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Abstract

Background: The purpose of this study was to investigate the effect of TAS2R38 haplotypes and age on human
bitter taste perception.

Results: Children (3 to 10 yrs), adolescents (11 to 19 yrs) and adults (mostly mothers, 20 to 55 yrs (N = 980) were
measured for bitter taste thresholds for 6-n-propylthiouracil (PROP) and genotyped for three polymorphisms of the
AS2R38 gene (A49P, V262A, 1296V). Subjects were grouped by haplotype and age, as well as sex and race/ethnicity,
and compared for PROP thresholds. Subjects with the same haplotype were similar in bitter threshold regardless of
race/ethnicity (all ages) or sex (children and adolescents; all p-values > 0.05) but age was a modifier of the
genotype-phenotype relationship. Specifically, AVI/PAV heterozygous children could perceive a bitter taste at lower

homozygotes.

heterozygotes.

PROP concentrations than could heterozygous adults, with the thresholds of heterozygous adolescents being
intermediate (p < 0.001). Similar age effects were not observed for subjects with the PAV/PAV or AVI/AVI
homozygous haplotypes (p > 0.05) perhaps because there is less variation in taste perception among these

Conclusions: These data imply that the change in PROP bitter sensitivity which occurs over the lifespan (from
bitter sensitive to less so) is more common in people with a particular haplotype combination, i.e., AVI/PAV

Background

The experience of bitterness occurs after certain chemi-
cals contact taste receptors located in cells on the sur-
face of the tongue. Some investigators hypothesize that
this sense provides information so that people do not
ingest bitter-tasting toxic chemicals [1]. Potent poisons
are found in many plants (e.g., like ricin and castor
beans) which render them inedible [2]. However for
many other plants, the potency or amount of toxin is
low enough so that even though some (e.g., turnips or
cabbage) might taste bitter, they can be eaten with fewer
consequences [3]. However this poison detection system
is not perfect because not everyone perceives the inten-
sity of a fixed bitter stimulus in the same way [4,5]. The
classic example of individual differences in taste sensitiv-
ity is for phenylthiocarbamide (PTC) and the related
chemical propylthiouracil (PROP) [6]. Some people can
detect these compounds at low concentrations, whereas
others need much higher concentrations or cannot
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detect them at all [7,8]. Early family studies suggested
this bimodality in taste response was due to alleles in a
single gene [8,9]. Based on clues from many population
studies, investigators predicted the minor allele fre-
quency of the hypothetical locus would be high because
bitter insensitivity to these compounds was common.
They also predicted that the allele frequency would vary
between human populations [6,10]. These predictions
later proved to be accurate, with qualifications [11].

The gene which accounts for this taste trait is
TAS2R38, a member of the family of taste receptors that
respond to bitter stimuli [12-16] and the milestones of
this discovery have recently been summarized [17]. One
qualification to previous predictions mentioned above
was that the molecular characterization of this genetic
locus revealed three sites of genetic variation (A49P,
V262A, and 1296V) which are found in two common
(AVI and PAV), two less common (AAI and AAV) and
two rare haplotypes (PVI and PAI) [11,18-21]. Two hap-
lotypes have not been observed in any subjects tested to
date, AVV and PVV. As foreseen by earlier investigators,
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the frequency of the two common haplotypes varies by
race/ethnicity [11,18,19]. Thus heterozygosity is com-
mon and may be due to balancing natural selection as a
result of as yet unknown beneficial properties of the
minor allele [18,22]. Another feature of this locus is that
while homozygosity is associated with extremes of
PROP threshold, heterozygosity is associated with a
wide range of taste ability [12]. For a translation of gen-
otype, haplotype and diplotype and their effects on taste
perception for PROP, see Table 1.

Investigators have observed that younger subjects are
more sensitive than older subjects to the bitterness of
PROP or PTC, with some suggesting that age modifies
the genotype-phenotype relationship [8,23-29]. Since
allele frequencies do not differ between children and
adults, the explanation for age-related differences in bit-
ter perception must lie elsewhere. Previous investigators
noted that people who were less sensitive to this class of
bitter compounds seemed to lose their sensitivity faster
as they got older, concluding that gene penetrance
might differ by age and genotype [30,31]. To try to
understand this issue, in an earlier study, we assessed
children and their mothers (N = 257) for the first
genetic variant site (A49P) of the TAS2R38 gene and
measured their PROP thresholds. We found that chil-
dren who were heterozygous (AP) were more bitter sen-
sitive than adults of the same genotype but that AA or
PP homozygous children did not differ from adults of
the same genotypes [32].

