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Abstract: We sought to examine the relationship between microtubule-associated proteins (MAPs)
and the prognosis of urothelial carcinoma by assessing the microtubule bundle formation genes using
a reappraisal transcriptome dataset of urothelial carcinoma (GSE31684). The result revealed that
microtubule-associated protein 1b (MAP1B) is the most significant upregulated gene related to cancer
progression. Real-time reverse-transcription polymerase chain reaction was used to measure MAP1B
transcription levels in urothelial carcinoma of the upper tract (UTUC) and the bladder (UBUC).
Immunohistochemistry was conducted to detect MAP1B protein expression in 340 UTUC and 295
UBUC cases. Correlations of MAP1B expression with clinicopathological status, disease-specific
survival, and metastasis-free survival were completed. To assess the oncogenic functions of MAP1B,
the RTCC1 and J82 cell lines were stably silenced against their endogenous MAP1B expression.
Study findings indicated that MAP1B overexpression was associated with adverse clinical features
and could independently predict unfavorable prognostic effects, indicating its theranostic value in
urothelial carcinoma.
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1. Introduction

Urothelial carcinoma (UC) is the most common malignancy of the urinary tract and includes UC of
the urinary bladder (UBUC) and upper urinary tract (UTUC). UBUC is a major UC, with an estimated
429,800 new cases and 165,100 deaths annually worldwide [1]. When first diagnosed, UBUC presents
in most patients as a non–muscle-involved invasive disease with an estimated five-year survival rate of
88%, but this rate dramatically decreases to 15% in patients with tumor metastasis [2]. The prevalence
of UTUC accounts for approximately 5% to 10% of all UC cases [3]; however, in Taiwan, the rate of
UTUC is as high as 30% of affected cases. Furthermore, there is a slight predominance toward females,
and ureteral tumors are attributed to greater than half of all cases of UTUC [4,5].

Transurethral resection of the bladder and radical nephroureterectomy with bladder cuff excision
remain the gold-standard treatments in UBUC and UTUC for adequate local tumor control and
improved long-term survival. However, despite proper surgical treatment, the mortality rate remains
high [2,6,7]. Clinical prognostic factors, such as pathological tumor stage and grade, have diverse
impacts in patients with identical findings; therefore, they are insufficient means for detailed risk
stratification and are difficult to define before treatment [5].

UBUC staging starts from papillary (Ta) and superficial (T1) stages and extends to muscle-invasive
advanced stages (T2–T4). Although the recurrence rate of superficial tumors following surgical resection
of the bladder is high, it is associated with a markedly better prognosis than that of muscle-invasive
tumors [8]. There is a growing pool of evidence to suggest a pathophysiological distinction exists
between superficial and muscle-invasive cases of UBUC [9]. It is also important to distinguish a
particular variant that may be associated with the administration of a therapy distinctive from that
used in conventional invasive UC [10]. A previous study demonstrated that the gene expression
profiles of UC from renal pelvis, ureter and bladder were highly similar, indicating that a common
functional molecular pathway likely underlies the carcinogenesis [11]. A larger, follow-up study to
elucidate better genomics-based predictors for UC is warranted, the results of which could lead to
improvements in neoadjuvant/adjuvant therapy and provide suitable follow-up strategies.

Microtubules are a critical component of the cytoskeleton and are important and indispensable in
several cellular processes. They are located throughout the cytoplasm and are dynamically unstable
(i.e., coexisting in a state of assembly and disassembly). Microtubule-associated proteins (MAPs) are a
large family of proteins involved in microtubule assembly, which is an essential step in stabilizing
microtubules. MAPs are divided into two classical families: type I, which includes the MAP1 (MAP1A,
MAP1B, and MAP1S) proteins [12] and type II, which includes MAP2, MAP4, and MAPT/TAU
proteins [13]. Disrupting microtubule dynamics is one of the most successful and widely considered
targets of cancer chemotherapy agents [14,15]. Microtubule agents target the aberrant expression of
MAPs in a variety of malignancies, and their resistant phenotypes have been documented. Herein,
we aimed to examine the relationship between MAPs and the prognosis of urothelial carcinoma
by assessing the microtubule bundle formation genes using a reappraisal transcriptome dataset of
urothelial carcinoma (GSE31684). Moreover, to our knowledge, this study is the first to examine
MAP1B expression and the prognosis and intrinsic biologic aggressiveness of UC.

