Model Creation and Usage

A comparison of general dataset predictive ability was done with a selected study
that used alginate and gelatin multicomponent hydrogels [20]. Sixteen instances of unique
cell viability outcomes from material and equipment parameters were used to create
a random forest classification and regression model, as well as a linear regression and
support vector regression model for cell viability. Filament diameter trend was also
produced from four filament diameter data points corresponding to different material
and pressure combinations through multiple regression. Two cell viability values, one
based on parameter values within range of the intrastudy dataset, and another based on
parameter values out of range of the intrastudy dataset, were predicted for and compared
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against predicted values of the overall dataset. Filament diameter of constructs printed
with an alginate and gelatin multicomponent bioink was compared against the intrastudy
regression model as well as with the random forest regression model predictions made
for the same material and equipment parameters. Since only 4 filament diameter values
were provided in the specific study, a fitted regression model was used. A multiple linear
regression was fit to data correlating extrusion pressure and alginate concentration with
filament diameter, resulting in a regression equation, Equation (1), of:

z = Ax + By + C (1)

where A = 333.26, B = −0.245, and C = −781.4. The variable x represents the alginate
concentration (% w/v), y is the extrusion pressure (kPa), and z is the filament diameter
(µm).

2.6. Material Preparation

Sodium alginate powder (Sigma W201502, St. Louis, MO, USA) and gelatin (type
B, 300 bloom derived from bovine, Sigma G9382, MO, USA) were sterilized under UV
radiation for 30 min. Afterwards, the powders were dissolved in complete cell culture
media composed of Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Grand Island,
NY, USA), 10% fetal bovine serum (FBS, Life Technologies, Grand Island, NY, USA) and
1% penicillin-streptomycin (Gibco, Grand Island, NY, USA). The mixtures were heated to
50 ◦C and magnetically stirred for 4 h. Complete mixtures were then vortexed for 1 min
and centrifuged at 3000 rpm for 3 min to eliminate bubbles. Hydrogels were stored at
4 ◦C prior to experimentation. Concentrations of sodium alginate (Alg) and gelatin (Gel)
mixtures in complete media are denoted as Alg/Gel in units of % w/v. The extrusion of
bioinks and biomaterial inks were conducted at 22.5 ◦C. The 100 mM CaCl2 solution used
to crosslink printed constructs was prepared by dissolving CaCl2 (Sigma-Aldrich, St. Louis,
MO, USA) in complete cell culture media and sterile filtering through a 0.22 µm syringe
filter (Millipore, Cork, Ireland).

2.7. Cell Culture

Mouse neuroblastoma cells (N2A, CCL-131 cell line, American Type Culture Collection,
ATCC) were cultured at 37 ◦C in humidified 5% CO2 atmosphere using complete cell culture
media in T75 cell flasks (Falcon™, Corning, Durham, NC, USA). Cells were passaged every
4 to 5 days with 0.05% trypsin/EDTA (Gibco, Grand Island, NY, USA), and a portion was
split for use to prepare bioinks for printing.

2.8. Construct Bioprinting

Alg/Gel hydrogels were heated up to 37 ◦C prior to mixing with cells. Cell suspen-
sions containing 1.0 × 106 trypsinized cells were centrifuged to create cell pellets for mixing.
A cell density of 1.0 × 106 cells/mL was chosen due to it being the most common cell
density reported amongst studies used to compile the training dataset. To this cell pellet,
1 mL of liquified hydrogel was added using a 10 mL syringe (BD Falcon, Franklin Lakes,
NJ, USA) and then triturated using a pipet for 30 s to mix thoroughly. The mixture was
then aspirated into a 10 mL syringe and transferred to a 3 mL cartridge (Nordson EFD, East
Providence, RI, USA) via a female-to-female luer lock connection. The bioink was then held
at room temperature to allow for complete gelation. 3/4 Alg/Gel was held for 90 min, 3/7
Alg/Gel was held for 30 min, and 8/20 Alg/Gel was held for 20 min at room temperature
after mixing with cells at 37 ◦C. The duration of complete gelation depends on the concen-
tration of sodium alginate and gelatin used. Once gelation was reached, the 3 mL cartridge
was then secured onto an extrusion-based bioprinter (INKREDIBLE, Cellink, Boston, MA,
USA). For cell viability testing, 80 mm × 80 mm × 0.8 mm models were printed with 22G
conical nozzles (Nordson EFD, East Providence, RI, USA) at a feed rate of 10 mm/s into 24
well cell culture plates at 22.5 ◦C. For confocal microscopy imaging, models were printed
onto sterile cover glass slides. Directly after printing completion, pictures of constructs
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were taken, and constructs were exposed to 100 mM CaCl2 crosslinking solution for 1 min.
Afterwards, remaining crosslinking solution was aspirated and constructs were rinsed with
Dulbecco’s PBS (DPBS, 7.4 pH, Gibco, Paisley, UK). The constructs were then incubated at
37 ◦C at 5% CO2 with complete cell culture medium.

