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A B S T R A C T   

With both the advancement of technology and the decline in costs, single-cell transcriptomics sequencing has 
become widespread in the biomedical area in recent years. It can facilitate the pathogenic characteristics at the 
single-cell level, which will assist clinical researchers in exploring the mechanism of diseases. As a result, single- 
cell transcriptome data based on clinical samples grew exponentially. However, there is still a lack of a 
comprehensive database about immunocytes in inflammatory-associated diseases. To address this deficiency, we 
propose a human inflammatory-associated disease-based single-cell transcriptome database, NTCdb (www.ntc 
db.org.cn). NTCdb integrates the open-source data of 1,023,166 cells derived from 11 tissues of 17 
inflammatory-associated diseases in a uniform pipeline. It provides a set of analyzing results, including cell 
communication analysis, enrichment analysis, and Pseudo-Time analysis, to obtain various characteristics of 
immune cells in inflammatory-associated disease. Taking COVID-19 as a case study, NTCdb displays important 
information including potentially significant functions of certain cells, genes, and signaling pathways, as well as 
the commonalities of specific immunocytes between different inflammatory-associated disease.   

1. Introduction 

Inflammation is part of the complex biological response of body 
tissues relevant to a series of immune-related reaction, which is to 
eliminate the initial cause of cell injury, clear out necrotic cells and 
initiate tissue repair, this process involving immune cells, blood vessels, 
and molecular mediators and play very important role in keeping human 
healthy [1]. Inflammatory- associated diseases is the disease associated 
with the inflammation which has the characteristics of pain and 
swelling, redness, heat, and loss of function [2]. Inflammation can be 
induced by physical factors such as burns, frostbite, trauma, foreign 
bodies (splinters, dirt and debris) invasion, and ionizing radiation [3]; as 
well as the biological causes including infection by pathogens, hyper-
sensitivity, stress and chemical irritants [4]. Inflammatory- associated 
disease can be roughly divided into acute inflammation and chronic 
inflammation. Acute inflammation occurs immediately upon injury, 
lasting only a few days, presented by migration of neutrophils and 
macrophages to the site of inflammation [5]. Chronic inflammation is 
inflammation that lasts for months or years which relevant to 

dysregulated immune response and interaction between immune cells 
and local tissues [6]. With further research, people realized that diverse 
diseases, such as atherosclerosis, autoimmune diseases, diabetes, Alz-
heimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory 
bowel disease, multiple viral infection-associated diseases, even cancer 
are all related to inflammation [6–10]. 

Immunocyte is important responder and performer of inflammation. 
The dysfunction of immunocyte would cause unexpected acute or 
chronic inflammations. In some worse cases, uncontrolled inflammation 
responses severely damage human health and even cause death [7,11]. 
Thus, the uncovering of underlying mechanisms of dysregulated im-
mune cell and inflammatory response contributes to exploring the 
pathogeny of inflammatory-associated diseases and develop therapeutic 
targets. 

Sequencing, one of the most important modern biotechnologies, 
provides full-scale information on genome, transcriptome, and epi-
genome in tissues and cells. Compared to traditional biological assays, 
sequencing technologies enable researchers to uncover the underlying 
mechanism of diseases in a fast, high-throughput, and automatic 
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manner. The first generation of sequencing technologies, called bulk 
sequencing, analyzes a population of cells with the assumption that 
these cells are homogeneous. For example, bulk transcriptome 
sequencing can easily obtain differentially expressed genes (DEGs) with 
respect to (w.r.t.) diseases between patients and healthy controls [12]. 
However, bulk sequencing cannot capture the significant heterogeneity 
between cell individuals, especially the heterogeneity related to the 
spatial and temporal developments of diseases. The urgent need to 
explore the characteristics of individual cell impels the development of 
single-cell sequencing (sc-Seq), which can acquire information of indi-
vidual cell with high resolution and enables researchers to capture in-
dividual changes of cells and obtain more details in life activities. 
scRNA-seq, which focuses on sequencing the transcriptome of single 
cell, has obtained abundant data since its inception in 2009 [13]. The 
massive amount of data has increased the difficulty for researchers to 
extract target information to some extent. Consequently, establishing 
self-built databases to manage data has been proposed. In the following 
years, varied scRNA-seq databases have been built [14]. According to 
the purpose of analysis, these databases can be roughly classified into 
cell identification and pathological mechanism identification. The 
former aims to realize the identification of cell types and states by 
analyzing gene expression profiles during a certain physiological pro-
cess. For example, Cellmaker records tens of thousands of marker genes, 
which can differentiate human and mouse cells [15]. SCDevDB can 
identify the developmental stage of cells on a single-cell level by 
tracking the gene expression during human body developmental 

