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Bacterial pathogens use siderophores to obtain iron from the

host in order to survive and grow. The host defends against

siderophore-mediated iron acquisition by producing

siderocalins. Siderocalins are a siderophore binding subset of

the lipocalin family of proteins. The design of the siderophore

binding pocket gives siderocalins the ability to bind a wide

variety of siderophores and protect the host against several

pathogens. Siderocalins have been identified in humans,

chickens, and quail, among other animals. The differences in

the respective siderocalins suggest that each was developed in

response to the most serious pathogens encountered by that

animal. Additionally, siderocalins have been observed in many

roles unrelated to pathogen defense including differentiation,

embryogenesis, inflammation, and cancer.
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Introduction
Both pathogens and hosts require iron for several vital

processes including oxygen binding, catalysis, and gene

expression [1]. Demand for the same iron resources

pressures the host and pathogen to coevolve competing

systems to acquire and withhold iron [2]. The host limits

the free iron concentration by using the iron transport and

storage proteins transferrin and ferritin. Many bacteria

acquire iron from the host by secreting siderophores that

remove iron from the host proteins and carry it to the

pathogen [3].

In response to siderophore-mediated iron acquisition,

many animal hosts produce siderocalins. Siderocalins

are a siderophore-binding subset of the lipocalin family

of proteins defined by the lipocalin fold, an eight-

stranded anti-parallel beta-barrel that forms a calyx or

binding pocket [4,5]. Siderocalins limit pathogen growth
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by intercepting siderophores and preventing the delivery

of iron to the pathogen [6]. Siderocalins have recently

been observed in several animals including humans,

chickens, and quail. Subtle differences among the side-

rocalins suggest that each host has adapted to the most

dangerous pathogens it encounters.

In addition to pathogen defense, siderocalins function in

many other processes. Cell differentiation, embryogen-

esis, inflammation, cancer, and other diseases have been

associated with the expression of siderocalins. The role of

the siderocalins in these processes is largely unknown,

but the characterization of the siderophore binding prop-

erties provides the first molecular insights. The structure,

function and properties of human Siderocalin (Scn),

human tear lipocalin (TL), galline extracellular fatty-acid

binding protein (Ex-FABP), and quail siderocalin (Q83)

will be discussed in this review.

Siderocalin
The antimicrobial human immunoprotein Siderocalin

(Scn, also NGAL, Lcn2, HNL, 24p3) has garnered in-

terest from a wide spectrum of scientists in recent years.

Arguably the most significant function of Scn is that it acts

as part of the first line of defense against microbial

invaders by intercepting bacterial siderophores [6–8].

While it is also expressed in non-disease cases such as

modulation of intracellular iron stores and iron delivery in

early embryogenesis, Scn is also a biomarker that is

upregulated in certain diseases such as acute kidney

injury, psoriasis and ovarian and gastric cancers

(Figure 3) [9–15]. Whether these functions are ligand-

dependent or why Scn expression is upregulated in these

cases is not fully understood [16–24].

A collection of crystallographic structures of Scn with

bound ligands elucidated the role of the protein as an

antimicrobial ligand scavenger. Scn has three rigid bind-

ing subpockets which are defined by the residue side

chains that line them. The positively charged, polar

residues Lys125, Lys134 and Arg81 are involved in

cation-pi interactions necessary for molecular recog-

nition by Scn [25] (Figure 1). Tyr106 is key in stabilizing

bound ligands by hydrogen bond stabilization [7]. Sev-

eral papers have shown the tris-catecholate siderophores,

such as enterobactin from Escherichia coli and bacillibac-

tin from Bacillus anthracis (Figure 2) are bound tightly by

Scn in vivo and in vitro with subnanomolar dissociation

constants [7,25,4]. Siderophores bound by Scn are not

limited to tris-catecholates. The carboxymycobactins of
www.sciencedirect.com
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Mycobacterium tuberculosis (Figure 2) bind iron with two

hydroxamates and one phenyloxazoline moiety. Several

carboxymycobactins are secreted from M. tuberculosis,
and differ from one another in fatty acid tail length [26].