2.9. Live/Dead Staining

N2A cell viability was determined by staining cells with Hoechst 33342 (40.6 µM)
and propidium iodide (19.7 µM) dye solutions (Readyprobes, ThermoFisher, Eugene, OR,
USA) following the manufacturer’s protocol. Briefly, cell culture media was aspirated and
replaced with DPBS containing 1 drop of Hoechst 33342 and 1 drop of propidium iodide and
then incubated for 15 min at 37 ◦C at 5% CO2 with no light exposure. Excitation/emission
wavelengths of 358/461 nm and excitation/emission wavelengths of 580/604 nm were
used to image Hoechst 33342 and propidium-iodide-stained cells, respectively, using an
imaging plate reader (Cytation 3, BioTek, Winooski, VT, USA). Z-stack images of stained
cells in bioink were taken through confocal microscopy (LSM 710, Zeiss, Jena, Germany).
Magnification of plate reader images was set at 4× while confocal microscopy image
magnification was set at 10×. Cell counting for cell viability was conducted using Cytation
3 Cell Imaging software. Cell viability was determined by dividing the total number of
cells (total number of Hoechst 33342-stained cells subtracted by the number of dead cells
stained from propidium iodide) by the total number of Hoechst 33342-stained cells.

2.10. Filament Diameter Measurements

Constructs were imaged using an imaging plate reader (Cytation 3, BioTek, Winooski,
VT, USA). Collected images were analyzed using ImageJ (https://imagej.nih.gov/ij/, last
accessed on 22 May 2021) for filament diameter length.

2.11. Extrusion Pressure Measurements

Using cell viability dataset instances with available extrusion pressure values (353 in-
stances), random forest regression and linear regression models were created to predict
extrusion pressure values needed to extrude specific material concentrations to produce
80% cell viability. Bioinks of 3/4 Alg/Gel, 3/7 Alg/Gel and 8/20 Alg/Gel were used to
test extrusion pressure predictability within and near the edge of material concentration
bounds of the dataset used. Material preparation procedure for testing extrusion pressure
was the same as in Section 2.8.

2.12. Statistical Analysis

Cell viability, filament diameter, and extrusion pressure measurements were expressed
as mean ± standard deviation. Statistical significance between any two groups of either
cell viability, filament diameter, and extrusion pressure measurements were tested through
one-way ANOVA, with the significance level set as p < 0.05. Percent error was calculated
for experimental cell viability, filament diameter, and extrusion pressures as compared to
predicted values.

3. Results
3.1. Performance of Different Regression and Classification Models
3.1.1. Model Performance on Cell Viability

Amongst regression models, the random forest regression models for cell viability
predictions elicited higher R2 values while minimizing the average MSE (Figure 1).

https://imagej.nih.gov/ij/
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Both the logistic regression and support vector classification models elicited the same
performance values for accuracy, precision, and recall due to labeling all cell viability
classifications as acceptable cell viability during the model fitting process (Figure S1).
Feature importance testing based on decision trees generated from the random forest
tree models indicated relatively major effects from extrusion pressure, specific material
concentration, solvent choice, nozzle diameter, and printing temperatures for cell viability
predictions (Figure 3).
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3.1.2. Model Performance on Filament Diameter