processes [16]. The latter mainly identify pathological characteristics by 
comparing the DEGs of pathological conditions with those of healthy 
states. For instance, based on the integration of 76 tumor datasets across 
27 cancer types and three peripheral blood mononuclear cell (PBMC) 
datasets, Tumor Immune Single Cell Hub (TISCH) identifies heteroge-
neity of tumor microenvironment by comparing the expression charac-
teristics of malignant cells and non-malignant cells [17]. CancerSEA 
analyzed and displayed 49 cancer-related scRNA-seq datasets and 
distinguished the different status of tumor cells (e.g., stemness, invasion 
and metastasis) according to the gene expression patterns [18]. DISCO 
integrated the scRNA-seq data from several human diseases (COVID-19, 
breast cancer, and colorectal cancer) to provide the most critical path-
ological information [14]. Nowadays, these scRNA-seq databases have 
improved researchers’ understanding of the biological characteristics of 
cells in pathological status, which will help in both developing targeted 
therapy and improving prognosis [19]. Nevertheless, a scRNA-seq 
database containing comprehensive information on inflamm 
atory-associated diseases is still missing up to now. 

To fill this gap, this work constructs a novel scRNA-Seq database 
“Notable single-cell Transcriptome inflammation Computational data-
base (NTCdb)” to partially reveal the mechanism of inflammation- 
associated diseases (see the details in Supplementary Table 1) by 
profiling single cell’s characteristics and facilitate the discover of po-
tential therapeutic targets. The overview of sample information is 
showed in Fig. 1. 

Fig. 1. Overview of Sample information. The involving inflammation-related diseases falls into chronic (orange) and acute (green) diseases in terms of the 
characteristics of inflammatory inducing responses. There are 12 chronic diseases, including Atopic dermattis, IgA Nephropathy, Giant cell arteritis, Hidradenitis 
suppurativa (HS), Psoriasis, Eosinophilic esophagitis (EE), Alzheimer’s disease (AD), Periodontitis, Anti-Synthetase Syndrome-associated Interstitial Lung Disease 
(ASSILD), Systemic Sclerosis-associated Interstitial lung disease (SSI), Diabetic, HBV. Acute diseases involve Severe Fever with Thrombocytopenia Syndrome (SFTS), 
Covid 19, Kawasaki Disease, Hemorrhagic Fever with Renal Syndrome (HFRS), and, Influenza. The numbers of collected cells w.r.t. diseases follow disease names, 
while the radiuses of dotted circles denote the scale of cell numbers. In addition, the asterisk (*) next to the disease name indicates that samples were collected from 
two tissues. 
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2. Results 

The interface of NTCdb provides four main components: ‘Home’, 
‘Query’, ‘Shared DEGs’, and ‘Miscellaneous’ (shown in the left menu of  
Fig. 2). The ‘Home’ page only displays the statistics of diseases and 
samples number in NTCdb. The ‘Query’ component contains a search 
page which display a full list of data entries, covering a set of basic items, 
external links, and internal links. The ‘Shared DEGs’ page provides a 
gene query function to find common genes which are differentially 
expressed among various diseases. The ‘Miscellaneous’ component 
provides three pages, including the way of data preprocessing, the used 
R packages, and the annotation mapping between cell abbreviations and 
their full names. 

To illustrate the functions of NTCdb, we select Corona Virus Disease 
2019 (COVID-19), a severe pandemic in recent years, as a case in the 
following sections. 

2.1. Searching 

Once we enter the disease’s name (i.e., “Covid”, this website support 
search keyword with capital/lowercase mode) in the search box, NTCdb 
retrieves a list of single-cell data entries w.r.t. “Covid” (Fig. 3. a). Each 
Covid record contains basic items, external links, and internal function 
links. Taking the first entry as a demonstration. 

