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Abstract
Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and

cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the

phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA,

has been described to be involved in epigenetics regulation through histone modification.

Epigenetics regulation affects a variety of cellular processes, including morphogenesis and

secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyper-

conidiating colonies, indicating that rmtA is a repressor of asexual development in this fun-

gus. The increase in conidiation in the absence of rmtA coincides with greater expression of

brlA, abaA, andwetA compared to that in the wild type. Additionally, the rmtA deletion

mutant presents a drastic reduction or loss of sclerotial production, while forced expression

of this gene increased the ability of this fungus to generate these resistant structures,

revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also

required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Fur-
thermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a

broad regulatory output in the control of secondary metabolism. This study also revealed

that rmtA positively regulates the expression of the global regulatory gene veA, which could

contribute to mediate the effects of rmtA on development and secondary metabolism in this

relevant opportunistic plant pathogen.

Introduction
The genus Aspergillus includes some of the most harmful fungal species known. Aspergillus fla-
vus is one of these organisms, known mostly for its impact in agriculture. This fungus is an
opportunistic pathogen of important oil seed crops, such as corn, peanuts, sorghum, cotton
and treenuts. It efficiently disseminates in fields by producing asexual spores called conidia,
infecting susceptible plants and contaminating them with highly carcinogenic mycotoxins,
such as aflatoxins [1]. Once the fungus is established, formation of highly resistant structures
termed sclerotia contribute to its survival under harsh environmental conditions [2]. Aflatoxins
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and other mycotoxins are thought to contaminate approximately one quarter of the world’s
crops [3]. Economically, aflatoxin contamination leads to substantial losses each year mainly
due to the necessary investments in the detection of infected crops and the removal of contami-
nated crops in developed countries. Both the U.S. Food and Drug Administration and the
European Union have set limits on the amount of aflatoxins allowed in food and feed commod-
ities of 20 parts per billion and 2 parts per billion respectively [4]. In developing countries lack-
ing regulatory oversight for allowable levels of aflatoxin contamination in crops, adverse health
impacts are also of concern due to ingestion of contaminated food or feed. This includes acute
aflatoxicosis (aflatoxin poisoning) that can lead to jaundice, edema of the limbs, pain, vomiting,
necrosis, and potentially acute liver failure or death [5–8]. Chronic aflatoxicosis can result in
cancer (primarily liver cancer), immune suppression, stunted growth in children, and other
pathological conditions [6, 8, 9]. Due to increasing climate change, outbreaks of aflatoxin con-
tamination and those of other mycotoxins are predicted to become more prevalent worldwide
[10]. Increased incidences of drought and higher temperatures can lead to conditions favoring
A. flavus growth and aflatoxin production while weakening host plant defenses [11]. Further-
more, elevated carbon dioxide levels along with other environmental factors linked to climate
change have been shown to cause increased expression of genes in the aflatoxin biosynthetic
pathway [12].

Current approaches are insufficient to control crop colonization and aflatoxin contamina-
tion by A. flavus. It is possible that uncovering the regulatory mechanism governing aflatoxin
production as well as those controlling A. flavus development and survival could provide novel
genetic targets to be used in control strategies to decrease the detrimental effects caused by this
fungus. Previous studies, particularly in Aspergillus, revealed that secondary metabolism,
including the production of mycotoxins, and fungal development are genetically linked i.e.
[13–17]. Examples of this coordinated regulatory mechanism are the putative methyltransfer-
ase LaeA and the global regulator VeA. These proteins, shown to interact with each other as
part of a protein complex designated velvet [2, 18], are epigenetic regulators governing afla-
toxin production, as well as conidiation and sclerotial formation in A. flavus [19–21]. Arginine
methyltransferases (PRMTs) are epigenetic regulators that work through histone methylation.
Arginine methylation of histones has been associated with transcriptional regulation, RNA
processing and transport, signal transduction and DNA repair in mammals [22]. PRMTs trans-
fer methyl groups from S-adenosylmethionine (SAM) to the guanidine nitrogen atoms of argi-
nine [23]. This methylation results in a dimethylated arginine that can be in either an
asymmetric or symmetric configuration [24]. These methylation patterns define two types of
PRMTs: type I catalyze asymmetric dimethylation and type 2 catalyze symmetric dimethyla-
tion [24]. So far nine different PRMTs have been identified in humans, and homologs of three
of these, PRMT1, PRMT3, and PRMT5, have been found to be conserved in other eukaryotes
[24], including lower eukaryotes such as the yeast Saccharomyces cerevisiae [25] and the model
filamentous fungus Aspergillus nidulans [26], where the genes encoding these proteins were
designated rmtA, rmtB and rmtC [26]. Homologs of these PRMTs have not been previously
characterized in A. flavus.