2. Results

2.1. MAP1B Is the Most Significantly Upregulated Gene Associated with Microtubule Bundle Formation in
UBUC Transcriptomes

The UBUC transcriptome dataset includes 93 tissue samples, with 78 categorized as deeply invasive
tissues (pT2–pT4) and 15 categorized as noninvasive or superficial (pTa and pT1) tissues. Metastasis
was detected in 28 patients and absent in 49 patients. Through transcriptome profiling, we identified
11 probes spanning six transcripts associated with microtubule bundle formation (GO:0001578). Among
these expressed genes, we found that tumors with increased MAP1B expression and decreased MARK4
had a more advanced pT status and a higher incidence of metastatic events (Figure 1A). Our main goal
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was to find the most significant upregulated genes associated with advanced disease. Therefore, we
choose MAP1B for further validation. Table 1 shows the MAP1B gene (Probe: 226084_at, 214577_at)
upregulation with up to 1.2832-, 0.3773- and 0.9436-, 0.3943- fold log ratios in advanced and metastatic
UC, respectively. Furthermore, we found through survival analysis that increased MAP1B expression
was significantly related to poor prognosis in patients with UBUC (Figure 1B). As shown in Figure 1c,d,
the MAP1B transcripts level was significantly higher among tumors with high pT status (pT2–pT4)
than in noninvasive tumors (pTa–pT1) in both the UTUC and UBUC groups (both p < 0.01). Our
findings indicate that MAP1B is associated with tumor aggressiveness.
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Figure 1. Analysis of gene expression in urinary bladder urothelial carcinoma (UBUC) using a published
transcriptome dataset (GSE31684). (A) Cluster analysis of genes focusing on the GO microtubule bundle
formation class (GO:0001578) revealed that MAP1B was one of the most significantly upregulated
genes associated with more advanced pT status and metastatic disease. Tissue specimens from cancers
with a distinct pT status are illustrated at the top of the heat map, and the expression levels of
upregulated and downregulated genes are represented as a continuum of brightness of red or green,
respectively. Specimens with no change in messenger RNA (mRNA) expression are shown in black.
(B) Kaplan–Meier plots showing the prognostic significance of MAP1B expression for the survival of
UBUC. Using a QuantiGene assay, MAP1B mRNA expression was significantly increased in both (C)
upper tract urothelial carcinoma (UTUC) and (D) UBUC at advanced primary pT stages.
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Table 1. Summary of differentially expressed genes associated with microtubule bundle formation (GO: 0001578) and showing positive associations to cancer
invasiveness and metastasis in the transcriptome of UBUC (GSE31684).

Probe
Title 1

Comparing T2-4 to
Ta-T1

Comparing Meta. to
Non-Meta. # Gene

Symbol Gene Title Biological Process Molecular Function
Log
ratio p-Value Log

ratio p-Value

214577_at 0.3773 0.0029 0.3943 < 0.0001 MAP1B Microtubule-associated
protein 1B

Dendrite development,
microtubule bundle formation

Protein binding, structural
molecule activity

221560_at −0.3436 0.0058 −0.0115 0.9048 MARK4
MAP/microtubule
affinity-regulating

kinase 4

G1/S transition of mitotic cell cycle,
G2/M transition of mitotic cell
cycle, Wnt receptor signaling
pathway, microtubule bundle

formation, microtubule
cytoskeleton organization and

biogenesis, nervous system
development, positive regulation

of cell proliferation, positive
regulation of programmed cell

death, protein amino acid
phosphorylation

ATP binding, gamma-tubulin
binding, kinase activity,

microtubule-binding,
nucleotide-binding,

protein-binding, protein kinase
activity, protein

serine/threonine kinase activity,
protein-tyrosine kinase activity,

tau-protein kinase activity,
transferase activity,
ubiquitin-binding

226084_at 1.2832 < 0.0001 0.9436 < 0.0001 MAP1B Microtubule-associated
protein 1B

Dendrite development,
microtubule bundle formation

Protein-binding, structural
molecule activity

#, Meta., distal metastasis developed during follow-up; Non-Meta.: no metastatic event developed.
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2.2. MAP1B Immunoexpression and Clinicopathological and Genomic Correlations in UTUC and UBUC

The association of clinicopathological characteristics with MAP1B immunoreactivity is shown
in Table 2. We found, in UTUC cases, that high MAP1B expression was markedly associated with
synchronous multiple tumors (p = 0.024), advanced pT status (p = 0.005) (Figure 2A–C), positive lymph
node metastasis (p = 0.002), the presence of vascular invasion (p < 0.001), and an increased mitotic rate
(p < 0.001) (Table 2 and Figure 2D). Similarly, in cases with UBUC, we found evidence of associations
between increased MAP1B expression and advanced pathological tumor stage (p < 0.001), positive
lymph node metastasis (p = 0.012), a high histological tumor grade (p = 0.016), the presence of vascular
invasion (p = 0.045), and an increased mitotic rate (p = 0.006) (Table 2 and Figure 2E). Of note, none
of the 30 cases displaying high MAP1B expression enrolled for mutational analysis were positive for
MAP1B mutation, suggesting a mutation-independent expression of MAP1B.
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Figure 2. Representative sections of MAP1B immunostaining. Note the stepwise increments in MAP1B
immunoreactivity from the nontumoral urothelial epithelium (inlet) and (A) noninvasive papillary UCs
to (B) non–muscle-invasive (pT1), and (C) muscle-invasive (pT2–pT4) UCs. A comparison of mitotic
activity showed significantly higher mitotic rates in (D) UTUC and (E) UBUC cells with increased
MAP1B expression than in cells with low expression.
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Table 2. Correlations between MAP1B expression and other important clinicopathological parameters in UCs.