Its basic items include Disease Name (Covid), Sampling Source (pe-
ripheral blood), #Cells (the number of cells, 42862 evaluated cells under 
quality assurance), and Metadata (14 records). Specifically, the value in 
Metadata indicates the number of clinical records and its hyperlink leads 
to an extra page that lists the clinical details collected by the original 
literature (Fig. 3-b). 

The external links contain its PMID (i.e., 32514174) and its Data 
Access identity (i.e., GSE150728). The PMID shows as a URL to the 
source publication in NCBI literature [20], where both the abstract and 
the full text can be usually downloaded. The accession identity also 
provides a URL to the page of the data w.r.t. the publication in GEO, 
where the data details can be found (e.g., the contributor, the submis-
sion, the generating platform, and the raw data). 

The internal function links provide the specific function operations 
of data entry, involving Cell Population, #Cell Types, DEG, and Pseudo- 
Time as follows. 

● The Cell Population entry provides a two-dimensional spatial dis-
tribution profile of all the cells included in this dataset. The user can 
click the button ‘View’ to obtain the cell distribution (Section 2.2).  

● The #Cell Types entry indicates the number of cells types and also 
provides a URL to a functional page, which lists cell proportions, 
group, source w.r.t. samples. More importantly, the page contains 

three functional buttons, ‘Visualization’, ‘PCA’, and ‘Cell Talk’ for 
finding potential target cells which are significantly altered or have 
cell communication changes (Section 2.3). 

● The DEG entry provides a hyperlink to a functional page, which in-
dicates the DEGs obtained by comparing diseased and healthy sta-
tuses. Similarly, the page contains three functional buttons, 
‘Visualization’, ‘GO’, and ‘KEGG’ for finding potential targeted genes 
based on DEGs, enriched pathways, and their associations (Section 
2.4).  

● The Pseudo-Time entry shows a functional button ‘View’ to infer the 
dynamic changes in gene expression from the healthy state to the 
diseased state based on cell type-independent DEGs (Section 2.5). 

In addition, three buttons in the column “Download” enable users to 
download supplementary files, including source codes in R language, the 
RDS file (an R object containing all cells and annotation information), 
and the MON file (an R object consisting of randomly sampled cells used 
in the Pseudo-Time analysis). 

2.2. Cell population 

After clicking the ‘View’ button in the Cell Population column, 
NTCdb provides the two-dimensional distribution of single-cell data 
points (Fig. 4), which is produced by the method of Uniform Manifold 
Approximation and Projection (UMAP) dimensionality reduction. The 
distribution is displayed by four plots in terms of sample origins/tissues 
(Fig. 4-a), disease status (Fig. 4-b), cell clusters (Fig. 4-c), and cell types 
(Fig. 4-d) respectively. 

Fig. 4-a comprehensively displayed the distribution of each sample 
according to sampling sources, allowing for a thorough examination of 
sample uniformity, thereby reflecting the level of technical noise 
inherent in the sequencing data. Fig. 4-b offers a holistic representation 
of cell distribution in both health and disease conditions. It elucidates 
three distinctive categories: a prominent class characterized by a 
significantly higher abundance of healthy cells (highlighted in yellow 
box 1), another class exhibiting a noteworthy enrichment of diseased 
cells (highlighted in yellow box 2), and the third class shows the dis-
tributions of patient and healthy cells are neighboring (highlighted in 
yellow box 3). Fig. 4-c shows cell communities generated by the Louvain 
algorithm. Lastly, Fig. 4-d annotates the types of cell individuals. 

According to Fig. 4-b and Fig. 4-d, the class predominantly composed 
of healthy cells corresponds to B cells, whereas the class characterized 
by a larger number of diseased cells is primarily annotated as Pre-B cells. 
The class exhibiting a close resemblance between patient and healthy 
cells is mainly associated with monocytes. Fig. 4-c reveals that this 
particular region encompasses five distinct cell clusters, indicating that 
gene expression in monocytes may have significantly deviated in 

Fig. 2. User interface of NTCdb.  
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patients compared to the healthy controls or monocytes have undergone 
differentiation induced by the disease. 