There were three unanswered questions that arose
from this study. First, only the first variant site was
typed. Thus, subjects who were homozygous for the
A49 allele could have one of several haplotypes: (A)VI,
(A)AI or (A)AV, and therefore some people classed as
homozygous for the first allele (AA) would be heterozy-
gous for the other alleles if the remaining haplotype was
considered. This point is important because subjects
with an AA haplotype have an intermediate phenotype
[21]. Second, only children between the ages of 5 to 10
years and adults were studied so we could not deter-
mine when this change occurred. There were enough
subjects to categorize people into three groups by geno-
type (AA, AP or PP at position +49) but too few to
group by haplotype or diplotype. Therefore in the

Table 1 Translation of TAS2R38 genotypes/haplotypes/
diplotypes to PROP taste perception

+49 +262 +296 Haplotype Diplotype PROP Taste perception

A \% I AVl AVI/AVI Nontaster
p A % PAV PAV/PAV  Taster
Adapted from [11]. The terms ‘taster’ and ‘nontaster’ are used for convenience

because there is a range of perceptual ability within each category. +49, +262
and +296 refer to amino acid locations in the TAS2R38 protein. The single
letter notations refer to amino acids, e.g., A = Alanine.
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present study, we phenotyped a large (N = 980) and
diverse group of children, adolescents and adults and
genotyped them for three TAS2R38 alleles. These data
now allow us to gauge the interaction between age and
diplotype and the timing at which changes in gene
penetrance for PROP bitter taste perception occurs.

Results

Subjects

Subjects who participated in research studies on taste
and smell preferences during the years 2003-2007 were
phenotyped for PROP threshold and genotyped for
three alleles of the TAS2R38 gene. Included in this sam-
ple of 980 individuals were 448 children (241F/207M),
100 adolescents (55F/45M) and 432 adults (425F/7M).
The majority of the adult subjects (N = 345) were the
mothers of the children or adolescent participants. Chil-
dren ranged in age from 3 to 10 years (mean 7 * 2),
adolescents from 11-19 years (mean 15 + 2) and adults
from 20 to 55 years (mean 34 + 7). Race/ethnicity was
assigned by maternal (or adult) report according to stan-
dard US Census categories. We used the term race/eth-
nicity in describing our groups because it represents
both the genetic and cultural components of this sample
[33]. These categories reflect the population of the
urban setting from which it was drawn: Philadelphia,
Pennsylvania, USA; 56% African-descent (Non-Hispanic;
African-American), 29% Caucasian (Non-Hispanic; Cau-
casian) and 15% other groups (Mixed ancestry, Asian, or
Hispanic). All testing procedures were approved by the
Office of Regulatory Affairs at the University of Pennsyl-
vania. Informed consent was obtained from each adult
and assent was obtained from each child who was
7 years of age or older.

Haplotypes and diplotypes

A breakdown of diplotype frequency by age and race/
ethnicity is provided in Table 2. From all combinations
of the three alleles, six out of the eight possible haplo-
types and thirteen of the thirty-six possible diplotypes
were observed. Two haplotypes accounted for over 84%
of all haplotypes (AVI, 41.2%, nontaster and PAYV,
43.1%, taster) whereas the remaining four haplotypes
were rare (AAIL 12.2% and AAV, 3.3%) or extremely
rare (PAI, <1% and PVI, <1%). The two remaining possi-
ble combinations, AVV and PVV, were not observed in
this sample.