The present study focuses on elucidating the role of the PRMT1/rmtA homolog in A. flavus.
Previous work showed that PRMT1/rmtA targets the amino-terminal tails of arginine 3 residue
on the H4 histone inducing changes in chromatin structure in humans [27, 28] and in A. nidu-
lans [23, 26] with a type I methylation pattern [26]. Several PRMT1/rmtA homologs have been
further characterized in other fungi. In S. cerevisiae, mutations in Hmt1, the PRMT1/rmtA
homolog, resulted in cold sensitive alleles [25]. Deletion of rmtA in A. nidulans causes growth
reduction under conditions of oxidative stress [29]. In Fusarium graminearum, deletion of
amt1, also a homolog of rmtA, lead to a reduction in vegetative growth, oxidative stress
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tolerance, virulence, and deoxynivalenol production [30]. Neurospora crassa, amt-1 was neces-
sary to sustain normal growth rates [31]. Our current studies in A. flavus revealed an indispens-
able role of rmtA in proper regulation of secondary metabolism, specifically aflatoxin
biosynthesis, as well as in developmental processes, affecting conidiation and production of
sclerotia in this agriculturally important fungus. It is possible that alteration of epigenetic regu-
lation involving PRMTs could be used in novel control approaches to reduce the detrimental
effects of A. flavus and of other fungal species.

Materials and Methods

Sequence Search, Alignment and Phylogenetic Analysis
The deduced amino acid sequence encoded by A. flavus rmtA (AFL2G_09078) was obtained
from the Broad Institute Aspergillus Comparative Database. BLAST searches were performed
on NCBI (http://www.ncbi.nlm.nih.gov/) using the blastp search tools to obtain the homolo-
gous sequences and corresponding e-values. The search was carried out using the A. flavus
RmtA deduced protein sequence as query. To compare similarity and identity of RmtA to
other homologs, a Needle pairwise sequence alignment was performed (http://www.ebi.ac.uk/
Tools/psa/emboss_needle/). MUSCLE sequence alignment (http://www.ebi.ac.uk/Tools/msa/
muscle/) was carried out with A. flavus RmtA as well as its homologs from other eukaryotes.
This was followed by shading using the Boxshade tool version 3.21 (http://www.ch.embnet.
org/software/BOX_form.html).

Phylogenetic analysis was performed with two groups of species. The first group included
different fungal species: Asperillus oryzae, Aspergillus terreus, Aspergillus fumigatus, Aspergillus
kawachii, Aspergillus niger, Aspergillus nidulans, Neurospora crassa, Fusarium graminearum,
Cyrptococcus neoformans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, Candida albi-
cans, Rhodosporidium toruloides, Puccinia graminis, Trichosporon asahii, and Coprinopsis
cinerea. The second group consisted of eukaryotic model organisms: Schizosaccharomyces
pombe, Saccharomyces cerevisiae, Aspergillus nidulans, Homo sapiens, Arabidopsis thaliana,
Xenopus tropicalis, Danio rerio,Mus musculus, Drosophila melanogaster, and Caernorhabditis
elegans.

The software MEGA v6.0 was used for sequence alignment and analysis [32]. MUSCLE set-
tings were used for multiple sequence alignment. For generation of phylogenetic trees, a Maxi-
mum-likelihood model was used with a bootstrap value of 1000 (http://megasoftware.net/).

Strains and Growth Conditions
Aspergillus flavus CA14-wild-type (WT) (Δku70), CA14 (pyrG−, niaD−, Δku70) (SRRC collec-
tion # 1709), CA14-ΔrmtA (ΔrmtA::pyrG, Δku70), CA14-com-rmtA (ΔrmtA::pyrG, rmtA::
niaD, Δku70), and CA14-OErmtA (gpdA(p)::rmtA::trpC(t)::pyrG, Δku70) strains were used in
this study. All strains were grown on Potato Dextrose Broth (PDB) medium at 30°C in the
dark, unless specified differently. Agar (10 g/L) was added in the case of solid medium (PDA).
Strains were maintained as 30% glycerol stocks at -80°C.