Parameter Category

Upper Urinary Tract Urothelial Carcinoma Urinary Bladder Urothelial Carcinoma

Case no.
MAP1B Expression

p-value Case no.
MAP1B Expression

p-value
Low High Low High

Gender & Male 158 79 79 1.000 216 103 113 0.223
Female 182 91 91 79 44 35

Age (years) # 340 65.2+/−9.87 65.9+/−9.92 0.409 295 65.76+/−12.02 66.33+/−12.44 0.759

Tumor location
Renal pelvis 141 64 77 0.023 * - - - -

Ureter 150 87 63 - - - -
Renal pelvis & ureter 49 19 30 - - - -

Multifocality& Single 278 144 134 0.160 - - - -
Multifocal 62 26 36 - - - -

Primary tumor (T) &
Ta 89 54 35 0.005 * 84 56 28 <0.001 *
T1 92 5‘ 41 88 45 43
T2 159 65 94 123 46 77

Nodal metastasis & Negative (N0) 312 164 148 0.002 * 266 139 127 0.012 *
Positive (N1–N2) 28 6 22 29 8 21

Histological grade & Low grade 56 34 22 0.079 56 36 20 0.016 *
High grade 284 136 148 239 111 128

Vascular invasion & Absent 234 132 102 < 0.001 * 246 129 117 0.045 *
Present 106 38 68 49 18 31

Perineural invasion & Absent 321 162 159 0.479 275 140 135 0.169
Present 19 8 11 20 7 13

&, Chi-squared test; #, Mann–Whitney U test; * Statistically significant.
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2.3. Survival Analysis in UTUC and UBUC

During follow-up, we found in our UTUC cohort that 61 (17.9%) patients died because of their
cancer and 70 (20.6%) patients experienced disease progression. During univariate analysis, we
observed that multifocal tumors, advanced pathological tumor stage, positive lymph node metastasis,
high histological tumor grade, the presence of vascular invasion, perineural invasion, and high MAP1B
expression (Figure 3A,B) were associated with worse disease-specific survival (DSS) and metastasis-free
survival (MFS) (all p < 0.05). In multivariate analysis, multifocal tumors, advanced pathological tumor
stage, positive lymph node metastasis, high histological tumor grade, perineural invasion, and MAP1B
expression were independently predictive for both DSS and MFS (all p < 0.05) (Table 3).

In our follow-up of UBUC patients, we found that 52 (17.6%) patients died due to the cancer and
76 (25.8%) patients experienced disease progression. During univariate analysis, we determined that
advanced pT status, positive lymph node metastasis, high histological tumor grade, the presence of
vascular invasion, perineural invasion, an increased mitotic rate, and increment of MAP1B expression
(Figure 3C,D) were associated with worse DSS and MFS (all p < 0.05). Using multivariate analysis, we
confirmed that advanced pathological tumor stage, an increased mitotic rate, and MAP1B expression
remained significant in predicting reduced DSS and MFS (all p < 0.05) (Table 4).
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Table 3. Univariate log-rank and multivariate analyses for DSS and MFS in UTUC.

Parameter Category Case
No.

Disease-Specific Survival Metastasis-Free Survival

Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

No. of
Event p-value R.R. 95% C.I. p-value No. of

Event p-value R.R. 95% C.I. p-value

Gender
Male 158 28 0.8730 - - - 32 0.8307 - - -

Female 182 33 - - - 38 - - -

Age (years) <65 138 26 0.9728 - - - 30 0.8667 - - -
≥65 202 35 - - - 40 - - -

Tumor side
Right 177 34 0.7188 - - - 38 0.3903 - - -
Left 154 26 - - - 32 - - -

Bilateral 9 1 - - - 0 - - -

Tumor location
Renal pelvis 141 24 0.0100 * 1 - 0.562 31 0.0752 - - -

Ureter 150 22 1.167 0.618–2.203 25 - - -
Renal pelvis & ureter 49 15 1.261 0.345–4.615 14 - -

Multifocality Single 273 48 0.0031 * 1 - 0.050 * 52 0.0144 * 1 - 0.001 *
Multifocal 62 18 2.238 0.998–5.017 18 2.648 1.496–4.687

Primary tumor (T)
Ta 89 2 <0.0001 * 1 - 0.008 * 4 <0.0001 * 1 - 0.036 *
T1 92 9 2.641 0.561–12.419 15 2.643 0.563–12.410

T2–T4 159 50 5.667 1.250–25.699 51 5.538 1.236–24.817

Nodal metastasis
Negative (N0) 312 42 <0.0001 * 1 - <0.001 * 55 <0.0001 * 1 - <0.001 *

Positive (N1–N2) 28 19 4.188 2.244–7.819 15 4.421 2.415–8.094

Histological grade Low 56 4 0.0177 * 1 - 0.008 * 3 0.0022 * 1 - 0.008 *
High 284 57 4.746 1.514–14.881 67 4.770 1.509–15.077

Vascular invasion
Absent 234 24 <0.0001 * 1 - 0.139 26 <0.0001 * 1 - 0.147
Present 106 37 1.571 0.863–2.859 44 1.565 0.855–2.868

Perineural invasion
Absent 321 50 <0.0001 * 1 - <0.001 * 61 <0.0001 * 1 - <0.001 *
Present 19 11 4.768 2.251–10.102 - 9 4.865 2.294–10.318

Mitotic rate (per 10
high power fields)

<10 173 27 0.1442 - - - 30 0.0739 - - -
≥10 167 34 - - - 40 - - -

MAP1B expression Low 170 11 <0.0001 * 1 - 0.001 * 17 <0.0001 * 1 - <0.001 *
High 170 50 4.115 2.077–8.154 53 3.962 2.022–7.763

* Statistically significant.
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Table 4. Univariate log-rank and multivariate analyses for DSS and MFS in UBUC.