We refer to AVI as the ‘nontaster’ haplotype and PAV
as the ‘taster’ haplotype for convenience, acknowledging
that this use of terminology is an over-simplification. To
make one further point of terminology, subjects with
two copies of the taster or nontaster haplotype are
referred to as having the taster or nontaster diplotype,
respectively. The most frequent diplotype was the
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Table 2 Distribution of TAS2R38 diplotype by age and race/ethnicity
Race Age group AVI/ AAl/ AAV/ AAV/ AAl/ AAV/ AVl/  AAl/ AAV/ AAl/ PAV/ PAV/ PAV/ Total
AVI AVI AVI AAI AAIl AAV PAV PAV PAV PAI PVI PAI PAV
Caucasian Children 32 2 8 0 0 0 60 1 10 0 0 0 21 134
Adolescents 2 0 0 0 0 0 6 0 1 0 0 0 3 12
Adults 37 1 5 1 0 0 60 1 6 0 0 0 25 136
Total 71 3 13 1 0 0 126 2 17 0 0 0 49 282
Percent 25 1 5 <1 0 0 45 <1 6 0 0 0 18
African- Children 35 26 2 0 7 0 73 39 5 0 0 1 44 232
American
Adolescents 8 10 0 1 6 0 22 15 1 0 1 0 7 71
Adults 31 29 4 0 9 0 86 37 10 1 1 0 37 245
Total 74 65 6 1 22 0 181 91 16 1 2 1 88 548
Percent 14 12 1 <1 4 0 33 17 2 <1 <1 <1 16
Other Children 14 8 3 0 0 1 28 9 2 0 0 0 17 82
Adolescents 3 2 0 0 1 0 5 2 1 0 0 0 3 17
Adults 10 6 0 1 0 0 18 2 1 0 0 0 13 51
Total 27 16 3 1 1 1 51 13 4 0 0 0 33 150
Percent 18 11 2 <1 <1 <1 34 9 3 0 0 0 22
All Total 172 84 22 3 23 1 358 106 37 1 2 1 170 980
Percent 18 9 2 <1 2 <1 37 11 4 <1 <1 <1 17

The number of children, adolescents, and adults by race/ethnicity and diplotype. Other = includes Asian, Hispanic and Mixed ancestry. The most common

diplotypes are in bold text.

combination of the two most frequent haplotypes and
these heterozygous subjects accounted for 37% of all
subjects, followed in frequency by the homozygous sub-
jects: 18% (AVI/AVI, nontaster) and 17% (PAV/PAV,
taster). The remaining diplotypes were combinations of
one rare and one common haplotype, except for three
subjects, each of whom had a different combination of
rare haplotypes.

Age effects are most apparent in heterozygous subjects

A multinomial logistic regression was conducted and the
results indicated a main effect of diplotype X*) = 323.62,
p < 0.0000, a trend toward an effect of age X*) = 12.29,
p = 0.0557 and a significant diplotype by age interaction
[Xz(g) = 22.62, p = 0.0071]. When half of the heterozy-
gous subjects were included in the analysis, to equate
group sizes, the results were similar: a main effect of
diplotype, X*() = 271.71, p < 0.0000, no effect of age
X% = 3.67, p = 0.7200 and a significant diplotype by age
interaction [Xz(g) =19.36, p = 0.0223]. To analyze the
effects of age, independent of familial relationship, we
conducted a similar analysis on a sub-sample of 508
unrelated people with the three most common diplotypes
(AVI/AVI, AVI/PAV and PAV/PAV) and two age
categories (children and adults) as fixed factors. Among
unrelated individuals, there was a main effect of age
X% = 8.1, p = 0.04; a main effect of diplotype, X*¢) =

180.3, p < 0.0000 and an age by diplotype interaction
X% = 17.1, p = 0.0070.