The phenyloxazoline unit of all carboxymycobactins is

the single aromatic unit of this siderophore that anchors

the carboxymycobactin into Scn subpocket 1. Scn, how-

ever, binds only carboxymycobactins with n = 6–8 as

well as corresponding ferric complexes. Hoette et al.

attribute the selectivity of Scn for carboxymycobactins

n = 6–8 to the ability of longer carboxylate tails to tuck

into a recess behind subpocket 2 [26]. The shorter

carboxylate tails of carboxymycobactins n = 3–5 pro-

trude from subpocket 3 away from the calyx, thus

diminishing Scn affinity for the siderophore [26]. The

‘tail-out’ configuration of carboxymycobactin carboxy-

late tails can be viewed as a sort of stealth mechanism in

which the bacterium produces several siderophores of

varying lipophilicity and varying abilities to evade Scn

sequestration.

Other bacterial pathogens have capitalized on the strict Scn

binding requirements to produce stealth siderophores, or

iron chelators that are sterically or electronically incompa-

tible with Scn. Salmochelins and aerobactin of E. coli are

not Scn-bound due to sterics and lack of aromatic groups for

cation-pi stabilization, respectively [27,28]. Petrobactin of

B. anthracis and its ferric complex clash with the Scn walls

and thus are not bound (Figure 2) [29,30].

In the medical sciences the role of Scn as a biomarker or a

potential iron transport agent has been a topic of recent

interest. Scn has been identified as an iron delivery agent in

early embryogenesis, a relationship established from growth

experiments with atransferrinemic mice (Figure 3) [14,31].

Scn has no measurable affinity for iron alone and requires an

endogenous siderophore to traffic iron.

Bao and coworkers have shown that simple catechols can

serve as the endogenous mammalian siderophore equiv-

alent [13,32]. A scheme of this is depicted in Figure 3.

Among the mammalian siderophore candidates isolated

from mouse urine was 2,3-dihydroxybenzoic acid, the

monomeric unit of enterobactin [13]. All cofactors which

can be classified as mammalian siderophores must obey

the binding requirements of Scn. Claims that 2,5-dihy-

droxybenzoic acid (25DHB), also known as gentisic acid

and an isomer of 2,3-dihydroxybenzoic acid, is a mam-

malian siderophore have been made [33], but are incon-

sistent with the definition of mammalian siderophore.

Catechols form high affinity iron complexes due to the

bidentate chelation by deprotonated ortho-hydroxyl

groups to form a 5-membered ring. 25DHB is not a

catechol; it is a catechol isomer which binds iron via

salicylate mode using one oxygen from the 2-hydroxyl

group and one from the deprotonated carboxylic acid.

Salicylate-siderophores are inherently weaker iron
www.sciencedirect.com 
chelators. Correnti et al. have performed solution

thermodynamic analyses detailing the distribution of

Fe(25DHB)3 complexes in solution under various con-

ditions only to find that either the bis- or tris- 25DHB

ferric complexes exist at negligible concentrations. The

possibility that the Fe(25DHB)3 complex form by tern-

ary association in the Scn calyx is also implausible since

the 5-hydroxyl groups sterically clash with the calyx

walls. A hexadentate ligand based on 25DHB units

was synthesized and tested in Scn binding assays to

further illustrate the weak affinity Scn has for salicy-

late-mode chelators and/or for chelators with substitu-

ents on the 5 position of the aromatic ring [32].

Unfortunately, the misunderstanding about 25DHB as a

mammalian siderophore has been the basis for other

claims that the ternary Scn:Fe:25DHB complex can

mediate apoptosis [33]. Repetitions of Scn:Fe:25DHB-

mediated apoptosis experiments, followed by more direct

and complementary apoptosis experiments, have shown

that 25DHB-based siderophores do not chelate iron

strongly enough to generate an apoptotic response in

hematopoietic cell lines [32]. An important statement

within the scope of this review is that Scn does not

and cannot use 25DHB chelators as endogenous side-

rophores; 25DHB-based siderophores more likely

resemble stealth siderophores due to the steric incompat-

ibility of these molecules with Scn binding pockets.