Amongst regression models, random forest regression models for filament diameter
predictions also produced higher coefficients of determination while minimizing average
mean squared error (Figure 4).
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Similar to cell viability classification, when predicting acceptable filament diameter,
the random forest classification models produced higher prediction accuracy, precision,
and recall than the other models tested (Figure 5).
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The support vector classification model generated precision and recall scores of zero
due to labeling all filament diameter tolerance classifications as out of tolerance during the
model fitting process (Figure S2). Through feature importance analysis, nozzle diameter
was ranked as the most important feature affecting filament diameter model prediction
(Figure 6).
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3.1.3. Model Predictions Compared to Experimental Trends (Non-Primary Cells)

Holding all but one input parameter constant, including the time of observation at zero
days, both the random forest and linear regression models translated the impacts of several
physical variables onto prediction trends. The regression models predicted decreased cell
viability with increasing alginate concentration, increasing syringe temperature above
37 ◦C, or increasing extrusion pressure. The linear regression model also discerned trends
reflective of the dataset. Specifically, lower extrusion pressures resulted (1) in higher cell
viabilities, (2) when increasing syringe or cartridge temperature, (3) when increasing cell
density, (4) with lower gelatin concentrations, and (5) with larger nozzle diameters.

When predicting filament diameter, the random forest regression model predicted
decreasing filament diameters (1) when ionic crosslinking duration post-extrusion is above
9 min, (2) when extrusion pressure is increased up to 90 kPa, and (3) when nozzle diameter
is decreased.

The linear regression model further predicts smaller filament diameters when syringe
temperature, printing substrate temperature, gelatin concentration, CaCl2 concentration,
and ionic crosslinking duration increased individually. Furthermore, the filament diameter
increased with increasing alginate concentration when predicted with linear regression.
Using the random forest classification, the filament diameters produced were deemed to
be within tolerance when using nozzle diameters of 840 µm or larger.

3.1.4. Effect of Training Data Size on Cell Viability and Filament Diameter Predictions

Through increasing the number of cross validation folds, R2 increased while MSE
performance saw minimal change for two random forest regression and linear regression
on cell viability predictions (Figures S3 and S4). For random forest cell viability classi-
fication, we can see that accuracy, precision, and recall stayed consistent with increased
number of folds and in turn, training set size for cell viability (Figure S5). For filament
diameter modeling, random forest regression model saw minimal effects due to training
data size, while linear regression saw large increases in R2 and decreases in MSE as the
number of cross validation folds increased from two to five (Figures S6 and S7). Accuracy,
precision, and recall did not see significant changes regardless of increasing training data
size (Figures S8–S10).

3.2. Effect of Specified Training Data on Cell Viability and Filament Diameter
3.2.1. Effect on Cell Viability Predictions

Using the complete cell viability dataset for model training, the random forest regres-
sion model resulted in a predicted cell viability of 73.1% for a material combination of
3/4 Alg/Gel, 100 mM CaCl2 crosslinking solution with an exposure duration of 60 s, and
extrusion through a 22G conical nozzle at room temperature (22.5 ◦C). For another mate-
rial combination of 3/7 Alg/Gel, 100 mM CaCl2 crosslinking solution with an exposure
duration of 60 s, and extrusion through a 22G conical nozzle at room temperature (22.5 ◦C),
the random forest regression model predicted the same cell viability value of 71.7%.

A specific study was used to create an alginate- and gelatin-focused dataset for random
forest regression model training [17]. For 3/4 and 3/7 Alg/Gel, a random forest regression
model created from this specified dataset resulted in a cell viability prediction of 91% for
both material combinations when the extrusion pressure was set constant. The actual cell
viability of values gathered from live/dead staining showed a larger amount of dead cells
present directly after printing in 3/7 Alg/Gel than in 3/4 Alg/Gel constructs (Figure 7 and
Figures S11–S13).
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with Hoechst 33342, and red color represents propidium-iodide-stained dead cells. The scale in both
figures is 300 µm.

The resultant cell viability values for the 3/4 and 3/7 Alg/Gel constructs are 85.2 ± 9.1%
and 64.2 ± 10.6%, respectively (Table 1). The random forest classification, logistic regression,
and support vector regression models predicted acceptable cell viability for both material
conditions based on tested material concentration and printing parameters (Table S1). All
predictions were made keeping extrusion pressure constant at 95.4 kPa.

Table 1. Predicted cell viability values are compared against experimental values for corresponding material concentrations
of alginate and gelatin. Actual values represent the mean ± standard deviation for all samples (n = number of samples)
measured from at least three batches of Alg/Gel bioink.