2.3. Finding potential target cells of disease 

NTCdb provides an approach to investigate the variance of cell types 

since they are the key players in the disease process [21]. In the case of 
“Covid”, nine types of cells are involved. After clicking the URL in the 
column of #Cell Types, a functional page (Fig. 3-b), which lists the 
detailed records of cell types, including percentages over cell types, 
group categories (including Cov and HC), and sample IDs in GEO was 
shown. More importantly, it provides three functional buttons: 

Fig. 3. Searching results. (a) Retrieval. Two records of Covid are retrieved. Each record contains eleven items, including four basic items (i.e., the name of the 
disease of interest, its sampling source, the number of its cells, the number of involving clinical records (i.e., Metadata)), two external links (i.e., the PMID and the 
identity of Data Access in GEO), four internal function links (i.e., its cell population, cell types, DEGs, and Pseudo-Time trajectory), and the additional download links 
from left to right. (b) Metadata. It contains clinical records w.r.t. sample. Each row represents a sample, while columns represent the clinical features of the sample. 
(c) Cell Types. Each row represents a sample, displaying the cell type and sample source, and the percentage represents the cell type’s proportion in the sample (see 
also Section 2.3 for details). 

Fig. 4. Single-cell distribution plots. Four maps of single-cell data on a two-dimensional space are produced by UMAP. Points in the figure represent individual 
cells. (a) Sample sources. Different colors represent different sample sources, including 7 healthy controls and 6 patients. (b) Physiological status. Two colors indicate 
the presence and absence of Covid respectively. (c) Cell clusters. Totally 25 distinct cell clusters are found. (d) Cell types. Nine cell types are rendered in appropriate 
colors, including B cell (B_cell), Common myeloid progenitor cell (CMP), Hematopoietic stem cells mobilized with G-CSF (HSC_-G-CSF), Monocyte, Myelocyte, 
Natural killer cell (NK_cell), Platelet, Pre-B cell (Pre-B_cell_CD34-), and T cell (T_cells). 
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‘Visualization’, ‘PCA’, and ‘Cell Talk’, which help find potential target 
cells. Their functions are illustrated as follows. 

● The ‘Visualization’ button provides stacked bars to show the per-
centages of cells in samples, and the statistical change of proportion 
of each cell type by comparing diseased samples with healthy control 
(Fig. 5. b). In the example of “Covid”, as shown in cell proportion 
bars (Fig. 5. a), Pre-B cells (rendered in purple) show the most 
significantly different proportions between COVID-19 patients 
(marked with the prefix ‘Covid’) and healthy control (marked with 
the prefix ‘HC’). Meanwhile, the statistical significance (p-value =
0.0013) also demonstrates such a difference between Covid and HC 
(Fig. 5. b). Thus, Pre-B cells can be regarded as potential targeting 
cells in COVID-19. 

● The ’PCA’ button provides the result of Principal Component Anal-
ysis (PCA) dimensionality reduction on the cell proportion data. 
Fig. 5.c-1 reveals the relationship between cell types (indicated by 
blue arrows), samples (represented by small dots), and the first and 
second principal components (x and y axes). The values of the cell 
types projected onto the axes indicate their correlation with the 
principal components. In PCA, the cos2 value is used to measure the 
contribution of variables (cell types) to the principal components. 
Fig. 5.c-2 provides a visual depiction of this relationship. Therefore, 
considering the most important variables in the main principal 
components, pre-B cells, platelets, and T cells exhibited considerable 
alteration, indicating that they merit a comprehensive investigation 
(Fig. 5. c).  

● The ’Cell Talk’ feature showed by a Circos plot depicts the enhanced 
or weakened interactions between cells, primarily based on ligand- 
receptor interactions under pathological conditions. Hence, with 

regards to natural killer (NK) cells, there were two sets of ligand- 
receptor combinations, COL11A1-ITGB1 and EREG-ERBB2 deserve 
special consideration, since their interactions appear to be greatly 
amplified and decreased, respectively (Red box part in Fig. 5.d). The 
independent clear images of Fig. 5 were showed in Supplementary 
Figure 2-5.  

2.4. Potential target genes in the disease 

NTCdb provides a list of DEGs over all the cell types as they are the 
primary focus of single-cell transcriptome study [22]. It calls the func-
tion FindMarkers in the Seurat package to fine 925 COVID-19 related 
DEGs, of which gene names (shown as URLs), p adjust (p_val_adj), 
log2FoldChange (avg_log2FC) are listed and organized in 93 subpages. 
Users can inspect the specific cells by the filter of cell type in the drop 
box (Fig. 7-a). Then, detailed gene information can be found by clicking 
the URL to the GeneCards website. 