Generation of the rmtA Deletion Strain (ΔrmtA)
An rmtA deletion cassette was generated by fusion PCR as previously described [33]. The 5’
and 3’UTR fragments were first PCR amplified using primers Afl_rmtA_p1 and Afl_rmtA_p2,
obtaining a 1.3 kb product corresponding to the 5’ UTR, and primers Afl_rmtA_p3 and
Afl_rmtA_p4, obtaining a 1.6 kb fragment of the 3’UTR. For both reactions, A. flavus CA14
genomic DNA was used as template. These two DNA fragments were then PCR fused to
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another fragment corresponding to the pyrGmarker from Aspergillus fumigatus. The interme-
diate fragment containing the marker was PCR amplified from plasmid p1439 using primers
Afl_rmtA_p5 and Afl_rmtA_p6. Primer pair AFL_RMTA_F and AFL_RMTA_R was used for
the final fusion PCR step. All the primers used in this study are listed in S1 Table. Fungal trans-
formation was performed using A. flavus CA14 as the host strain as previous described [34].
Transformants were selected on Czapek Dox (CZ, Difco, Franklin Lakes, New Jersey, USA)
plus sucrose as osmotic stabilizer without supplementation of uridine and uracil. Transfor-
mants were confirmed by Southern blot analysis. A selected deletion rmtA strain was then
transformed with plasmid pSDS2.2, containing niaD A. fumigatus to obtain a prototroph.

Generation of the rmtA Complementation Strain
A complementation strain was obtained by transforming the A. flavus ΔrmtAmutant with the
rmtA wild-type allele. The complementation vector was generated as follows: a DNA fragment
contained the entire rmtA coding region and 50 and 30 UTRs was first PCR amplified with
primers comp RMTA_flavus_F and comp RMTA_flavus_R (S1 Table) from CA14 genomic
DNA. Then, the PCR product was digested with NotI and PstI and ligated to the pSD52.2
vector, previously digested with the same restriction enzymes. pSD52.2 contains the
niaDA. fumigatus transformation marker. The resulting plasmid was designated pSD52.2-rmtA-
com. This vector was then transformed into ΔrmtA, and the transformants were selected on
CZ medium using nitrate as the sole nitrogen source. Complementation was confirmed by
diagnostic PCR using OE_RMTA_F and OE_RMTA_R (S1 Table).

Generation of the rmtAOver-Expression Strain (OErmtA)
To generate the rmtA over-expression strain, the entire rmtA coding region was PCR amplified
from CA14 genome using the OE_RMTA_F and OE_RMTA_R primers (S1 Table). The PCR
product was then digested with AscI and NotI and ligated into the previously digested pTDS.1
plasmid, containing an A. nidulans gpdA promoter and trpC terminator, as well as the
pyrGA. fumigatus marker. This resulted in the generation of plasmid pTDS.1rmtAOE. The vector
was then transformed into CA14. Confirmation of plasmid integration in the transformants
was performed by diagnostic PCR using primers OE_RMTA_F and OE_RMTA_R. A selected
transformant was converted into a prototroph by transforming the strain with pSDS2.2.

Morphological Studies
Aspergillus flavus wild type, ΔrmtA, complementation and OErmtA strains were point-inocu-
lated on 30 ml of PDA medium and incubated in the dark at 30°C. Fungal growth was mea-
sured as colony diameter (mm) each day. To quantify conidial and sclerotial production,
106 spores/ml were inoculated into 5 ml of melted PDA top agar and placed onto a 25 ml PDA
solid medium. Cores (7 mm diameter) were collected to quantify conidia after 48 h and 72 h
and 7 days, homogenized in water and counted using a hemocytometer (Hausser Scientific,
Horsham, PA) under a Nikon Eclipse E-400 bright-field microscope (Nikon Inc., Melville, NY,
USA). Sclerotial cores (16 mm diameter) were collected 24 days after inoculation, washed with
70% ethanol to eliminate conidiophores and counted using a Lieder stereo-zoom microscope.
Experiments were performed in triplicate.

For sclerotial morphological analysis, strains were point-inoculated on 35 ml of PDA, on
GMM [35] with 2% sorbitol, and on Wickerham medium (2 g yeast extract, 3 g peptone,
5 g corn steep solids, 2 g dextrose, 30 g sucrose, 2 g NaNO3, 1 g K2HPO4�3H2O, 0.5 g
MgSO4�7H2O, 0.2 g KCl, 0.1 g FeSO4�7H2O, 15 g agar per liter—pH 5.5) [36]. The strains were
incubated at 30°C. Micrographs were obtained using a Leica MZ75 dissecting microscope
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attached to a Leica DC50LP camera (Leica Microsystems Inc., Buffalo Grove, IL, USA). Micro-
graphs were taken from the cultures after an ethanol (70%) wash to remove conidiophores.
The experiment was also performed with 3 replicates.