Prediction Model Material and Material
Concentration (%w/v)

Predicted Cell
Viability (%)

Actual Cell Viability
(%) Error (%)

Random forest regression,
complete dataset

3/4 Alg/Gel 73.1 85.2 + 9.1 (n = 8) 16.6
3/7 Alg/Gel 71.7 64.2 ± 10.6 (n = 11) 10.5

Linear regression,
complete dataset

3/4 Alg/Gel 91.0 85.2 + 9.1 (n = 8) 6.37
3/7 Alg/Gel 91.0 64.2 ± 10.6 (n = 11) 29.5

Random forest regression,
intrastudy dataset

3/4 Alg/Gel 74.0 85.2 + 9.1 (n = 8) 15.1
3/7 Alg/Gel 75.3 64.2 ± 10.6 (n = 11) 14.7

Linear regression,
intrastudy dataset

3/4 Alg/Gel −25.9 85.2 + 9.1 (n = 8) 429
3/7 Alg/Gel −25.9 64.2 ± 10.6 (n = 11) 348

3.2.2. Effect on Filament Predictions

Using the complete filament diameter dataset for model training, the random forest
regression model resulted in predicted filament diameters of 1073 µm and 857 µm for 3/4
and 3/7 Alg/Gel, respectively (Table 2). Filaments from the constructs printed with the
3/4 Alg/Gel resulted in 1157 ± 102.2 µm diameter pre-crosslinking and 927.6 ± 106.0 µm
diameter after crosslinking. For the 3/7 Alg/Gel, the filament diameter pre-crosslinking
was measured at 817.0 ± 107.7 µm, while measuring at 707.2 ± 146.1 µm directly after
crosslinking (Figures 8 and 9).
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Table 2. Predicted filament diameter values are compared against experimental values for corresponding material concen-
trations of alginate and gelatin. Actual values represent the mean ± standard deviation for all samples (n = number of
samples) measured from at least three batches of Alg/Gel bioink.

Prediction Model Material
Concentration (%w/v)

Predicted Filament Diameter
(µm) Actual Value (µm) Error (%)

Random forest regression

3/4 Alg/Gel 1037.3 µm
(prediction pressure = 25 kPa) 927.6 ± 106.0 µm (n = 8) 10.6

3/4 Alg/Gel 752.2 µm
(predictive pressure = 103.3 kPa) 927.6 ± 106.0 µm (n = 8) 23.3

3/7 Alg/Gel 857.3 µm
(predictive pressure = 75 kPa) 707.2 ± 146.1 µm (n = 11) 17.5

3/7 Alg/Gel 752.2 µm
(prediction pressure = 103.3 kPa) 707.2 ± 146.1 µm (n = 11) 5.98

Linear regression

3/4 Alg/Gel 1275.8 µm
(prediction pressure = 25 kPa) 927.6 ± 106.0 µm (n = 8) 27.3

3/4 Alg/Gel 1149.0 µm
(prediction pressure = 103.3 kPa) 927.6 ± 106.0 µm (n = 8) 19.3

3/7 Alg/Gel 1187.1 µm
(prediction pressure = 75 kPa) 707.2 ± 146.1 µm (n = 11) 40.4

3/7 Alg/Gel 1141.3 µm
(prediction pressure = 103.3 kPa) 707.2 ± 146.1 µm (n = 11) 38.0

Intrastudy linear
regression

3/4 Alg/Gel 212.3 µm
(prediction pressure = 25 kPa) 927.6 ± 106.0 µm (n = 8) 337

3/7 Alg/Gel 200.0 µm
(prediction pressure = 75 kPa) 707.2 ± 146.1 µm (n = 11) 254Micromachines 2021, 12, x FOR PEER REVIEW 12 of 19 
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The percent errors of the crosslinked filament diameters with respect to nozzle di-
ameter (410 µm) is 126% and 72.5% for 3/4 Alg/Gel and 3/7 Alg/Gel constructs, respec-
tively, making the filament diameters out of tolerance. All classification models predicted
unacceptable filament diameter tolerance for both the 3/4 Alg/Gel and 3/7 Alg/Gel
combinations (Table S2).