More importantly, it provides three functional buttons: ‘Visualiza-
tion’, ‘GO’, and ‘KEGG’, which help find potential target genes. Their 
functions are illustrated as follows:  

● The ‘Visualization’ button generates a volcano plot, which helps the 
selection of genes with the most notable expression discrepancies 
(Fig. 6-b). According to Fig. 6.b, Hemoglobin Subunit Beta (HBB) 
which is involved in oxygen transport [23] has the highest differ-
ential expression fold change. Study has shown that mutations in 
HBB can lead to sickle cell disease and relevant to heightened risk for 
development and severe outcomes of COVID-19 caused pneumonia 
[24]. Therefore, COVID-19 possibly affect respiratory system 

Fig. 5. (a) Proportions of different cell types in sample sources. Sample sources are represented by the vertical axis, while cell proportions are indicated by the 
horizontal axis. Cell types are highlighted by colors. (b) The proportion of each cell type in all samples. Sample are represented by points, while the vertical axis 
indicates cell proportions. The patient and the heathy control are compared. (c) PCA analysis. Figure c-1 shows the correlation of samples, variables, and principal 
components. Samples are points, while cell types are represented by arrows. The horizontal and vertical axes account for the two most important principal com-
ponents, which are represented by ’ Dim ’. Figure c-2 consists of the variables and the corresponding ‘cos2’ of the variables in the principal component. The cos2 
value represents the quality of variables. The cell types are represented by the vertical axis. The main components are also represented by ’ Dim.’, and the size of the 
circle indicates the cos2 value. (d) Circos plot of cell communications. The Circos plot obtained by ITALK package [34], from the outside to the inside, represents the 
cell type and the gene type, respectively. The genes are categorized into four types: cytokine/chemokine, immune checkpoint, growth factor, and others. Ligands are 
represented by line segments, while receptors are represented by arrows. Possible ligand-receptor changes are distinguished by different lines and arrows. 
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function by impacting the expression of HBB and consequently 
affecting oxygen transport. 

● The GO button provides detailed information about enriched path-
ways, including GO terms, descriptions, p-values, and gene ratios 
(Fig. 6-c). Additionally, it includes three subpages: Bubble Chart, 
Chordal Diagram, and Diagram. The Bubble Chart visually presents 
the most significant pathways using bubble and bar charts. The 
Chordal Diagram illustrates the overall upregulation and down-
regulation of pathways based on the expression of DEGs. The Dia-
gram shows the relationship between pathways and genes. In this 
case, most DEGs were enriched into a pathway related to the 
“structural constituent of the ribosome” which plays a role in 
maintaining the integrity of the ribosome (Figs. 7-a1). These results 
indicated that COVID-19 may impact normal cellular function by 
affecting the synthesis of ribosomes. Furthermore, Bubble Chart 
(Figs. 7-a2) was employed as well to better display the results. From 
the perspective of the Chordal Diagram (Fig. 7-b), the “cytoplasmic 
translation pathway” may deserve further investigation as it exhibits 
the most significant down-regulated trend in COVID-19 patients. For 
a specific gene, the more pathways it influences, the more impor-
tance it might have in regulating cellular function. From this 
standpoint, RPS15A may play an important role in COVID-19 
because it participates in the two pathways with the most signifi-
cance (Fig. 7-c). In addition, similarly to the GO enrichment analysis, 
the results of the KEGG enrichment analysis (Bubble Chart, Diagram) 
were also recorded in the database (Fig. 6.d). 

2.5. Trajectory analysis via Cell type-independent DEGs 

Trajectory analysis is an additional crucial technique for interpreting 
single-cell data [25]. First, the cells of healthy control and patient with 
equal number (5000 cells each) were randomly sampled. Monocle 
software [26] was then used to generate a Pseudo-Time trajectory, and 
all cells were classified into different branches. NTCdb can draw the 
Pseudo-Time trajectory and the changes of DEGs along the trajectory. 
Also, it performs a Branched Expression Analysis Modeling (BEMA) on 
the DEGs. Thus, the dynamic changes in gene expression from health to 
disease states can be uncovered and illustrated. 