Aflatoxin Analysis
Aflatoxin was extracted from top-agar inoculated cultures (three cores—16 mm diameter) with
5 ml chloroform. The chloroform phase was then collected and allowed to evaporate overnight.
Dried residues were resuspended in 300 μl of chloroform. Twenty-five microliters of each
extracts were separated by thin layer chromatography (TLC) as previously described [37] on
silica plate (Si250F, J.T. Baker) using chloroform:acetone (85:15,v/v) as solvent system. Then
plates were allowed to air dry, sprayed with 12.5% AlCl3 solution in 95% ethanol and baked at
80°C for 10 minutes. Presence of aflatoxin was detected under ultraviolet light at a wavelength
of 375 nm. The aflatoxin B1 standard was purchased from Sigma-Aldrich (Sigma-Aldrich,
St. Louis, MO, USA).

Oxidative Stress Tolerance
PDAmedium plates containing different concentrations of menadione (0 mM, 5 mM, 7.5 mM,
10 mM, 12.5 mM, and 15 mM) were point-inoculated with the A. flavus wild type, ΔrmtA,
complementation and OE rmtA strains. Cultures were incubated for 48 h in the dark at 30°C.

Gene Expression Analysis
Petri dishes containing 25 ml of PDB (Potato Dextrose Broth) were inoculated with conidia (106

spores/ml) of A. flavus wild type, ΔrmtA, complementation and OErmtA strains. Cultures were
incubated in liquid stationary conditions at 30°C in the dark. Total RNA was extracted from
lyophilized mycelial samples using TRIsure (Bioline, Taunton, MA, USA) reagent according to the
manufacturer instructions. Gene expression analysis was performed either by Northern blot or
qRT-PCR. For Northern blots, probe templates of aflM/ver-1 were amplified by PCR from A. fla-
vus genomic DNA using primers ver1-Nor-S and ver1-Nor-A and labeled with dCTPp32 (S1
Table). For qRT-PCR, five micrograms of total RNA was treated with RQ1 RNase-Free DNase
(Promega. Madison, WI, USA). cDNA was synthesized with Moloney murine leukemia virus
(MMLV) reverse transcriptase (Promega, Madison, WI, USA). qRT-PCR was performed with the
Applied Biosystems 7000 Real-Time PCR System using SYBR green dye for fluorescence detection.
cDNA was normalized to A. flavus 18S ribosomal gene expression, and the relative expression lev-
els were calculated using the 2-ΔΔCT method [38]. Primer pairs used are indicated in S1 Table.

Statistical Analysis
Statistical analysis was applied to analyze all of the quantitative data in this study utilizing
ANOVA (analysis of variance), in conjunction with a Tukey's multiple comparison testusing a
p-value of p< 0.05 for samples that are determine to be significantly different.

Results

RmtA Is Conserved in Other Eukaryotes
Comparative analysis of the A. flavus RmtA deduced amino acid sequence revealed significant
identity (>50%) with putative homologs present in numerous fungal species (S2 Table). This
trend was also identified among model eukaryotic species, with shared identity greater than
45% (S3 Table). Sequence alignment showed a highly conserved S-adenosyl methionine (SAM)
binding domain among these putative homologs in other fungal species and other non-fungal
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eukaryotes (Fig 1A & S1A Fig). In addition, the RmtA phylogenetic tree was consistent with
both fungal and other eukaryotes’ taxonomy (Fig 1B & S1B Fig) [39].

Comparison of A. flavus RmtA, RmtB, and RmtC deduced amino acid sequences revealed
to be distinct from each other (S2 Fig), while they are highly conserved with respect to their
corresponding homologs in A. nidulans (S2B Fig).

rmtA Is Required for Normal Conidiation
To determine the effects of rmtA on morphogenesis and other cellular processes, rmtA deletion
and complementation strains were constructed. The deletion strain was confirmed by Southern
blot analysis (Fig 2A). Genomic DNA from both wild-type and ΔrmtA strains was isolated and
digested with KpnI. A 1.3 kb DNA fragment corresponding to the 5’ UTR region of rmtA was
used to generate the radioactive probe utilized in this hybridization. The presence of a 3.2 kb
band in the Southern blot analysis confirmed the rmtA deletion (Fig 2A). With respect to the
complementation strain, diagnostic PCR was used to verify the integration of the wild-type
allele in the ΔrmtA strain (Fig 2B). qRT-PCR was utilized to confirm the lack of rmtA expres-
sion in the rmtAmutant under conditions that allow transcription of this gene in the wild-type
and complementation control strain (Fig 2C). Additionally, an over-expression strain was cre-
ated as described in the Materials and Methods section. Verification of this strain was carried
out by diagnostic PCR (Fig 3), obtaining the expected 1.8 kb PCR product. Over-expression of
rmtA was also confirmed by qRT-PCR (Fig 3C). All the strains generated in this study pre-
sented similar growth rate compared to the wild-type strain (S3 Fig).