Parameter Category Case
No.

Disease-Specific Survival Metastasis-Free Survival

Univariate Analysis Multivariate Analysis Univariate Analysis Multivariate Analysis

No. of
Event p-value R.R. 95% C.I. p-value No. of

Event p-value R.R. 95% C.I. p-value

Gender
Male 216 41 0.4404 - - - 60 0.2786 - - -

Female 79 11 - - - 16 - - -

Age (years) <65 121 17 0.1010 - - - 31 0.6285 - - -
≥65 174 35 - - - 45

Primary tumor (T)
Ta 84 1 <0.0001 * 1 - <0.001 * 4 <0.0001 * 1 - <0.001 *
T1 88 9 6.493 0.696–60.560 23 5.044 1.469–17.327

T2–T4 123 42 27.783 3.011–256.370 49 7.845 2.239–27.484

Nodal metastasis
Negative (N0) 266 41 0.0001 * 1 - 0.729 61 <0.0001 * 1 - 0.100

Positive (N1–N2) 29 11 1.132 0.560–2.288 15 1.685 0.905–3.137

Histological grade Low grade 56 2 0.0010 * 1 - 0.714 5 0.0005* 1 - 0.572
High grade 239 50 0.744 0.153–3.610 71 0.729 0.244–2.179

Vascular invasion
Absent 246 37 0.0017 * 1 - 0.174 54 0.0001 * 1 - 0.798
Present 49 15 0.624 0.316–1.231 22 1.083 0.590–1.985

Perineural invasion
Absent 275 44 <0.0001 * 1 - 0.099 66 0.0006 * 1 - 0.339
Present 20 8 2.990 0.878–4.510 10 1.422 0.690–2.930

Mitotic rate (per 10
high power fields)

<10 139 12 <0.0001 * 1 - 0.021 * 23 <0.0001 * 1 - 0.045 *
≥10 156 40 2.184 1.124–4.246 53 1.697 1.012–2.846

MAP1B expression Low 147 7 <0.0001 * 1 - <0.001 * 16 <0.0001 * 1 - <0.001 *
High 148 45 5.551 2.466–12.498 60 3.770 2.146–6.622

* Statistically significant.
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2.4. MAP1B Promotes the Cell Proliferation, Migration, and Invasion of UC Cell Lines

To investigate the biological effects of MAP1B, we first characterized endogenous MAP1B
expression in eight UC cell lines and noticed RTCC1 and J82 cells had the most abundant MAP1B
transcripts and protein expression (Figure 4A). We next successfully knocked down MAP1B in both the
RTCC1 (Figure 4B, left) and J82 (Figure 4B, right) cell lines using short hairpin RNA (shRNA). We found
significantly attenuated proliferation (viability) in stable MAP1B-silenced RTCC1 (Figure 4C1) and J82
(Figure 4C2) cells. Due to the positive relationship between MAP1B expression and the development of
metastasis, we evaluated the effect of MAP1B in UC cell migration and invasion. MAP1B knockdown
significantly decreased the migratory and invasive abilities of RTCC1 (Figure 4C3,C5) and J82
(Figure 4C4,C6) cells.
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corresponding shLacZ controls. Similar trends were found for cell migration and invasion among cells
from the (C3 and C5) RTCC1 and (C4 and C6) J82 cell lines. (* p<0.05). More details of western blot,
please view at the supplementary materials.

2.5. MAP1B Expression Correlates with Chemoresistance In Vitro and In Vivo

Flow cytometric analysis of stable MAP1B knockdown RTCC1 and J82 cell lines showed stable
MAP1B knockdown significantly increased the sub-G1 population, indicating induced cell apoptosis
(Figures 5 and 6). Further analysis of vinblastine-treated RTCC1 and J82 cell lines also disclosed
induced cell apoptosis (Figures 7 and 8). In other words, MAP1B expression might lead to a resistance
to anti-mitotic chemotherapeutics. In the independent UBUC patient cohort receiving adjuvant
chemotherapy, Kaplan–Meier survival analysis showed high MAP1B expression correlated with
inferior DFS (Figure 9), further supporting the role of MAP1B in chemoresistance.
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Figure 8. Stable MAP1B knockdown increase vinblastine-induced apoptosis. Flow cytometric analysis of
annexin V/propidium iodide-stained RTCC1 (upper panel) and J82 (lower panel) cell lines demonstrated
MAP1B knockdown significantly increased percentage of vinblastine-induced apoptosis. (* p < 0.05).
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Figure 9. Kaplan–Meier survival analysis of MAP1B expression for the DFS of the UBUC patient cohort
receiving adjuvant chemotherapy. Kaplan–Meier survival analysis showing the prognostic significance
of MAP1B expression for the DFS of the UBUC patient cohort receiving adjuvant chemotherapy.

