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Abstract: Vocal communication is negatively affected by neurodegenerative diseases, such as 
Parkinson disease, and by aging. The neurological and sensorimotor mechanisms underlying voice 
deficits in Parkinson disease and aging are not well-understood. Rat ultrasonic vocalizations provide a 
unique behavioral model for studying communication deficits and the mechanisms underlying these deficits in these 
conditions. The purpose of this review was to examine the existing literature for methods using rat ultrasonic vocalization 
with regard to the primary disease pathology of Parkinson disease, dopamine denervation, and aging. Although only a 
small amount of papers were found for each of these topics, results suggest that both shared and unique acoustic deficits in 
ultrasonic vocalizations exist across conditions and that these acoustic deficits are due to changes in either dopamine 
signaling or denervation and in aging models changes to the nucleus ambiguus, at the level of the neuromuscular junction, 
and the composition of the vocal folds in the larynx. We conclude that ultrasonic vocalizations are a useful tool for 
studying biologic mechanisms underlying vocal communication deficits in neurodegenerative diseases and aging. 
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INTRODUCTION 

 Disorders of voice (dysphonia) and speech production 
(dysarthria) can be related to developmental issues, neuro- 
degeneration, structural defects, and/or advanced aging. 
Neurodegeneration related to disease and aging causes 
significant negative changes to vocal production and thus 
affects communication ability and quality of life. For 
example, dysarthria is an early-onset sign in individuals with 
Parkinson disease typically starting with changes to vocal 
loudness and quality [1-6]. As the disease progresses vocal 
acoustic and auditory-perceptual features degrade and cause 
reduced amplitude (loudness), decreased variation of intonation 
(monopitch and monoloudness), and increased signal to 
noise ratio (breathiness/harshness in vocal quality), which 
significantly impair voice production and, therefore, speech 
intelligibility and communication efficacy [7-11]. Although 
the primary pathology of Parkinson disease is depletion of 
nigrostriatal dopamine, there are many signs and symptoms 
that do not fit with this model of the disease, including 
dysarthria. Unfortunately, pharmacologic and surgical inter- 
ventions aimed at modulating the nigrostriatal dopamine 
system/circuits (deep brain stimulation, levodopa) do not 
markedly improve and may even worsen voice production 
[12-20]. Further, it is now understood that Parkinson disease 
encompasses a widespread pathology [21], with changes to  
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the autonomic nervous [22], peripheral nerves and muscles 
[23-25] and dysregulation of norepinephrine and degeneration 
of the locus coeruleus [26-29]. As such, how the complex 
pathology of Parkinson disease contributes to vocal 
dysfunction is unclear. To address this problem, a logical 
first step in understanding how Parkinson disease affects 
voice is to determine the effects of depleting nigrostriatal 
dopamine on vocal production, as this is the primary feature 
of disease pathology. Once this is defined, then systematically 
studying degeneration of other neural structures and 
neurotransmitters as they pertain to dysarthria will lead to a 
more complete picture of vocal dysfunction in Parkinson 
disease. For the purposes of this review, we will focus  
on work that has been done in depleting nigrostriatal 
dopamine. 

 Age-related voice disorders in older adults negatively 
impact quality of life, present both physical and mental 
health risks, and are common; the prevalence of voice 
disorders in older adults has been estimated to be between 
20-30% [30, 31]. Laryngeal neuromuscular decline is 
associated with age-related voice problems and may also 
contribute to difficulty swallowing through compromised 
laryngeal closure [32-35]. Therefore, understanding the effects 
of advanced age on laryngeal neuromuscular mechanisms 
has important clinical implications.  