Our study revealed a significant increase (5-fold) in conidial production in the ΔrmtA strain
compared to the wild-type (Fig 4). Complementation with the wild-type allele rescued wild-type
phenotype. While hypercondiation was observed in the ΔrmtA, over-expression of rmtA resulted
in a reduction in conidial production (Fig 4A). Gene expression analysis showed that transcrip-
tion of brlA, abaA, and wetA, genetic components of a key central regulatory pathway necessary
for the activation of conidiation (reviewed by Krijgsheld et al, 2013[40]) is regulated by rmtA.
Deletion of rmtA resulted in a significant increase in expression of all three genes (Fig 4B, 4C &
4D), while forced over-expression of rmtA led to a decrease in abaA and wetA expression levels.

rmtA Affects Sclerotial Production
The ΔrmtA strain demonstrated a complete abolishment of sclerotial production when grown on
PDA, a medium that allows production of these structures in the wild type (Fig 5). This pattern
was observed even after 24 days of incubation. However, the over-expression presented a signifi-
cant increase of sclerotia compared to the control strains. Similarly, on GMMwith 2% sorbitol,
another medium conducive to sclerotial production, the deletion rmtA strain did not produce
any sclerotia (S4 Fig). Only on aged cultures growing onWickerhammedium, which is highly
conducive to sclerotial production, a few sclerotia were produced by the deletion strain (S5 Fig).
Interestingly, our study showed that rmtA positively influences the expression of the global regu-
lator veA (Fig 5C), known to be necessary for sclerotial production in A. flavus (reviewed by
Calvo and Cary, 2015 [2]). Our gene expression analysis revealed that at earlier time points veA
transcription levels are reduced in ΔrmtA in comparison to wild-type. Furthermore, veA expres-
sion increases when expression of rmtA is abnormally increased in the OErmtA strain.

rmtA Is Required for Normal Aflatoxin B1 Biosynthesis and Production of
Other Secondary Metabolites
Our TLC analysis revealed that ΔrmtA presented a decrease in aflatoxin B1 production compared
to the wild-type strain at both time points analyzed (48 h and 72 h) (Fig 6). However, OErmtA
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Fig 1. Multiple sequence alignment and phylogenetic analysis of RmtA and other fungal homologs. (A) Sequences aligned using Muscle (http://
www.ebi.ac.uk/Tools/msa/muscle/). Alignment was visualized with BoxShade v3.21 (http://ch.embnet.org/software/BOX_form.html). (B) Phylogenetic
tree of RmtA homologs from different fungal species. Phylogenetic trees constructed using MEGA v6.0. Trees were generated with Maximum-Likelihood
model with a bootstrap value of 1000.

doi:10.1371/journal.pone.0155575.g001
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showed a slight increase in aflatoxin production with respect to the control strains. Additionally, our
TLC analysis indicated that rmtA is necessary for the production of another metabolite (Fig 6A).

To determine the effect of rmtA on the expression of genes involved in aflatoxin biosynthe-
sis, transcription levels of the structural gene aflM/ver-1, commonly used as indicator of afla-
toxin cluster activation, as well as expression levels of the regulatory genes aflR and aflS/aflJ
[41], were examined at 48 h and 72 h after inoculation (Fig 6B, 6C and 6D). Northern blot anal-
ysis of aflM/ver-1 revealed that its expression was positively regulated by rmtA; while deletion
of rmtA decreased expression of aflM/ver-1, over-expression of rmtA clearly enhanced expres-
sion of this structural gene at 48 h (Fig 6B). Our results also indicated that while deletion of
rmtA did not affect aflR, an increase was observed in the over-expression strain (Fig 6C). Nota-
bly, deletion of rmtA resulted in a decrease in aflS/aflJ expression, while over-expression of
rmtA increased it, particularly at 48 h (Fig 6D).

Altered Expression of rmtA Affects Oxidative Stress Tolerance
In order to evaluate the possible role of rmtA in oxidative stress response, A. flavus wild- type,
ΔrmtA, complementation and OErmtA strains were tested on medium containing different
concentrations of menadione (5 mM to 15 mM). Under these conditions, ΔrmtA presented an
increased tolerance to oxidative stress with respect to the other strains (Fig 7).