3. Discussion

It is estimated that one-third of patients with UBUC have advanced disease at presentation [16].
A similar poor prognosis was found among patients with advanced UTUC in that the DSS has not
changed significantly during the last two decades [17]. Regardless of the high initial response, the
therapeutic effects of current treatment were insufficient and resulted in recurrence and death. Currently,
there are no effective salvage regimens for treating metastatic UC. Metastasis requires the inherent
dynamic instability of microtubules for cell motility, and many changes in the microtubule network
have been identified in various cancers [14]. There is accumulating evidence that MAPs are associated
with changes in microtubule dynamics, that they can determine the effects of microtubule-targeting
agents, and that they play a role in cancer resistance [14]. However, reliable tumor markers that predict
the sensitivity to chemotherapy and resistance to tumor metastasis remain elusive.

MAPs contain products of oncogenes, tumor suppressors, and apoptosis regulators thought to
be involved in microtubule assembly. On the other hand, vinblastine, listed in the World Health
Organization’s List of Essential Medicines, binds tubulin and inhibits the assembly of microtubules [18].
It causes M-phase–specific cell-cycle arrest by breaking microtubule assembly and proper formation
of the mitotic spindle and the kinetochore, which were essential for the separation of chromosomes
during the anaphase of mitosis. Due to the possibility of sharing a common function, the rational
microtubule-targeting cancer therapeutic approaches should preferably include proteomic profiling of
tumor MAPs before the administration of antimicrotubule agents preferentially in combination with
agents that modulate the expression of relevant MAPs [14].

Histologically, MAPs were originally related to the development of the nervous system, based on
their very early detection in neurons. However, the aberrant expression of primarily neuronal MAPs
has since been detected in non-neural cancer tissues [14]. We also assessed MAP1B expression across
various cancer types using Oncomine™ Platform (Thermo Fisher, Ann Arbor, MI). Data revealed a
diverse expression of MAP1B in various cancers. Of these, CNS tumor has highest MAP1B expression;
bladder tumor has moderate expression. In our present results and using a published transcriptome
dataset (GSE31684), we first found that MAP1B was significantly upregulated in UC and associated with
more advanced pT status and metastatic disease in UBUC. Next, we found using immunohistochemistry
that MAP1B overexpression markedly correlated with disease status in affected patients. In patients
with UTUC, MAP1B overexpression was positively associated with synchronous multiple tumors,
advanced pathological tumor stage, positive lymph node metastasis, the presence of vascular invasion,
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and an increased mitotic rate. However, in patients with UBUC, MAP1B overexpression was associated
with advanced pathological tumor stage, positive lymph node metastasis, high histological tumor
grade, the presence of vascular invasion, and an increased mitotic rate. Furthermore, using survival
analysis, we demonstrated an association between MAP1B and aggressive clinical progression, whereby
MAP1B overexpression independently predicted poor DSS and MFS rates for all patients with UC.
These findings indicate that standard clinical practices may benefit from evaluating the MAP1B status
to improve the risk stratification of patients with UC.

Different MAP1B interactors can be grouped into seven different categories, including signaling,
cytoskeleton, transmembrane proteins, RNA-binding proteins, apoptosis, neurodegeneration-linked
proteins, and neurotransmitter receptors [19]. MAP1B is translated as a precursor polypeptide
that undergoes proteolytic processing to cleave into an N-terminal heavy chain (MAP1B HC) and
a C-terminal light chain (MAP1B LC1). MAP1B LC1 overexpression, which can generate protein
aggregates, has been observed in endoplasmic reticulum-related stress-induced cell apoptosis. This
effect is blocked by DJ-1, a Parkinson’s disease–related protein that has been proposed to act like
a molecular chaperone, and inhibits α-synuclein aggregation [20]. However, in contrast to the
proapoptotic effects caused by LC1 overexpression, MAP1B overexpression is not related to cell death
related to p53, a tumor-suppressor gene; in fact, MAP1B overexpression reduces p53 transcriptional
activity and inhibits doxorubicin-induced apoptosis [21]. In addition, we found that the percentages of
cells in the early and late stages of apoptosis were significantly increased between shLacZ controls
and shMAP1B-treated cells. Further in vivo studies are warranted to confirm our findings and to
determine whether such results may lead to new therapeutic targets for UC.

Recent studies have found that changes in the expression of MAPs are associated with
chemotherapy resistance and cancer progression [14,22]. For example, stathmin plays a role in
regulating neuroblastoma cell migration and invasion [22]. Silencing stathmin expression using
RNAi gene silencing significantly reduced lung metastasis in neuroblastoma in vivo. Similarly, we
demonstrated using UC cell lines with high endogenous MAP1B expression that silencing by MAP1B
shRNA significantly reduced cell proliferation, migration, and invasion ability. Based on these findings,
we posit that MAP1B may be a clinically valuable diagnostic marker for early cancer detection and a
promising prognostic marker.