By clicking the ’View’ button under the ‘Pesudo-Time’ column 
(Fig. 3-a), users can choose from three sub-pages: Trajectory, Pseudo- 
Time Gene, and BEMA (Fig. 8). Among them, the Trajectory page 
visually displays the starting point of the Pseudo-Time trajectory 
(selecting the state with the healthiest cells) (Figs. 8–a1–3), the Pseudo- 
Time Gene page provides the dynamic changes of DEGs from the tra-
jectory’s starting point to the endpoint (Fig. 8-b), and the BEMA page 
reveals the dynamic changes of genes before and after branching (Fig. 8- 
c). 

The DEGs most relevant to the Pseudo-Time trajectory were depicted 
by Fig. 8. The genes exhibiting the same expression pattern in the tra-
jectory may be tightly related, and they may regulate each other and 
influence particular life processes. The first is to pick all genes inside a 
cluster for later verification, and the second is to investigate a subset of 
genes from distinct clusters. 

In this example, users can pick all genes in cluster 4 (displayed in 
purple): RPS27, RPL34, CD52, RPL31, RPL37A and RPL15, as well as 
another group of genes: TRFC, and DUSP1 (displayed in red box), to 
further study, because their expressions in the trajectory are gradually 
falling or increasing, respectively (Fig. 8-b). 

According to BEMA (Fig. 8-c), the genes in cluster 2 and cluster 3 
were up-regulated and down-regulated, respectively in diseased state 
compared to the healthy cell populations, suggesting that these genes 
have the potential to change cell fate and deserve further investigation. 

2.6. Common DEGs across diseases 

Shared DEGs page is capable to search for DEGs shared by several 
diseases (Fig. 9). Users can freely pick up to ten distinct diseases in a 
single search session. After selecting the specific cell type of the selected 
disease, the common DEGs can be listed in web server. Through browse 
the differential expression multiple of interested gene, users can and 
select the interested DEGs and export the list by clicking the ‘Export’ 
button. Fig. 9 depicts the DEGs shared by COVID-19 and Influnza 
included in NTCdb. 

Overall, NTCdb intuitively shows the potential targets of genes and 
cells in COVID-19 patients (Table 1), such as the proportion of Pre-B 
cells and T cells, as well as the ligand-receptor pairs interaction of 
COL11A1-ITGB1 and EREG-ERBB2 between NK cells and other cells 
were both significantly changed in COVID-19 patients. Furthermore, the 
expression of HBB was affected by COVID-19 significantly, which may 
be one of the potential targets waiting for subsequent verification. In 
addition, genes enriched in the “structural constituent of the ribosome” 
and “cytoplasmic translation pathway” may play important roles in 
COVID-19. From the results of Pseudo-Time trajectory analysis, genes 
such as RPS27, RPL34, and RPL31 showing significant expression dif-
ferences between healthy cell and cells in a diseased state. 

3. Discussions 

The NTCdb is a human single-cell transcriptomic database that en-
compasses the single-cell data of inflammatory-associated diseases with 
great visualization capabilities. In addition to exhibiting the differential 
and enrichment analysis results, it contains prospective targeted cells, 
changes of gene expression and intercellular communication intensity 
under pathological conditions. Ultimately, it provides a means to ac-
quire the significant DEGs shared by many diseases, which may repre-
sent the common characteristics of inflammatory-associated diseases. In 
conclusion, NTCdb can intuitively and conveniently provide users the 
information about both cells and genes with significant changes in dis-
eases from multiple analytical perspectives. 