Discussion
In this study we investigated the role of rmtA, encoding a putative type I arginine methyltrans-
ferase, in development and secondary metabolism of the agriculturally important fungus A.

Fig 2. Construction of the rmtA deletion and complementation strains. (A) Diagram showing the gene replacement strategy using the selection marker
pyrG from A. fumigatus and Southern blot analysis. Recombination events between the flanking regions are indicated with crosses. KpnI sites are indicated
in both the wild-type and modified loci. A 1.3 kb fragment was used as probe as indicated. On the right, Southern blot image confirming of the deletion of
rmtA. Genomic DNA from the wild type (WT) and from a selected deletion mutant ΔrmtA was digested with KpnI. Expected 5.0 kb and 3.2 kb bands are
shown for WT and ΔrmtA respectively. (B) Linearized representation of the plasmid containing the rmtA wild-type allele. The niaD gene from A. fumigatus
was used as selection marker for fungal transformation. Primers OE_RMTA_F and OE_RMTA_R (S1 Table), used for confirmation of the strain, are labeled
in this figure as F and R respectively. On the right, gel electrophoresis results showing the presence of a 1.8 kb PCR product, confirming the presence of the
wild-type allele in the complementation strain. Wild type and ΔrmtA were used as positive and negative control, respectively. (C) Expression analysis of rmtA
by qRT-PCR. Strains were inoculated in PDB (106 spores/ml), and cultures were grown for 48 h at 30°C. The error bars represent standard errors. Values
were normalized to the expression levels in the wild type, considered as 1. Different letters on the columns indicate values that are statistically different
(p < 0.05).

doi:10.1371/journal.pone.0155575.g002
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flavus. Our in-silico analysis revealed that the deduced protein, RmtA, is highly conserved
within filamentous fungi, as well as in a diversity of eukaryotic organisms, including humans.
As in the case of A. flavus RmtA, all RmtA homologs analyzed contain the SAM binding
domain. Although the role of RmtA in histone methylation was demonstrated in the phyloge-
netically closely related fungus A. nidulans [29] the only phenotype reported in this study was
an increase of oxidative stress sensitivity. The present study shows that in A. flavus several cel-
lular processes are regulated by rmtA. Based our results, while the protein sequence is highly
conserved, the regulatory output appears to vary depending on the species. Previous studies
showed that rmtA is necessary for growth in Neurospora crassa [31], in Fusarium graminearum
[30] and in the basidiomycete Coprinopsis cinerea [42]. However, our study showed that
absence of rmtA does not affect growth in A. flavus. Additionally, the role of rmtA on oxidative
stress tolerance in A. flavus differs from that described in A. nidulans and F. graminearum.
While deletion of rmtA in both of these fungi results in a hypersensitivity to oxidative stress
[29, 30], absence of rmtA in A. flavus increases resistance to this environmental condition. It is
possible that the epigenetic mechanism involving rmtA in these fungal species diverged over
the course of evolution resulting in variation in its regulatory scope leading to different adapta-
tions suited for each species niche.

Several studies have associated other methyltransferases and other histone modifiers with
regulation of secondary metabolism in fungi, including Aspergillus species. For example the
histone acetyltransferase EsaA was shown to regulate production of sterigmatocystin, penicillin,

Fig 3. Confirmation of the OErmtA (OE). (A) Linearized representation of the over-expression plasmid. The pyrG gene from A. fumigatuswas used as a
selection marker for fungal transformation. (B) Gel electrophoresis results showing the presence of a 1.8 kb PCR product, confirming the presence of the
over-expression cassette. Plasmid pTRS.1rmtAOE and genomic DNA from the wild type were used as positive and negative control respectively. F and R
represent primers OE_RMTA_F and OE_RMTA_R respectively. (C) Expression analysis of rmtA by qRT-PCR. Strains were inoculated in PDB (106 spores/
ml), and cultures were grown for 48 h at 30°C. The error bars represent standard errors. Values were normalized to the expression levels in the wild type,
considered as 1. Different letters on the columns indicate values that are statistically different (p < 0.05).