To determine the nature of the diplotype by age inter-
action, groups were stratified by age group (children,
adolescents and adults) within the most common diplo-
type groups (PAV/PAV, PAV/AVI, AVI/AVI) and per-
centages of subjects that could perceive bitterness at
each concentration of PROP were compared. In a
related analysis, we broadened the definition of hetero-
zygotes to include subjects with one PAV haplotype and
any other haplotype on the second chromosome (PAV/
A**). As shown in Figure 1, age was a modifier of the
genotype-phenotype relationship for heterozygous sub-
jects. More heterozygous children perceived bitterness
at the lowest concentrations than did adults with the
same genotype, with adolescents intermediate between
adults and children (AVI/PAV; omnibus, 3°4) = 16.44,
p = 0.0025; children and adolescents versus adults, x°
= 12.86, p = 0.0003; children versus adolescents and
adults, 3’ = 16.10, p < 0.0001). PAV/PAV or AVI/AVI
homozygous children, adolescents and adults did not
differ in PROP thresholds (all p-values > 0.05). These
results were similar when the broader definition of het-
erozygotes was used (PAV/A**; omnibus ’@) = 16.90,
p = 0.0020; children and adolescents versus adults, xz(l)
= 11.88, p = 0.0006; children versus adolescents and
adults, 3%y = 15.46, p = 0.0001).
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Figure 1 Effect of age group on PROP sensitivity by common
diplotypes. The cumulative percentage of subjects with the
following diplotypes (A) taster PAV/PAV, (B) heterozygous AVI/PAV,
and (C) nontaster AVI/AVI who first reported a bitter taste when
sampling 56 (black bars), 180 (grey bars), and 560 uM PROP
(hatched bars) or who never reported a bitter taste when sampling
each of these PROP solutions (white bars). In panel (B) there is an
increase in the proportion of children who report a bitter taste for
the 56 pmol/liter solution relative to adults. *denotes a significant
difference by x? partition.

Race/ethnicity and sex do not affect genotype-phenotype
relationships

To determine whether race/ethnicity had independent
effects on PROP thresholds, we focused on people with
four haplotypes (PAV, AVI, AAI and AAV) and
excluded those with the two rarest haplotypes (PAI and
PVI; N = 4) to meet the requirements of the statistical
test. The frequencies of these four haplotypes differed
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between racial groups, specifically, the AAI haplotype
was found more often in African-Americans whereas
the AVI and AAYV haplotypes were found more often in
Caucasians (omnibus, x2(6) = 123.10, p < 0.0000000; par-
tition for AAI, XZ(]) = 105.02, p < 0.0000000; partition
for AVI %) = 8.28, p = 0.00401; partition for AAV,
%’a) = 8.86, p = 0.00292).

Next, we determined whether there were race/ethni-
city effects on PROP thresholds within the most com-
mon diplotype groups (AVI/AVI, AVI/PAV and PAV/
PAV). Other groups were excluded from this analysis,
either because the contributing haplotypes were too rare
for statistical comparisons or because the contributing
haplotypes were specific to one racial group. We used a
XZ test when possible, but in the case of the PAV/PAV
group, a proportion test was used to compare the most
sensitive tasters (who perceived a bitter taste from
PROP at the lowest concentration) with all other taste
groups. This step was necessary because so few subjects
with a PAV/PAYV diplotype were insensitive to PROP.
With these details in mind, within a diplotype, we found
no differences between African-American and Caucasian
subjects in PROP sensitivity (all p-values > 0.05).

To determine whether sex had independent effects on
PROP thresholds we focused on children and adoles-
cents, groups with roughly equal numbers of boys and
girls, because most of the people in the adult group
were women (i.e.,, mothers). There were no sex differ-
ences in PROP thresholds in children and adolescents
(0’3 = 552, p = 0.137).

Discussion

The objective of this study followed from our previous
study [32] and aimed to determine how age interacts
with diplotype to affect PROP taste perception. While
the association between TAS2R38 genotype and PROP
taste sensitivity phenotype was resilient against effects of
race/ethnicity (among all ages) and sex (in children in
adolescents), age was a modifier of the association, espe-
cially among AVI/PAV heterozygotes. We found that
children who were heterozygous for the common haplo-
types were more sensitive to the bitterness of PROP
than adults with the same diplotype, with adolescents
intermediate. These findings are consistent with our ear-
lier studies of children and their mothers which exam-
ined the effect of one TAS2R38 genotype (A49P) [32] as
well as research of others who observed age-related
changes in the perception of PTC and PROP
[8,23-26,28,29]. The age effect was specific to diplotype
and not detected among PAV/PAV homozygous taster
or AVI/AVI homozygous nontaster subjects although
this result might be partially explained by restricted
range of phenotype of people with those homozygous
diplotypes. Sample size differences which occur naturally
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between diplotype groups did not explain this effect
because when groups were equated, the diplotype by age
interaction was still evident. In addition, this result gen-
eralized to other heterozygous subjects because we
observed it among subjects with rare heterozygous
diplotypes (PAV/A**). Thus we conclude that these
types of age-related changes in taste sensitivity are more
pronounced in subjects with particular genotypes. This
interaction between age and genotype is predicted to
have a broad impact because many people in the popu-
lation are heterozygous.