Further, MAP1B interacts with several other proteins associated with cancer. For example,
Ras-association domain family 1 isoform A (RASSF1A), a tumor suppressor whose inactivation is
implicated in the development of many human cancers, interacts with MAP1B to influence microtubule
dynamics in the cell cycle and is involved in the inhibition of cancer cell growth [23]. Through
distinct bifunctional structural domains, C19ORF5, a sequence homolog of MAP1B, mediates the
communication between the microtubular cytoskeleton and mitochondria in the control of cell death
and defective genome destruction. In addition, it has been proposed that the accumulation of C19ORF5
results in microtubule hyperstability, which may be involved in the tumor suppression activity of
RASSF1A [24]. In the mammary cancer susceptibility 1 (Mcs1) region in chromosome 2 (a region that
expresses centromeric proteins), Laes et al. analyzed candidate genes in the region and found that
MAP1B was expressed in the mammary glands of rats [25]. Interactions with other proteins not related
to its role in stabilizing microtubules suggest that MAP1B may be part of a “signaling protein” that
regulates molecular pathways [19]. We propose that MAP1B has multiple functions, and whether
the main function of MAP1B is microtubule stabilization or whether it has many cellular functions
warrants further investigation.

A recent study that focused on kidney glomerular development and function found that MAP1B
was specifically expressed in podocytes in human and murine adult kidney tissues [26]. In a
mouse model, MAP1B was not essential for glomerular filtration function but may play a role in the
development and differentiation of the kidney tubular system. The authors hypothesize that MAP1B
may be related to either stress maintenance or the aging process in the kidney. It is clear that the overall
effects of MAP1B on UC are complex, with reports of associations between MAP1B and survival and
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metastasis. Research aimed at decoding the functional consequences of MAP1B and signaling cross-talk
with other proteins in different cancers is needed in the future. However, due to a slight predominance
toward females, it is unclear if the results can easily be transferred to the rest of the world.

4. Materials and Methods

4.1. Data Mining of GSE31684 to Identify Altered Gene Expression in UC

The transcriptome dataset GSE31684 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE31684), which includes 93 patients with UBUC who underwent radical cystectomy, was obtained
from the Gene Expression Omnibus repository at the National Center for Biotechnology Information.
Raw data were imported by Nexus Expression 3 (BioDiscovery, EI Segundo, CA, USA) to quantify
the gene expression level. No pre-selection or filtering was conducted during the analysis of the
data for all probes. Comparative analyses were performed to determine the significant differences in
the expressed genes by comparing the primary tumor (pT) status (high-stage to low-stage) and the
presence or absence of metastatic events.

4.2. Patients and Tumor Specimens

Between 1996 and 2004, 340 patients with UTUC and 295 with UBUC who underwent surgery
with curative intent at the Chi Mei Medical Center were enrolled. This study was reviewed and
approved by the institutional review board (105-01-005). Informed patient consent was obtained
from all participants. Demographic characteristics and clinical information including pathological
features, oncological follow-up, and cause of mortality were retrospectively collected. Patients who
underwent neoadjuvant chemotherapy or radiotherapy; who had concurrent muscle-invasive bladder
tumor, acute blood disorders, or bone marrow diseases; and those with incomplete clinical information
were excluded from our study. The tumor stage was defined in accordance with the 2002 American
Joint Committee Cancer (AJCC)’s Tumor, Node, Metastasis system. Two pathologists reviewed tumor
tissues and reclassified then as low- or high-grade using the seventh edition of the AJCC staging
system. As a rule, all patients were treated initially by surgery with curative intent. All UBUC patients
with pT3 or pT4 diseases or with nodal involvement received cisplatin-based adjuvant chemotherapy.
However, of the 106 UTUC patients with pT3 or pT4 and nodal positive diseases, only 29 received
cisplatin-based adjuvant chemotherapy. One expert pathologist (CFL) re-evaluated the hematoxylin
and eosin–stained sections of all cases. To determine the MAP1B transcript level, a pilot batch of
30 UTUC and 30 UBUC snap-frozen tissues with a high tumor percentage (> 70%) was retrieved. Each
group included 10 tumor tissues of the pTa stage, 10 of the pT1 stage, and 10 that were muscle-invasive
(pT2–pT4).

4.3. Immunohistochemical Staining

Immunohistochemistry was conducted to detect MAP1B protein expression in 340 UTUC and
295 UBUC cases. One representative slide of a tumor with most invasive area was evaluated by two
pathologists manually. Tumor tissue slide preparation was performed as described in our previous
study [27]. Slides were incubated with the primary antibody against MAP1B (1:100, clone AA6;
Millipore, Beverly, MA, USA). We quantified MAP1B protein expression levels by combining the
intensity and percentage of immunostaining in the cytoplasm of UC cells to generate an H score using
the following equation: H score = ΣPi (i + 1), where Pi is the percentage of stained tumor cells (0–100%)
and i represents the intensity of immunoreactivity (0–3+). The resulting scores ranged from 100 to 400
points, where a score of 100 points indicated that 100% of cancer cells were nonreactive and a score of
400 points meant that 100% of the cancer cells examined were strongly immunoreactive (3+).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
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4.4. Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR) to Assess the Transcription Levels
of MAP1B in Cell Lines and UC Samples