doi:10.1371/journal.pone.0155575.g003
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terrequinone, and orsellinic acid in A. nidulans [43]. Another methyltransferase, LlmF, was also
shown to be a negative regulator of sterigmatocystin in this model fungus [44]. In A. flavus, the
putative methyltransferase LaeA is required for the production of cyclopiazonic acid, kojic acid,
oryzaechlorin, aflatrem as well as aflatoxin [20]. Another example is the KMT6 histone methyl-
transferase in Fusarium graminearum, which has been reported to regulate both the fusarin C
and carotenoid clusters [45]. Based on these reports, we examined whether rmtA was involved in
the production of aflatoxin in A. flavus. Interestingly, our study revealed that rmtA is a positive
regulator of aflatoxin biosynthesis and associated aflatoxin cluster genes. Our experiments
showed that expression of aflJ (also termed aflS [41]) was positively regulated by rmtA. aflJ is a
regulatory gene in the aflatoxin gene cluster that encodes a protein that promotes the activation
of early genes in this cluster [41]. AflJ protein has been demonstrated to interact with AflR, a
well-characterized transcription factor necessary for aflatoxin cluster activation [41]. Over-
expression of rmtA resulted in higher expression of not only aflJ but also of aflR.

Fig 4. Effect of rmtA on conidiation. (A) Quantification of conidia. Aspergillus flavuswild type (WT), ΔrmtA, complementation (com) and OErmtA (OE)
strains were grown on PDAmedium for up to 7 days at 30°C. Seven millimeter cores were taken from each culture. Conidia were counted using a
hemocytometer. Values represent the average of 3 replicates. Error bars represent standard error. (B, C, D) qRT-PCR expression analysis of brlA. abaA and
wetA, respectively. Strains were inoculated in PDB stationary cultures (106 spores/ml), and were grown for 72 h at 30°C. The error bars represent standard
errors. Values were normalized to the expression levels in the wild type, considered as 1. Different letters on the columns indicate values that are statistically
different (p < 0.05).

doi:10.1371/journal.pone.0155575.g004
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Interestingly, the synthesis of another metabolite was also affected by the absence of rmtA.
This suggests a broader regulatory scope of rmtA on secondary metabolism in A. flavus. A
study of the rmtA homolog, amt1, in Fusarium graminearum showed this gene as a positive
regulator of the synthesis of deoxynivalenol, a harmful compound that is produced during
Fusarium head blight [30]. It is likely that this aspect of rmtA regulation, involving the control
of biosynthesis of natural products, might be conserved in other fungal species.

In fungi secondary metabolism is genetically linked to morphological development [14–16,
46]. Our study indicates that rmtA not only controls secondary metabolism, but it is also a reg-
ulator of conidiation in A. flavus. Air-borne conidiospores, or conidia, are an efficient way of
fungal dissemination [47], which is particularly relevant in A. flavus field infestations. In addi-
tion, A. flavus can cause aspergillosis, particularly in immunocompromised patients, where
conidia constitute the main inoculum [48]. In our study, absence of rmtA resulted in hyperco-
nidiating colonies. This increase in the production of conidia coincided with an increase in the
expression of brlA, abaA, and wetA. In Aspergillus, brlA is a regulatory gene that encodes a
C2H2 zinc finger transcription factor [49] that initiates a central regulatory pathway that gov-
erns maturation of conidiophores vesicles. BrlA activates other regulatory genes such as abaA,
which acts as a transcriptional switch controlling wetA, which activates the expression of
spore-specific gene [40, 49]. This, together with the results of our study, suggests that the devel-
opmental effect of rmtA on conidiation is, at least in part, mediated by brlA. In addition, abnor-
mally high rmtA transcription levels in the over-expression strain resulted in a slight reduction
in conidiation which can be explained by lower expression levels of abaA and wetA. This result
further supports the role of rmtA as negative regulator of asexual development in A. flavus.

Besides the effect of rmtA on conidiation, rmtA also affected sclerotial production. Sclerotia
are structures composed of a matrix of hardened mycelia that allow A. flavus to survive adverse
environmental conditions [50]. They are vestiges of fruiting bodies that in most cases lost the
capacity to produce sexual spores; although formation of ascospores within sclerotia, termed