What causes the developmental shift in taste sensitiv-
ity among AVI/PAV heterozygotes is unknown. One
explanation is that the age and diplotype interaction
may be due to preferential allele expression, with chil-
dren over-expressing the taster form rather than the
nontaster form of the receptor early in life and then los-
ing this tendency as they age. Adults heterozygous for
the TAS2R38 gene do not express mRNA of each haplo-
type in a one-to-one proportion [12], so it is possible
that heterozygous children might have a skewed expres-
sion pattern, perhaps over expressing the taster allele. If
true, why this change would occur during adolescence is
not known, but it may be triggered by signals that brain
and body growth are complete [34]. The hypothesis that
allelic expression could account for these phenotype dif-
ferences is provocative, but necessarily speculative,
because biopsy tissue of taste papillae of healthy chil-
dren is not readily available for mRNA analysis. PROP
bitterness is not entirely explained by alleles of the
TAS2R38 gene [12,35-37] and these other modifiers
(like taste papillae number) could be age-sensitive and
more influential in heterozygous diplotypes [38].

Both the taster and nontaster alleles have been pre-
served since the time of the Neanderthals [39] and so it
is presumed that both alleles must do important work
[22,40]. Humans would not have encountered PROP or
PTC in their natural environment but structurally
related compounds are found normally in some plants
[41] and these chemicals are potent thyroid toxins [3].
Thus it is likely that the benefit of the taster allele is to
detect thyroid poisons [42]. However, the function of
the nontaster allele, if any, is not known [17]. One piece
of evidence that supports the hypothesis that the nonta-
ster form has a function is that it has an intact reading
frame and is not a pseudogene [11] and therefore it
might be able to detect bitter molecules from a different
chemical class [43]. Another point to consider is that
taste receptors are also found in the gut and stimulate
hormone secretion [44] and their expression is depen-
dent on diet [44]. Bearing these ideas in mind, perhaps
there is an evolutionary advantage to being heterozy-
gous: the taster allele is dominant early in life when
thyroid poisons can do the most harm while the
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nontaster allele (and its unknown function) is more
dominant during adulthood.

The above hypothesis suggests that the age and geno-
type effects are specific to one particular bitter receptor
but there is another possibility. Instead, we hypothesize
that age may modify the genotype-phenotype relation-
ship for other sensory receptors. Studies of olfactory
genes in the mouse demonstrate that the pattern of
gene expression changes during development, with
receptor genes turning off forever early in life and
others only turning on in adulthood [45]. Olfactory gene
expression changes during development, so perhaps
individual alleles might do so as well. Some evidence
exists which is consistent with this hypothesis. Similar
to the present finding with PROP perception, there are
age-related declines in olfactory sensitivity for the musk
odor androstenone, a change which occur around the
time of puberty [46]. Alleles of a particular smell recep-
tor predict the threshold to this odorant [47]. While it is
not known if the decline in androstenone sensitivity is
more common in heterozygotes, if this were the case, it
would suggest that development by genotype effects
may be a feature of other sensory receptors.

Although previous studies have found that females
taste PROP and chemically related compounds at lower
thresholds than males [6], we observed no sex effects in
the children and adolescents studied here. This result is
probably explained by sexual maturation, because half of
our subjects were children and sex effects for this trait
are not typically found until after puberty [6] and the
adults were almost all women. Regarding race/ethnicity,
allele frequencies for the TAS2R38 gene vary by racial/
ethnic group and therefore when two racial groups are
compared, they differ in phenotype because they differ
in genotype [18]. The differences in allele frequencies
we found replicated those reported by others [11]. How-
ever we also asked a different question, which was
whether race/ethnicity affects bitter threshold indepen-
dent of genotype and here the answer was no. African
American and Caucasian subjects with the same diplo-
type had indistinguishable bitter thresholds. Therefore
differences in culture, experience and genetic back-
ground that are associated with race and ethnicity
do not appear to modify this genotype-phenotype
relationship.