Cellular responses which are interpreted to be dependent

on the Scn:Fe:25DHB interaction likely require alterna-

tive explanation or further study.

Tear lipocalin
Tear lipocalin (TL, also known as Lipocalin1, von

Ebner’s gland protein, or human tear prealbumin) is

the second-most concentrated protein in tears and

protects the ocular surface by scavenging harmful lipid

peroxidation products. More than an extracellular

ligand delivery protein, TL is a catalytic endonuclease

in tears which is important for the breakdown of

invading viral or microbial DNA [34]. TL also disrupts

bacterial or viral colonization in human tears by inhi-

biting microbial cysteine proteinases and intercepting

bacterial siderophores [35–38]. In the early 1990’s, TL

was found in several other types of human mucosae,

such as trachobroncheal, lingual, prostate and pituitary

glandular mucosae [39–42]. The various roles of TL

are attributed, in part, to its ligands. TL accommo-

dates ligands of strikingly different chemical struc-

tures. Fatty acids with chains up to 18 carbons long

or with aromatic moieties tethered to the end of the

chain are bound by TL with high affinity [41,45]. TL

also binds bacterial  and fungal siderophores that are

structurally quite different from fatty acids, such as

enterobactin, aerobactin, DFOB, ferricrocin, ferri-

chrome, rhodotorulic acid, coprogen and triacetylfusar-

inine C [37].
Current Opinion in Chemical Biology 2013, 17:150–157
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Figure 1
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Structure of siderocalins. (a) Surface structure diagrams of the 4 lipocalins discussed in this review. Proteins are colored according to electrostatic

potential (blue = positively charged regions, red = negatively charged regions). All calyces are oriented to face the reader. For TL, the positively

charged residues that line the calyx are difficult to show in two dimensions. (b) Structural highlights of Scn. The ribbon diagram of Scn illustrates the

typical beta-barrel. The binding pocket of Scn uses three positive residues (sticks) to bind ferric enterobactin (sticks and an orange sphere for iron).
Unlike other lipocalins, TL has a much bigger calyx that

can also change cavity sizes and rigidity by rearrangement

of residue side chains within the calyx (Figure 1). A

phenylalanine residue (Phe99) within the TL calyx can

rearrange to reversibly form another beta-sheet that rigi-

difies the protein–ligand interaction [43]. A methionine

residue (Met39) can rearrange upon ligand binding to

expand the calyx volume [44]. Furthermore, TL has 4

flexible loops that aid in ligand recognition [45]. These

flexibility features demonstrate the multipurpose nature

of TL. TL accommodates chemically different ligands

and the resulting conformational changes of the protein

are dependent on the identity of a ligand. For example,

TL binding of a lipid results in b-structure formation and

a rigidification of TL [41]. At various epithelial surfaces

where TL is a scavenger, enzyme or enzyme inhibitor,

the ultimate fate of one TL protein is determined by the

bound ligand and the resulting TL conformational

change. The fact that TL binds a vast array of ligands

and is expressed in several types of cells suggests that TL

is part of a general protective response for the human

body. Furthermore, other roles of TL such as its
Current Opinion in Chemical Biology 2013, 17:150–157 
endonuclease role may be available in other physiological

contexts beyond protection of ocular surfaces.

Ex-FABP
Ex-FABP is a 21 kDa lipocalin found in chickens [4,46].

The structural similarity to Scn, including a wide, posi-

tively charged calyx, prompted investigating the side-

rophore binding properties of Ex-FABP and the discovery

that it is a siderocalin [47] (Figure 1).

The calyx interacts with siderophores in a manner

similar to Scn. Three basic residues, Lys82, Arg101,

and Arg112, give the calyx a positive charge and define

three catechol-binding subpockets within the calyx.