The NTCdb still requires additional enhancements to be finalized, 
which will be continuously updated and periodically maintained along 
with the update of sequencing data and annotation tools. Cell annotation 
is the key to providing sequencing data with biological meaning. In this 
stage, the SingleR package was used to annotate cell types automati-
cally. Although, for instance, SingleR annotation can identify natural 
killer (NK) cells, it is difficult to distinguish CD56 bright NK cells and 

Fig. 6. Summary of genetic information. (a)Difference analysis results. The DEGs obtained by Seurat’s FindMarkers function. The value of avg log2FC represents 
the differential multiple. P_val is the corrected p-value, which indicated the significance more accurately. Click the "Gene column" to access the GeneCards database 
which contains gene annotation information. (b) DEGs volcano plot. This volcano map was constructed using avg log2FC as the horizontal axis and -log10 (p_val_adj) 
as the vertical axis. The arbitrarily established threshold is shown by a dashed line, meanwhile, genes are represented by a point. The ordinate denoted the point’s 
color and size. At the top, the genes have a p_val_adj of zero, displaying the name but not a specific value, possibly due to the computer’s default precision retention 
setting. (c) Results of GO enrichment analysis. (d) The outcomes of KEGG enrichment analysis. The ID of the pathway in the KEGG database was denoted in the 
"KEGG term column" which also links to GenomeNet, and provides an exhaustive explanation of the KEGG pathway. The GO term denotes the path’s identifier in the 
GO database. Regardless of enrichment outcome, the "Description column" refers to the pathway description; "Gene Ratio" reflects the ratio of genes enriched in this 
pathway to the total number of genes in the pathway, and the "BG ratio" represented the ratio of the genes in this term to all genes. The "P-value" refers to the 
statistical significance of enrichment analysis. The corrected P-value, "Padjust," is greater than the P-value. In general, a term with a Padjust < 0.05 is considered 
enrichment. The "Qvalue" is derived from the P-value as well which is defined as the probability that the p-value produces false positives. The “count” reflected the 
number of genes that have been differentially enriched for this phrase. 
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Fig. 7. Visual representation of enrichment results. GO enrichment analysis results can be categorized as molecular function (MF), cellular component (CC), and 
biological process (BP). (a) A bar graph (a1) and bubble chart (a2) of enriched GO keywords. (b)GO circle. GO term is represented by the perimeter, while the 
difference between genes expression is shown by the circle in the middle. (c) Gene pathway diagram. The GO term is depicted with colored lines and bright yellow 
dots. The size of the dots represents the number of enriched genes, whereas the gray dots represent the genes themselves. 
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CD56 dim NK cells because of its low precision. We hope that SingleR will 
soon be replaced by a more precisely annotated package. By then, 
NTCdb will be updated to provide more accurate results. 

4. Methods 

An initial search with the keyword ‘scRNA diseases’ was run in both 
GENE EXPRESSION OMNIBUS (GEO) and Pubmed databases and 

resulted in ~5000 scRNA-disease-related entries. Subsequently, a pre-
cise filtration was processed on the initial resulting entries to obtain 
refined entries. We considered three filtering criteria as follows: 1) en-
tries should be derived from human tissues or cell lines; 2) they should 
originate from inflammatory-associated diseases; 3) they should contain 
healthy control records. Eventually, we obtained 1023,166 cells derived 
from 5 acute inflammations and 12 chronic inflammations in total 
(Fig. 10). The collection was finished on August 10, 2022. 

Fig. 8. The Pseudo-Time analysis results. Monocle2 infers the Pseudo-Time of healthy cells and patients’ cells. Dots symbolize cells. (b) The DEGs (rows) along the 
Pseudo-Time (columns) are aggregated hierarchically into four profiles. (c)The DEGs (rows) along the Pseudo-Time branch (columns). 
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Due to the diversity of data sources, the collected single-cell entries 
should be standardized for further data analysis. As suggested in 
SC2disease [27], a uniform processing pipeline was adopted, which 
contains two modules, Data Preprocess and Target Analysis. 

The Data Preprocess module includes three steps: Quality Control, 
Cell Clustering and Cell Annotation. Regarding that the cells having a 
high proportion of mitochondrial genes are apoptotic or dead cells [28], 
the first step is to remove them from single-cell entries. The second step 
categorizes the remaining single-cell entries (characterized by gene ex-
pressions) into cell groups by both PCA and UMAP [29,30]. Seurat, a 
popular R package [31], was applied to perform the cell clustering. After 
that, by using a well-known annotation R-package SingleR [32], the 
third step identifies cell clusters by consulting the datasets provided by a 
data R-package HumanPrimaryCellAtlasData [33]. Human-
PrimaryCellAtlasData contains Chip-sequencing and RNA-sequencing 
data of specific cell types, while SingleR is an automatic annotated 
tool by comparing single-cell data with reference data. 