Appropriate methods are critical in obtaining valid
and reliable results when a wide age range of subjects is
studied, so the rationale for the methods used herein
should be considered. Bitter sensitivity to PROP and
PTC have been assessed in the past in two ways (thresh-
old versus intensity) and each method has several varia-
tions [26,48-50]. In this study, all subjects, regardless of
age, were phenotyped the same way. A forced-choice
categorization procedure enabled us to measure the
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lowest concentration at which they could recognize bit-
terness (threshold) rather than having them rate inten-
sity. This method was chosen because children have
difficulty with intensity measures and therefore thresh-
old methods are preferable. This particular threshold
method was developed by Anliker et al., (1994) and
modified by Mennella et al., (2005) to specifically
address several issues related to conducting research in
pediatric populations, as follows: First, age-appropriate
tasks which were fun and minimized the impact of lan-
guage and cognitive development were used because
young children are more prone to attention lapses and
have shorter memory spans. Second, a forced-choice
categorization procedure circumvents the element of
uncertainty when tasting solutions at low concentra-
tions. Furthermore, this method does not rely on ‘yes’ or
‘no’ answers which are prone to inaccuracy because
young children tend to answer in the affirmative. Third,
prior to the data collection and after a period of accli-
mation, we ascertained whether the child comprehended
the task. Fourth, the same method was used for chil-
dren, adolescents and adults so that any age-related dif-
ferences observed were not due to disparity in the
testing procedures. Albeit simple, this method proved to
be reliable for children, adolescents and adults because
subjects who were retested later demonstrate similar
thresholds [32].

Children differ from adults since their likes and dis-
likes are the complex product of developing sensory sys-
tems, genetic variation, experiences and culture. In fact,
they live in different worlds than adults in many sensory
realms: sounds [51], smells [25,46], tastes [52] and irri-
tants [53], but these differences are especially striking
for bitter taste. In childhood, bitter sensitivity makes
evolutionary sense because of the risk of accidental poi-
soning while foraging for plant foods, some of which
may be poisonous [54]. But in the modern world, bitter
sensitivity may take a toll on nutrition and health. An
important example is that wholesome foods like vegeta-
bles are initially rejected, and this reluctance can later
develop into a permanent avoidance because the positive
aspects of the food are not experienced. Children need
to be given repeated opportunities to learn to like bit-
ter-tasting vegetables [55], maybe more so if they have
bitter sensitive genotypes and the reluctance of parents
and caregivers to offer foods that are initially rejected
must be overcome [55]. Likewise, liquid formulations of
medicines are avoided or refused by children because of
their repellent taste [56,57]. Thus the rejection of unpa-
latable medications and bitter-tasting foods by children
is a reflection of their basic biology and at least for
vegetables can be fine-tuned by learning and genotype.
A better understanding of the individual differences in
chemosensory perception throughout the lifespan and
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the scientific basis for distaste and how to ameliorate it
is a public health priority [56].

Conclusion

Our data suggest that bitter sensitivity for at least one
stimulus, PROP, changes over the lifespan and is
affected by the person’s genotype for alleles with the bit-
ter receptor TAS2R38. These developmental sensory
changes are most marked for people who have a
particular haplotype combination, i.e., AVI/PAV
heterozygotes.

Method

Phenotyping for PROP perception

To measure PROP perception, we used previously
validated procedures that are sensitive to the cognitive
limitations of pediatric populations [32]. Following a
one-hour fast, each subject was tested individually in a
closed room designed for sensory studies. Most of the
children younger than 7 years were tested with their
mothers present. The mothers, who sat behind the chil-
dren and out of view, refrained from talking during the
test session and listened to music with headphones to
prevent them from hearing their children’s answers. All
other subjects were tested individually.