Arg101 and Arg112 provide electrostatic interactions

with bound catechols and Lys82 hydrogen bonds with

the meta hydroxyl of the catechols in two of the sub-

pockets. Ex-FABP binds ferric enterobactin with a dis-

sociation constant of 0.2 nM, comparable to the high

affinity of Scn for ferric enterobactin. Ex-FABP also

binds monoglucosylated enterobactin (MGE) with a

subnanomolar dissociation constant, but it does not bind
www.sciencedirect.com
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Figure 2
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Chemical structures of siderophores. MGE and DGE are also referred to as salmochelins.
diglucosylated enterobactin (DGE) (Figure 2). This is

because one subpocket of Ex-FABP is extended to allow

space for the single glucose subunit branching from a

catechol of MGE. The glucose would clash with the

calyx wall of the corresponding subpocket in Scn [47].

The difference in ability to bind MGE between Scn and

Ex-FABP strongly suggests that chickens have developed

a siderocalin defense specific to chicken pathogens. MGE

and DGE are members of a family of siderophores called

salmochelins which also includes various hydrolysis pro-

ducts of MGE or DGE [28,48]. These siderophores are

produced and transported by products of the iro gene

locus found in Salmonella enterica and extra-intestinal

pathogenic E. coli, including avian pathogenic E. coli
(APEC) [48–50]. In APEC, the enterobactin system alone

is insufficient for virulence [50] presumably because the

enterobactin is intercepted by Ex-FABP. Since MGE is

bound by Ex-FABP [47], it likely does not support
www.sciencedirect.com 
virulence. Unsurprisingly, DGE is secreted in addition

to MGE because it can circumvent the Ex-FABP defense

[49,50]. The iro locus remains a virulence factor in APEC

that is significantly associated with pathogenicity and

lethality [50,51]. In addition to E. coli, pathogenic S.
enterica isolated from chickens has the iro virulence factor

[52].

The observed expression of Ex-FABP supports the side-

rocalin activity of the protein. It has been observed in the

bacteriostatic hen egg [53]. Granulocytes express it [54].

Tracheal infection with infectious bronchitis coronavirus

increases expression of the protein [55], and the inflam-

matory signals IL6 and LPS, Gram-negative endotoxin,

induce expression [56,57].

The siderocalin activity of Ex-FABP is the most charac-

terized function of the protein, but it plays a role in a

variety of other processes. Ex-FABP has been observed in
Current Opinion in Chemical Biology 2013, 17:150–157
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Figure 3
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Scheme depicting intracellular Scn-mediated processes. (1) Scn (shown in its apo form in step 1) binds its putative receptor, 24p3 or megalin. Scn is

endocytosed and secreted intracellularly (2) thus available to intercept (5) bacterial siderophores secreted (3) by an invading pathogen. The result is

inhibition of bacterial growth (4) since the bacteria are rendered growth-limited by Scn. The Scn:ferric siderophore complex is then trafficked to

extracellular space. In a separate event, mediated by mammalian siderophores (6), a Scn:mammalian siderophore-iron complex can bind either 24p3

or megalin, and the ternary structure is endocytosed and trafficked to intracellular space (7) where the iron is released in acidic environments of the late

endosome (8). This intracellular iron supply is used for growth, differentiation, or other cellular processes.
differentiating cartilage cells of chicken embryos as well

as skin, brain, heart, and muscle tissues [46,54]. Expres-

sion increases during inflammation and acute phase

response. Pathological cartilage of dyschondroplastic

and osteoarthritic chickens has an elevated amount of

Ex-FABP [56]. A review of the different processes that

involve Ex-FABP, and Scn has proposed that these

proteins, in addition to being siderocalins, are stress

proteins that function in tissues experiencing active

remodeling or acute phase response [58].

A breakthrough in the way Ex-FABP contributes to these

different processes was uncovered while characterizing

the structure of the Ex-FABP:siderophore complex. The

beta-barrel forms a second binding site that extends from

the siderophore binding pocket to the opposite side of the

protein. Having two binding sites enables Ex-FABP to

simultaneously bind two structurally, chemically, and

physiologically distinct molecules. The crystal structure
Current Opinion in Chemical Biology 2013, 17:150–157 
shows a molecule of lysophosphatidic acid (LPA) bound

in the long, narrow pocket while ferric-enterobactin sits in

the broad pocket near the surface (Figure 4). LPA is

signal for a variety of cellular processes, and Ex-FABP

may serve as a LPA sensor [47]. Two reported instances

have linked Ex-FABP to binding lipophilic molecules. In

adult chickens, polymorphisms of Ex-FABP are related to

subcutaneous fat and skin thickness of cocks [59]. The

protein also protects the heart during acute phase

response, possibly by fatty acid scavenging [57]. As of

now, it is unknown whether each binding site operates

independently, cooperatively, or both, but it is likely that

the many functions of Ex-FABP depend on the status of

each binding site.