Fig 5. Effect of rmtA on sclerotial production on PDA. (A) A. flavuswild type (WT), ΔrmtA, complementation (com) and OErmtA (OE) strains were point-
inoculated on PDAmedium and incubated for 9 days in the dark at 30°C. Photographs of cultures were taken before and after spraying 70% ethanol to
remove conidia in order to improve visualization of sclerotia. Micrographs were obtained approximately 1.5 cm away from the center of the plate using a Leica
MZ75 dissecting microscope at 12.5X magnification. (B) Quantification of sclerotia. A. flavus wild type, (WT), ΔrmtA, complementation (com) and OE rmtA
strains grown on PDAmedium for 24 days at 30°C. Sixteen millimeter cores were collected 1 cm away from the center. Number of sclerotia in each core were
counted under a Leica MZ75 dissecting microscope. The experiment included 3 replicates. Error bars represent standard error. (C) qRT-PCR expression
analysis of veA. A. flavus wild type (WT), ΔrmtA, complementation (com) and OErmtA (OE) strains were inoculated in PDB stationary cultures (106 spores/
ml), and were grown for 48 and 72 h at 30°C. Error bars represent standard errors. Values were normalized to the expression levels in the wild type,
considered as 1. Different letters on the columns indicate values that are statistically different (p < 0.05).

doi:10.1371/journal.pone.0155575.g005
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Fig 6. rmtA positively regulates Aflatoxin B1 production. (A) TLC analysis of aflatoxin B1 produced by A. flavus wild type (WT), ΔrmtA, complementation
(com) and OErmtA (OE) strains growing at 30°C on PDA top-agar inoculated cultures for 48 h and 72 h. Aflatoxin standard (AFB1) was also included on
either side of the plate. Arrow indicates an unknownmetabolite whose synthesis is also affected by rmtA. Densitometry of aflatoxin performed using
GelQuantNET software is shown. (B) Northern Blot analysis of ver1. All strains were grown in PDB stationary cultures (106 spores/ml) for 72 h at 30°C. 18S
rRNA was used as loading control. Densitometry of Northern blot results is shown. (C & D) Expression analysis of aflR and aflJ by qRT-PCR respectively.
The error bars represent standard errors. Different letters on the columns indicate values that are statistically different (p < 0.05).

doi:10.1371/journal.pone.0155575.g006
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stromata, has been observed under laboratory conditions [51]. When conditions are favorable
again sclerotia will produce hyphae to establish a new mycelium and/or generates conidio-
phores on their surface further contributing to disseminate the fungus [52]. Our study showed
that deletion of rmtA strongly reduces or blocks sclerotial production, while over-expression of
rmtA resulted in hyper-production of these resistant structures, indicating that rmtA is a posi-
tive regulator of sclerotial formation. Interestingly, our study show that rmtA positively affects
the expression of veA, encoding a global regulator that forms part of the nuclear velvet protein
complex [18]. veA has been shown to be essential for sclerotial production in A. flavus [19].
Based on our results it is likely that the effect of rmtA on sclerotia could be affected by veA. In
addition, veA has been shown to regulate other cellular processes in fungi, including conidia-
tion and secondary metabolism [2, 53–60]. Therefore, other roles of rmtA described in this
study could also be veA-dependent, for example veA is a repressor of conidiation [58, 60], and
it is possible that the observed negative effect of rmtA on conidiation, as well as its positive
effect on secondary metabolism, could also be influenced by the effect of rmtA on veA

Fig 7. Role of rmtA in oxidative stress tolerance. A. flavuswild type (WT), ΔrmtA, complementation (com) and OErmtA (OE) strains
were point-inoculated on PDA containing a range of menadione concentrations (5 mM, 7.5 mM, 10 mM, 12.5 mM, and 15 mM). Cultures
were incubated for 48 h at 30°C.

doi:10.1371/journal.pone.0155575.g007
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expression in A. flavus. As in our study, functional association of VeA with other methyltrans-
ferases, such as LlmF, VipC, VapB, and LaeA, that affect development and secondary metabo-
lism has been previously described [18, 44, 61, 62].

In conclusion, this study contributes to the elucidation of rmtA functions in A. flavus,
revealing high conservation among its homologs in many eukaryotes. Despite this conserva-
tion, the regulatory role of rmtA varies among fungal species, suggesting that “rewiring” of this
regulatory mechanism has occurred through evolution. This study also shows that morphogen-
esis is under rmtA regulation, influencing the developmental balance between conidiation and
sclerotial formation in A. flavus; rmtA negatively regulates conidial production while it pro-
motes sclerotial development. In addition, we also demonstrated that rmtA positively regulates
secondary metabolism, controlling the production of aflatoxin as well as the synthesis of
another unknown metabolite. Other cellular processes are also under rmtA regulation, includ-
ing oxidative stress response. These facts indicate that rmtA is a global regulator in A. flavus.
Furthermore, we found that rmtA control the expression of the master regulator veA, suggest-
ing that rmtA regulatory output is functionally connected with veA. The findings in this study
could contribute to set the bases of novel control strategies to reduce the negative impact
caused by A. flavus and other detrimental fungal species.
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