3.3. Extrusion Pressure Recommendation Predictions

Both random forest regression and linear regression models indicated increased pres-
sure needed with higher alginate and gelatin concentrations, although the random forest
regression model predicted a lower range of extrusion pressures, while the linear regres-
sion model predicted a higher range. Based on feature importance rankings, substrate
temperature appears to be the most significant variable impacting extrusion pressure used
(Figure 10).
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regression modeling of extrusion pressure and (b) random forest classification modeling.

Constructs printed using 3/7 Alg/Gel required an average extrusion pressure of
71.7 kPa. Bioink with 8/20 Alg/Gel was not able to form printed constructs due to high
material viscosity, although over-deposited filament was extruded at an average pressure
of 208.3 kPa. As material concentrations increased, the prediction accuracy of the ran-
dom forest regression diminished while the prediction accuracy of the linear regression
improved, as noted by percent error calculations (Table 3). The random forest classification
model was able to predict acceptable extrusion pressure correctly for the 3/4 Alg/Gel
and the 8/20 Alg/Gel, but not for the 3/7 Alg/Gel. Meanwhile, logistic regression and
support vector classification models predicted that all material concentration combinations
printed under the same printing settings can result in using pressure within the acceptable
pressure range (Table S3). All model predictions were conducted with desired cell viability
set to 90% immediately after printing. In the cases of 3/4 Alg/Gel and 3/7 Alg/Gel, the
pressure needed for the extrusion and construct formation was smaller than predicted and
the resulting cell viabilities were also lower than 90% (Table 1).

Table 3. Predicted extrusion pressure required to deposit material are compared against experimental values for corre-
sponding material concentrations of alginate and gelatin. Actual values represent the mean ± standard deviation for all
samples (n = number of batches).

Prediction Model Material
Concentration (%w/v)

Predicted Extrusion
Pressure (kPa) Actual Value (kPa) Error (%)

Random forest regression 3/4 Alg/Gel 56.9 37.3 + 8.7 (n = 3) 34.4
Random forest regression 3/7 Alg/Gel 150.6 83.7 ± 4.2 (n = 3) 44.4
Random forest regression 8/20 Alg/Gel 150.6 208.3 ± 6.2 (n = 3) 38.3

Linear regression 3/4 Alg/Gel 140.8 37.3 + 8.7 (n = 3) 73.4
Linear regression 3/7 Alg/Gel 162.9 83.7 ± 4.2 (n = 3) 48.6
Linear regression 8/20 Alg/Gel 240.0 208.3 ± 6.2 (n = 3) 13.2
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4. Discussion

In this study, we approached the application of ML to bioprinting in two ways. First,
we applied regression and classification models to data derived from a single study, which
is more directly comparable to published studies on ML in bioprinting. In addition, we
went further and applied the same ML techniques to a larger dataset encompassing results
from 75 different studies to understand whether this data aggregation approach can effec-
tively widen the area of model applicability. The random forest regression, random forest
classification, and linear regression models created can be used to an extent in conjunction
with one another for outcome prediction as well as condition recommendation. Specifically,
the random forest classification models for cell viability and filament diameter predic-
tions were able to generate similar average model accuracy scores compared to previous
literature’s model performance accuracy also using random forest models [12]. Both the
random forest and linear regression models, more so the linear regression models, have
shown the ability to represent several physical phenomena that have been documented
in previous bioprinting or hydrogel studies. In particular, the general trends of increased
extrusion pressure and alginate concentration resulting in decreased cell viability predic-
tion values correlates with findings in previous literature that indicate increasing alginate
concentration results in decreased cell viability [21–23]. In other cases, trends of predicted
values oppose what is seen in the literature [24,25]. These trends include: (1) decreased cell
viability with increasing nozzle diameter, (2) increased cell viability with increasing gelatin
concentration, and (3) larger filament diameter in DMEM-based bioink compared to saline
solution-based bioink.