Once the data preprocess was done, multiple approaches were 
employed to examine potential targets (e.g., cells and genes) in disease. 
The Target Analysis module focuses on two types of disease targets. The 
first type is specific types of cells, whose proportions in body fluids or 
tissues are dramatically altered. To identify potential targeted cells, this 
module discriminates patients from healthy controls in terms of cell 
proportion and intercellular communication, respectively. First, both 
Wilcoxon test and PCA were used to determine whether there are sig-
nificant differences between cell proportion derived from different 
sources across patients and healthy controls. Then, iTALK package, an 

analytical package for studying the gains or losses of cellular in-
teractions, was used to reveal ligand-receptor mediated cell communi-
cation [34]. The second type refers to the genes with significantly 
variable expressions. The Target Analysis module indicate the cell 
type-free DEGs and cell type-specific DEGs between healthy controls and 
patients as potential targeted genes. During enrichment analysis, the 
association between DEGs and inflammation-related processes can be 
dug out. Furthermore, cell type-free DEGs were utilized to construct 
Pseudo-Time trajectories during disease progression by using Monocle, a 
R package with reverse graph embedding algorithms for trajectory 
inference [26]. In the aforementioned process, the main algorithms and 
tools we use are listed as follows：. 

Finally, our database NTCdb includes rich information of 
inflammation-related scRNA entries, including DEGs, enriched path-
ways, cell communication outcomes, Pseudo-Time trajectories, and cell 
proportions. Moreover, it contains literature sources, data entry sources, 
sample metadata, as well as source codes and RDS (a file containing R 
objects) files for replicating the Data Preprocess and the Target Analysis. 

We have developed a front-end and back-end separated web appli-
cation to facilitate user access to the information stored in NTCdb. This 
program is structured using the MVC (Model-View-Controller) archi-
tecture, with Vue.js employed for the front-end development. Vue.js 
provides a multitude of components to effectively display information. 
We utilize MySQL to store the back-end data, where we have designed 
seven tables to manage and organize data efficiently. The interaction 
between the front-end and back-end is implemented using Java. Finally, 
the website is deployed on Alibaba Cloud server and is proxied using 
nginx. In Supplementary Figure 1, the design logic of the entire web 
application is illustrated. Taking the top portion of the figure as an 
example, when a user accesses the path “www.ntcdb.org.cn/annota 
tion”, the back-end triggers the getAnnotation function in the Annota-
tionController, written in Java. Consequently, all the information stored 
in the “annotation” table within our MySQL database, which contains 
cell annotations, is returned. 
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Fig. 9. Shared DEGs page function. Users can select numerous diseases. The first dropdown menu is used to select the cell type, and the second dropdown menu 
allows you to choose up-regulated, down-regulated, or both DEGs. 

Table 1 
Key information about COVID-19 in the database.  

Basis Conclusion 

Fig. 4 The proportions of Pre-B and B cells among COVID-19 patients differ from 
healthy controls, indicating a potential trend of monocyte differentiation 
during the course of disease. 

Fig. 5 Pre-B cells exhibit significant differences; PCA analysis indicated the 
importance of pre-B cells, platelets, and T cells; the interaction between NK 
cells and other cells is most affected by COVID-19, with particular attention 
warranted for COL11A1-ITGB1 and EREG-ERBB2 interaction. 

Fig. 6 HBB exhibited the greatest differential fold-change in COVID-19 patients. 
Fig. 7 "Structural constituent of the ribosome" and "cytoplasmic translation 

pathway," along with RPS15A, may be key the factors involved in COVID-19 
prevention. 

Fig. 8 The expression of RPS27, RPL34, CD52, RPL31, RPL37A and RPL15 exhibit 
a significant downward trend during the transition of cells from a healthy 
state to a diseased state. 

Fig. 9 COVID-19 and influenza may have similar immune response mechanisms.  
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Fig. 10. Database construction. The data obtained from PubMed and GEO were filtered and put into a uniform pipeline. The results of target analysis were stored in 
the database. 
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FactoMineR 
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Seurat UMAP 
Louvain Clustering based on core data 

information 
SingleR  Cell annotation [32] 
iTalk  Cellular communication 

analysis 
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[26] 

Goplot  Visualization of GO 
enrichment information 

[36] 
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