To allow for comparisons between the age groups,
procedures were identical for all subjects and several
steps were undertaken to make sure that the younger
subjects understood the task before testing. The forced-
choice procedures and concentrations of PROP used
were based on previous research [24,32]. Subjects were
presented with a cup containing 5 milliliters of water
and told to rinse the contents in their mouth and then
spit it out. If the solution tasted like water, they were
told to give it to a stuffed toy of Big Bird™ (a likeable,
well-known television character puppet), but if it tasted
“yucky” or bitter, they should give it to Oscar the
Grouch,™ so that he can “throw it in his trash can” [58].
The procedure was repeated and subjects tasted (but did
not swallow), in ascending order, three solutions of
PROP (56, 180 and 560 uM) rinsing with water before
and after each tasting. (If a subject swallowed the PROP
solution, the testing was immediately discontinued).
Subjects were classified into four groups based on the
lowest concentration, if any, that they reported bitter-
ness and, in turn, gave the sample to Oscar the Grouch.
Those who gave all samples to Big Bird were classified
as “None (of the samples) tasted bitter”.

To determine the reliability of the method, PROP test-
ing was conducted a second time on a random sample
of 34 children and 22 adults. Testing occurred 9.2 + 1.3
months after the initial test session. Reliability, which
was assessed by conducting Kendall’s tau (T) correla-
tions, revealed that the grouping based on the PROP
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threshold data obtained during the initial session was
significantly correlated with that obtained during the
retest for both children (Kendall’s T = 0.69; p < 0.05)
and adults (Kendall’s T = 0.76; p < 0.05). Twenty four
of the children (71%) and 15 of the adults (68%)
reported first perceiving a bitter taste at the same con-
centration as originally reported. Of the remaining 10
children, 8 reported a concentration one step below and
2 reported a concentration one step higher during the
second test. Of the remaining 7 adults, 4 had thresholds
one step below and 1 had a threshold two steps below
the original.

Genotyping and haplotyping for TAS2R38 gene

Cells from the cheek were obtained using swabs and
genomic DNA was extracted following the directions of
the manufacturer (Epicenter, Madison, WI). Alleles of
the TAS2R38 gene (Genbank accession no. NM_176817)
were genotyped using real time PCR single nucleotide
polymorphism (SNP) genotyping assays (rs713598,
rs1726866 and rs10246939) with the Prism 7000, manu-
factured by Applied Biosystems (Foster City, CA). Hap-
lotypes were identified by tracing the parental origin of
the alleles when possible, or otherwise they were
inferred by expectation-maximization methods using an
algorithm implemented by the computer program fas-
tPHASE [59].

Data analyses

We conducted a multinomial logistic regression analysis
with three most common diplotypes (AVI/AVI, AVI/
PAV and PAV/PAV) and three age categories (children,
adolescents, adults) as fixed factors and with a four-cate-
gory outcome measure (subjects who first reported 56
uM, 180 uM or 560 uM PROP as bitter or subjects who
reported that none of the solutions tasted bitter). The
model was as follows: outcome measure = diplotype +
age + diplotype x age. Analyses were re conducted after
randomly removing heterozygous subjects to equate
group sizes. If a significant interaction between diplo-
type and age were obtained, other methods outlined
below were conducted to determine the nature of the
interactions.

Most analyses followed the same method, which was
to stratify subjects into groups by the variable of inter-
est, and test for differences between the groups with an
omnibus y? analyses for k independent samples, fol-
lowed by a partitioned %> to determine where the differ-
ence occurred [60]. This analysis cannot be undertaken
if there are no observations in a particular cell, or when
the number of observations in 20% of the cells is less
than five, so in some cases, we conducted analysis only
on groups with sufficient sample size, or we combined
related groups to increase the sample size per cell.
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(These conditions occasionally required that we do a
test between two proportions rather than a %?). To
determine the effects of age, subjects were stratified by
age and diplotype and the percentages of children, ado-
lescents and adults who could taste PROP at each con-
centration were compared. We tested for race/ethnicity
effects on PROP thresholds within particular diplotypes.
For instance, we determined whether African-American
subjects with the PAV/PAV diplotype had lower PROP
thresholds than did Caucasians with the same diplotype.
Subjects were also grouped by sex, to determine
whether boys or girls differed in PROP thresholds, or by
race/ethnicity, to determine whether these groups
differed in haplotype frequency. Descriptive analyses,
multinomial logistic regression and the proportion test
were conducted with procedures in STATISTICA (Stat-
Soft, Tulsa OK) and y2 partitioning was calculated
using a program described by Siegel and Castellan [60].
Criterion for statistical significance for all analyses was
p < 0.05.
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