Feature importance ranking results indicated that cell density as a parameter did not
carry as great of a weight in the random forest predictive function for cell viability compared
to the other bioink and equipment parameters. Increasing cell density in bioink has been
shown to marginally improve cell viability in the short term (0 to 1 day post-printing) for
primary cells and stem cells [26,27]. Increasing cell density may also lead to an increase in
cell agglomerates. In cases with cell densities above 5.0 × 106 cells/mL, cell viability can
decrease drastically the longer printed constructs are cultured (7 to 21 days) [27]. This can
be due to the creation of hypoxic conditions for cells in inner areas of cell agglomerates,
which limits nutrient and waste transport through cell structure. In the cell viability dataset,
the correlation of cell density with cell viability does not result in notable trends when cell
density increases. Amongst the 617 instances used for cell viability model training, only
196 instances used cell densities above 5.0 × 106 cells/mL. Within those instances, 65.3%
of cell viabilities are acceptable (≥80%). This is a similar distribution to the cell viability
value distribution in the overall dataset, where 61.6% of cell viability values are deemed
acceptable (≥80%). In addition, the majority of unacceptable (<80%) cell viability amongst
instances containing more than 5.0 × 106 cells/mL corresponded with cell density values
between 5.0 to 10.0 × 106 cells/mL, while instances with higher cell concentrations saw
smaller portions of cell viability values being unacceptable.

Compared to other ML models created for bioprinting predictions, the regression
models created in this study provided lower R2 values and comparable errors with a
similar proportion of training data to test data, and the accuracy of the classification
models were lower as well [12,15]. A major reason for this is the difference in experiment
variation for the datasets used to create the models. Input parameters gathered from
published studies contained a limited number of independent variables due to the chosen
experimental design, which focused on answering a specific research question versus
parameter optimization. In addition, our dataset is inherently heterogeneous due to being
acquired from studies conducted using different testing conditions and printing strategies.
Comparatively, past studies contained larger amounts of data collected from controlled
experimental settings [12]. Not all of the input conditions used in developing the ML
models were reported in every study included in the dataset. Although missing data can
be estimated using imputation, this can lead to a misrepresentation of the features’ weight
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on the output parameters and consequently lead to worse performance metrics along with
prediction values that do not correlate with experimental results.

Previous EBB studies have shown that increasing pressure-induced shear stress
on cells can cause decreases in cell viability for both immortalized cell lines and stem
cells [17,28,29]. In a case with 10% w/v gelatin printed with HepG2 cells and 27 gauge con-
ical nozzles, cell viability notably decreased from 96% to 84% when the pressure increased
from 200 to 300 kPa [28]. Blaeser et al. indicated a notable decrease in the cell viability of
L929 fibroblasts encapsulated in alginate hydrogels when the average shear stress within
the printing orifice reached 5 kPa or above [29]. Specifically, cell viability dropped from
96% in cases with less than 5 kPa average shear stress to 91% cell viability within 5 to 10 kPa
and dropped further to 76% at higher shear stress values. In terms of pressure, a 5 kPa
shear stress value corresponded to a pressure between 100 and 150 kPa when a 300 µm
cylindrical valve is used along with an alginate concentration of 1.0% w/v. Since N2A
cells were used in the validation experiments, the cell viability behavior under shear stress
would be similar to previous studies also using non-primary cell lines. The random forest
classification was seen to produce varied prediction results in cases of primary cell usage
with conical nozzles. Testing the predicted effects of extrusion pressure on primary cells
printed through conical nozzles, cell viability was found to become unacceptable above
20 kPa for 3/5 Alg/Gel, while 3/8 Alg/Gel was found to have acceptable viability across
pressures from 0 to 300 kPa. Increasing alginate concentrations, 5/2 Alg/Gel also saw
unacceptable cell viability above 20 kPa, while 5/4 Alg/Gel saw unacceptable viability
only when above 270 kPa. When varying the syringe cartridge temperature for printing
primary cells, the 3/5 Alg/Gel bioink saw unacceptable cell viability at temperatures above
20 ◦C, while 3/8 Alg/Gel usage resulted in unacceptable cell viability at 36 ◦C or above.
Interestingly, a 5/2 Alg/Gel material concentration resulted in unacceptable cell viability
specifically at 23 ◦C as well as at temperatures above 36 ◦C, while all other temperatures
from 4 to 40 ◦C resulted in an acceptable cell viability. When gelatin concentration increased
to 4% w/v while alginate concentration remained constant at 5% w/v (5/4 Alg/Gel), all
predicted cell viability values up to 40 ◦C were acceptable. In the case of predicting suitable
extrusion pressure, the use of primary cells resulted in a decrease of around 20 kPa less
pressure needed for the same material concentration and printing setting as compared to
using non-primary cells. Overall, to elucidate more straightforward modeling of primary
cell viability behavior, more data gathered from studies using primary cells and straight
nozzles is needed to understand if nozzle geometry imparts different biological effects for
primary cells compared to non-primary cells.