We calculated the fold change in MAP1B gene expression of UC tumors relative to that of normal
tissues as previously described [27]. We extracted total RNA from cell lines and a pilot batch of cases
consisting of 30 UTUCs and 30 UBUCs to quantify the transcription level of MAP1B using real-time
RT-PCR. Predesigned TaqMan assay reagents (Applied Biosystems, Waltham, MA, USA) were used
to assess the mRNA abundance of MAP1B (Hs00195485_m1) using the ABI StepOnePlus™ system
(Applied Biosystems, Waltham, MA, USA), for which POLR2A (Hs01108291_m1) was used as the
internal control for normalization.

4.5. Cell Culture

The cell lines RT4, TCCSUP, J82, and HUC were purchased from the American Type Culture
Collection (Manassas, VA, USA). The cell lines BFTC 909, and BFTC 905 were obtained from the Food
Industry Research and Development Institute (Hsinchu, Taiwan). RTCC1 cells were kindly provided
by Professor Lien-Chai Chiang at Kaohsiung Medical University [28]. Short-tandem repeat profiling
cell authentication had been performed in all cell lines (Mission Biotech, Taipei, Taiwan).

4.6. RNA Interference

The lentiviral vectors pLKO.1-shLacZ (TRCN0000072223: 5′-TGTTCGCATTATCCGAACCAT-3′) and
pLKO.1-shMAP1B (#1, TRCN0000116621: 5′-GCCTGGAATAAACAGCATGTT-3′; #2, TRCN0000290688:
5′- CCCTGACTTAGGAGTTGTATT-3′) were obtained from the Taiwan National RNAi Core Facility
(Taipei, Taiwan) and used to establish stable MAP1B-silenced clones of RTCC1 and J82 cell lines using
shRNAs against MAP1B (shMAP1B).Viruses were produced by transfecting HEK293 cells with the above
three vectors using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) [29]. For viral
infection, 3 × 106 RTCC1 and J82 cells were incubated with 8 mL of lentivirus in the presence of polybrene,
followed by puromycin selection of the stable clones of lentivirus-transduced cells.

4.7. Western Blotting

Our previously published western blotting assay procedure was used to evaluate endogenous
MAP1B expression and the MAP1B-knockdown efficiency in RTCC1 and J82 cell lines using primary
antibodies against MAP1B (1:500, clone AA6; Millipore, Beverly, MA, USA) and glyceraldehyde
3-phosphate dehydrogenase (GADPH) (6C5, 1:10,000; Millipore, Beverly, MA, USA). Cell lysates
with 25 µg of protein were separated using a 4% to 12% gradient NuPAGE gel (Invitrogen, Carlsbad,
CA, USA), then transferred onto polyvinylidene difluoride membranes (Amersham Biosciences,
Buckinghamshire, UK) for the immobilization of proteins. Membranes were incubated with tris-buffered
saline containing Tween 20 (TBST) buffer and 5% skimmed milk at room temperature for one hour
for blocking, followed by exposure to primary antibodies at 4 ◦C overnight against MAP1B (1:500,
clone AA6; Millipore, Beverly, MA, USA) using GADPH as a loading control (6C5, 1:10,000; Millipore,
Beverly, MA, USA). Membranes were incubated with the secondary antibody at room temperature
for 1.5 h, and proteins were detected using a chemiluminescence system (Amersham Biosciences,
Buckinghamshire, UK).

4.8. Bromodeoxyuridine (BrdU) Assay to Assess DNA Synthesis

DNA synthesis was measured using an enzyme-linked immunosorbent assay (ELISA)-based
and colorimetric bromodeoxyuridine (BrdU) assay (Roche Holding AG, Basel, Switzerland).
MAP1B-knockdown or shLacA control RTCC1 and J82 cell lines were plated into a 96-well plate
at a density of 3000 cells per well. At 24, 48, and 72 h, we measured the amount of DNA synthesis.
The labeling medium was removed after three hours of incubation with BrdU at 37 ◦C under 5%
CO2, followed by fixation and a final incubation with an anti-BrdU-POD solution. An ELISA reader
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(Promega Corp., Madison, WI, USA) was used to measure the absorbance at 450 nm, and the reference
was set at an absorbance of 690 nm.

4.9. Pharmacological Assays

The colorimetric 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)
assay (Sigma-Aldrich, St. Louis, MO, USA) was used to assess cell viability as previously described [30].
Vinblastine sulfate (Hospira UK Ltd., Maidenhead, UK) was obtained and suspended in normal saline.
RTCC1 and J82 cells were seeded in 96-well plates at a density of 5 × 103 cells per well the day before
treatment at the indicated time points with vehicle control (0.9% saline) or increasing concentrations
of vinblastine sulfate. The length of treatment interval was 72 h. After incubation with XTT reaction
mixture for three hours at 37 ◦C under 5% CO2, the absorbance of the samples was determined using
an ELISA reader (Promega Corp., Madison, WI, USA) at 450 nm, with the absorbance set at 630 nm
as reference.