Q83
Q83 is the quail homolog of Ex-FABP. It was identified in

avian fibroblasts transformed by the v-myc oncogene [60].

Q83 has 64% sequence similarity to Scn and 87%
www.sciencedirect.com
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Figure 4

Ex-FABP Q83
Current Opinion in Chemical Biology

Dual binding pockets of Ex-FABP and Q83. Ex-FABP contains a red ferric dihydroxybenzoic acid molecule in the siderophore binding pocket and a

yellow lysophosphatidic acid in the fatty acid binding pocket. Q83 contains a red ferric enterobactin molecule in the siderophore binding pocket and a

yellow arachidonic acid molecule in the fatty acid binding pocket.
sequence similarity to Ex-FABP [60,61]. The structural

similarity between Q83 and Ex-FABP is confirmed in the

NMR structure of Q83. The typical beta-barrel forms a

calyx containing the three basic residues Lys83, Arg102,

and Arg113 (Figure 1). The basic triad provides the

interactions to tightly bind enterobactin with a dis-

sociation constant of 0.5 nM [61], implying that it defends

against pathogens that use enterobactin. It may have the

same activity against avian pathogens as Ex-FABP by

binding the salmochelin MGE, but the glucose subunit

has not been modeled in the expanded subpocket 3 to

verify this.

Similar to Ex-FABP, Q83 has a second binding pocket

that extends through the core of the protein for binding

arachidonic acid and other fatty acids with nanomolar

dissociation constants (Figure 4). NMR studies showed

that the binding status of each binding site has an allo-

steric effect on the dynamics of the other binding site

[62,63]. The dual binding capability of Q83 potentially

links iron transport, antimicrobial activity, and fatty acid

pathways. The different roles of Q83 have not been

investigated, but it is inferred to have pleiotropic func-

tions similar to the other siderocalins. The characteriz-

ation of the dual binding sites of Q83 sheds light on how

the siderocalins may participate in the variety of processes

that have been identified.

Concluding remarks
The bacterial pilfering of the host iron supply is accom-

plished by a number of siderophores and the respective

iron-uptake systems. Siderocalins are immunoproteins
www.sciencedirect.com 
that incapacitate some bacterial iron uptake systems by

intercepting bacterial siderophores. The isolation and

characterization of siderocalins from quail, chickens,

and humans, suggests that siderocalins exist for all

animals that suffer from microbial infections. It seems

only a matter of time before siderocalins are identified for

all forms of life that can be considered a host, thus

enhancing our appreciation for the evolutionary pressure

of host–pathogen interactions. The discovery of sidero-

calins will give an added perspective as to why certain

species or individuals within a species are at higher risk to

bacterial infections. Searching for new siderocalins may

also reveal that a single host expresses a variety of

location-specific siderocalins designed to manage the

microbiome of the host by preventing an outbreak of

pathogenic bacteria.

With regard to the multiple developmental and disease

related functions of siderocalins, it is unknown whether

these functions coevolved with the siderophore-binding

functions or if the different functions developed inde-

pendently. Were these proteins originally developed for

fatty acid binding and eventually customized by human

evolution to sequester bacterial siderophores, or did the

development follow another sequence? By manipulating

a protein already encoded in the genome to serve

multiple purposes, hosts would increase the chances for

survival at little extra cost. Furthermore, an evolutionary

map of siderocalin development may indicate when a

pathogen emerged since it appears that siderocalins

evolved to bind siderophores secreted by the most threa-

tening pathogens.
Current Opinion in Chemical Biology 2013, 17:150–157
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