Overall, the random forest regression models for cell viability, filament diameter, and
extrusion pressure resulted in predictions based on grouping. For example, when setting all
input parameters to constant except for gelatin concentration, the extrusion pressure was
predicted to be 233.9 kPa for parameter combinations where gelatin concentration is at 5%
w/v or above. This phenomenon is due to the random forest regression model’s tree-based
training approach, where numerous decision trees with different decision paths are created
and ensembled together to extract average prediction values from all trees’ prediction
outcomes. The function of the random forest regression models also contributes to the
much higher R2 value compared to the linear and support vector regression models trained
on the models as well. Since the decision trees created through random forest regression are
limited in the number of subsequent decision nodes, the predicted values across different
trees, when ensembled, can have values in very small ranges for different decision nodes,
which are then grouped together as the type of outcome. In this way, the model can result
in higher goodness-of-fit values than other curve-fit regressions. Comparatively, using a
curve fit-based regression model such as a linear regression or a support vector regression
did not output the same grouping phenomenon, but showed continuous data change.
Linear regression models also provided very comparable mean squared errors to random
forest regression.
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Models built from data collected from one study did not seem to be enough to generate
accurate predictions. The specific study used resulted in cell viability and filament diameter
predictions that produced greater percent errors relative to the experimental values as
compared to the models built on entire datasets. This is due to the study containing only
certain ranges and values of input parameters. When using models to predict outcomes
with conditions out of range of the training data, defaulting to the most common prediction
outcome or extrapolation will occur in tree-based or curve-fit based models, respectively
(Table 1). Unless the range of input parameters used for predictions lies within the range of
the trained model, data from multiple studies that cover the required ranges are needed.

For cell viability predictions, regression models hold promise for further development.
The random forest filament diameter regression model offers greater prediction accuracy
compared to the linear regression model based on the percent error from actual filament
diameter values. If the user knows the extrusion range suitable for their bioink, the filament
diameter predictions can become even more accurate (Table 2). Amongst all models, the
filament diameter prediction models mapped the closest to experimental results when
accounting for the prior knowledge of suitable pressure ranges to input for predictions.
Unlike the other predictive models, the nozzle diameter and extrusion pressure were
relatively much more impactful variables to the model (Figure 6) as compared to the
most important variables found through feature importance of the other random forest
models (Figures 3 and 10). For extrusion pressure predictions, the random forest regression
model underestimates the required extrusion pressure, while the linear regression model
overestimates the required pressure. The correction factors determined from the uncertainty
factor evaluation can be applied for these models to produce prediction outcomes closer
to the actual results. For the models in this study to be used effectively, users still need
to have a baseline knowledge of how material parameters and printing settings affect
cell viability, filament diameter, and extrusion pressure needed, such as in the case of the
filament diameter regression models. Based on the trends extracted from tuning different
parameters, future experiments could focus on collecting more data for the variables to
improve the predictive power of the models.

The nature of how cell viability values are derived and calculated can play a large
role in how representative they are of true biological conditions of cells within printed
constructs. In studies using live/dead staining to derive cell viability values, how large
the area of focus is on the construct for cell counting is accounted for. A standard area of
observation for a section of the construct filament is not provided. In most cases, it is not
clear at what focus the transverse plane of a filament is examined. Furthermore, whether
specific sections of a construct are used (e.g., the outer-boundary filament strands at an
intersection of filament in the middle of a construct) or randomly selected sections are
selected for cell viability measurements is not clear.