4.10. Migration and Invasion Assays

Cell migration assay was performed using Falcon HTS FluoroBlok 24-well inserts (BD Biosciences,
Franklin Lakes, NJ, USA) and the cell invasion assay was performed using the 24-well Collagen-based
Cell Invasion Assay (Millipore, Beverly, MA, USA). Briefly, we added serum-free medium to rehydrate
each insert, then replaced it with a serum-free suspension with equal numbers of cells in the upper
chamber, followed by a 12- to 24-h incubation period to allow cells to migrate toward (i.e., invade)
the lower chamber, which contained medium with 10% fetal bovine serum. After removal of the
noninvading cells in the upper chamber, cells that invaded through the inserts were stained, lysed in
extraction buffer, and transferred to 96-well plates for colorimetric readings at 560 nm.

4.11. Flow Cytometry Analysis of Cell-Cycle Kinetics

Stable pools of MAP1B knockdown versus the corresponding shLacZ control of the RTCC1 and
J82 cell lines were pelleted and fixed overnight in 75% cold ethanol at −20 ◦C. The cells were washed
twice using cold phosphate-buffered saline with 10 mg/mL of DNase-free RNase. Next, the cells were
labeled with 0.05 mg/mL of propidium iodide and analyzed using a NovoCyte flow cytometer (ACEA
Biosciences, San Diego, CA, USA) to determine the different proportions of cells at each phase of the
cell cycle. Our lower limit of the number of sorted cells after gating out fixation artifacts and cell debris
was 104 cells for all experiments.

4.12. Flow Cytometry Analysis of Apoptosis

Cell apoptosis was evaluated by plating RTCC1 and J82 cells (105 cells each) with shLacZ or
shMAP1B for 24 h, followed by 15 min of incubation using an Annexin V-FITC kit (BD Biosciences,
Franklin Lakes, NJ, USA) that contained propidium iodide. The percentages of cells at late apoptosis
were calculated from three independent experiments.

4.13. Mutation Analysis

To explore potential MAP1B mutation in UC, we randomly selected 15 UTUC and 15 UBUC
cases (Table S1) with high protein expressions of MAP1B for mutation analysis. Mutation analyses
were performed by using an ABI3100 sequencer targeting eight pathogenic point mutations occurring
in other cancer types according to the database of COSMIC repository (https://cancer.sanger.ac.uk/

cosmic/gene/analysis?ln=HSD11B1#variants). Validated MAP1B mutations and primers sets are shown
in Table S2. The PCR amplification started with an initial denaturation step at 95 ◦C for 15 min,
followed by 35 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension step
at 72 ◦C for 10 min. Then, these amplicons generated in individual PCR reactions were analyzed by
direct sequencing.

https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=HSD11B1#variants
https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=HSD11B1#variants


Cancers 2020, 12, 630 18 of 20

4.14. Postoperative Adjuvant Chemotherapy in UBUC

To evaluate the role of MAP1B expression in the response to adjuvant chemotherapy in UBUC
patients, an independent cohort containing 70 patients with pT3 or pT4 disease or with nodal
involvement received cisplatin-based adjuvant chemotherapy combined with vinblastine and were
enrolled for further survival analysis (Table S3).

4.15. Statistical Analyses

The Statistical Package for the Social Sciences version 12.0 software program (IBM Corp., Armonk,
NY, USA) was used for all statistical analyses. Differences between categorical parameters were
assessed using the chi-squared or Fisher’s exact test. The median H scores of MAP1B immunoreactivity
were used as cutoff values to separate UTUC and UBUC into two subgroups of high and low MAP1B
expression. Pearson’s chi-squared test was used to compare the association between MAP1B expression
and clinicopathological parameters. The Kaplan–Meier method was applied to estimate the effect of
MAP1B expression on DSS and MFS. The survival curves were compared using the log-rank test. We
used a Cox proportional-hazards model to identify independent predictors for DSS and MFS. In all
figure legend, continuous parameters (such as MAP1B transcript expression in Figure 1, mitotic activity
in Figure 2, MAP1B mRNA expression, relative proliferation, migration and invasion in Figure 4,
apoptosis rate in Figure 6) were assessed using a t-test or Mann–Whitney–Wilcoxon test. Survival
analysis (DSS and MFS) were performed using Kaplan-Meier plots and compared by the log-rank test.
Statistical significance was set at p < 0.05.

5. Conclusions

In summary, the present study demonstrated that MAP1B overexpression was not only an
indicator of unfavorable clinicopathological parameters, but also an independent prognostic factor
able to predict poor DSS and MFS rates in patients with UTUC or UBUC. Additional studies must be
conducted to elucidate the details of the biological significance of MAP1B and its encoded protein in
UC oncogenesis for exploring possible MAP1B-targeted therapy for both kinds of UC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/630/s1,
Table S1: Urothelial carcinoma enrolled to explore potential MAP1B mutation, Table S2: MAP1B mutations
validated and primer sets, Table S3: Characters of independent UBUC patient cohorts receiving postoperative
adjuvant chemotherapy.
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