Cell viability can be determined by measuring the different endpoints, such as cell
membrane integrity, metabolic activity, and mode of death (apoptosis versus necrosis). A
majority of EBB studies utilize dye exclusion live/dead staining [30]; therefore, the cell
viability values in the dataset created for this study can be compared similarly amongst
each other. However, grouping cell viability values derived from different assays for
model creation may introduce variability due to the measurements of different biological
endpoints. Assays that use different mechanisms than live/dead staining dyes used
in this study (Calcein AM, propidium iodide, and ethidium homodimer), such as the
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) absorbance assay,
can provide different relative viability values from colorimetric readings as compared
to stained cell counting. Despite variations in the dye combinations and the disparate
measurement procedures for live/dead cell staining assays, the random forest regression
model’s predicted cell viability values fall within normal experimental ranges. Building
upon this study, a future direction can be to compare ML model robustness when trained
on data composed of other assays that measure the same cellular endpoints.
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Additional future directions of this work can be to apply experimental results to
improve quantitative predictions. The use of first principle calculations can be used to
estimate missing variables in the dataset. For example, the Power law or Herschel–Bulkley
fluid behavior modeling can be used to find non-Newtonian index values of selected
materials to then convert lengthwise and volumetric extrusion rates to missing extrusion
pressures, and vice versa [29,31–33]. Additional non-linear learners, such as k-nearest
neighbor classification and regression models, can be explored as models that generate
higher prediction performance than the existing models created.

5. Conclusions

In this study, machine-assisted EBB experimentation was examined through the
creation and evaluation of regression-based and classification machine learning models
on cell viability, filament diameter, and extrusion pressure. The training data was sourced
from literature in the EBB field to understand if different laboratory testing conditions can
be synergized for predictive usage under different testing conditions. Results indicated
that the generated classification models can elicit suitable accuracy and precision when
evaluated on testing data synthesized from literature, while classification and regression
models capture physical implications of material and printing settings on outcomes well.
Data gathered with a focus on parameters that elicit behavior trends in cell viability,
filament diameter, and extrusion pressure can strengthen the database used to produce
models that can provide higher accuracy predictions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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number of folds tested for (A) random forest regression, (B) linear regression, and (C) support vector
regression. Figure S4: Coefficient of determination (r2) values of cell viability regression models
based on the number of folds tested for (A) random forest regression, (B) linear regression, and (C)
support vector regression. Figure S5: (A) Accuracy, (B) precision, and (C) recall performance of the
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Coefficient of determination (r2) scores of filament diameter regression models based on the number
of folds tested for (A) random forest regression and (B) linear regression. Figure S7: Mean squared
error scores of filament diameter regression models based on the number of folds tested for (A)
random forest regression and (B) linear regression. Figure S8: Accuracy scores of filament diameter
classification models based on the number of folds tested for (A) random forest regression and (B)
logistic regression models. Figure S9: Precision scores of filament diameter classification models
based on the number of folds tested for (A) random forest regression and (B) logistic regression
models. Figure S10: Recall scores of filament diameter classification models based on the number
of folds tested for (A) random forest regression and (B) logistic regression models. Figure S11:
Z-stack total/dead imaging of a portion of a filament from a 3/4 Alg/Gel printed construct (nozzle
geometry = conical, nozzle diameter = 410 µm). An (A) isometric view, (B) cross-sectional view in
the X–Z plane, and (C) top view in the X–Y plane are shown at a magnification of 10×. Figure S12:
Z-stack total/dead imaging of a portion of a filament from a 3/7 Alg/Gel printed construct (nozzle
geometry = conical, nozzle diameter = 410 µm). An (A) isometric view, (B) cross-sectional view in
the X–Z plane, and (C) top view in the X–Y plane are shown at a magnification of 10×. Figure S13:
Live/dead images taken on through the imaging plate reader immediately after extrusion of (a) 3/4
Alg/Gel and (b) 3/7 Alg/Gel. White borders indicate boundaries of the filament. The magnification
of the images is at 4×. Table S1: Predicted tolerance and actual tolerance comparison of 3/4 and
3/7 Alg/Gel constructs printed (nozzle geometry = conical, nozzle diameter = 410 µm). Table S2:
Predicted cell viability and actual cell viability comparison of 3/4 and 3/7 Alg/Gel constructs
printed (nozzle geometry = conical, nozzle diameter = 410 µm). Table S3: Predicted tolerance and
actual tolerance comparison of 3/4 and 3/7 Alg/Gel constructs printed (nozzle geometry = conical,
nozzle diameter = 410 µm). Table S3: Predicted extrusion pressure classifications compared against
experimental outcomes for corresponding material concentrations of alginate and gelatin.
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