 Although considerable work has been done in humans, 
much of our understanding of these problems comes from 
animal models. Rat ultrasonic vocalizations (USVs) have been 
extensively studied with regard to basic neurophysiologic 
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mechanisms underlying production as well as affect and 
reward/addiction [36-49]. USVs can also be useful to study 
sensorimotor control for actions of the larynx, such as 
vocalization, since USVs and human vocalizations share 
similar mechanisms of production; specifically, both are 
produced by rapidly constricting the laryngeal muscles to 
modulate an egressive airflow [50, 51]. The primary 
difference between human vocalizations and rat USVs is that 
human vocalizations are created by vibrations of the vocal 
folds, while USVs are thought to be produced using a 
whistle mechanism [50, 52, 53]. It has been shown that rat 
USVs share certain features with human speech 
communication in that they have semiotic value [54] serve to 
establish and maintain social contact [55], and consist of 
modular vocal behavior [56]. That is not to say that USVs 
are equivalent to human speech; rather, USVs, like speech, 
require fine sensorimotor control of the larynx, have 
meaning, and can change the behavior of the signal recipient. 
Thus, USVs can be an appropriate model for studying 
sensorimotor control in the context of communication. 
Recently, rodent ultrasonic vocalizations have been used to 
model aging and Parkinson disease. The purpose of this 
paper for the special issue is to review the literature related 
to rat 50-kHz USVs as it pertains to dopamine denervation as 
a model for Parkinson disease and aging.  

DOPAMINE DENERVATION 

 Dopamine denervation has been modeled extensively in 
rats by infusing the neurotoxin 6-hydroxydopamine  
(6-OHDA) into the medial forebrain bundle or striatum, 
where it is taken up by the neuron causing a cascade of 
events leading to dopaminergic and noradrenergic cell death 
(for examples of literature out of thousands of papers  
see Ungerstedt, 1968 [57] and more recently Johnson et al., 
1999 [58]). This has also been modeled less commonly with 
pesticides/herbicides such as rotenone and paraquat. 
Regardless of the mechanism, these methods attempt to 
model the cardinal features of Parkinson disease; tremor, 
postural instability, bradykinesia by causing striatal 
dopamine depletion (for a review see Blesa, Phani, Jackson-
Lewis, Przedborski, 2012 [59]). However, the important 
clinical features of Parkinson disease have expanded to 
include other sensorimotor deficits such as freezing, dysarthria 
and dysphagia (disordered swallowing) (for a review see 
Ciucci et al., 2013 [60]) and non-motor deficits such as 
hyposmia, sleep and mood disturbances, cognition and 
autonomic dysfunction (see Natale et al., 2013 [22], and as 
an example in the 6-OHDA rat model see Tadaiesky, et al., 
2008 [61]). Thus, efforts have been made to define which 
signs are attributed to dopamine depletion in nigrostriatal 
pathways or other more recently identified extranigral and 
non-dopaminergic mechanisms [21, 26, 62]. 

 In our review of the literature, only two papers addressed 
the effects of unilateral dopamine denervation on 50-kHz 
vocalizations with 6-OHDA ([63, 64]); no studies were 
found using other neurotoxin or pesticide/herbicide models. 
The first study (Ciucci et al., 2007) [63] was preliminary, 
thus results from the 2009 study are reported here [64]. 
Using a mating paradigm, the authors elicited 50-kHz USVs 
in male Long-Evans rats by exposing sexually-experienced 

males to receptive females. The female rats were removed 
and recording of vocalizations were from individual males 
only. USV complexity (trill-like frequency modulated USVs 
vs. flat USVs) was decreased relative to controls without a 
decrease in the total number of USVs produced. Amplitude 
(acoustic intensity measured in decibels) and bandwidth  
(the frequency range of a vocalization, measured in Hertz as 
the difference between the highest and lowest frequency) 
were also significantly reduced compared to controls  
(for representative spectrogram, see Fig. 1 reprinted with 
permission from Ciucci, et al., 2008 [65]). Although it has 
been established in adult USVs that acoustic features, such 
as number of calls, intensity, and frequency range, carry 
communicative value, it is unknown how changes in  
these parameters change the semiotic content and/or the 
response of the recipient [66]. Based on recent advances in 
understanding the physiology of USV production [50, 56, 
67], however, these acoustic changes suggest that rats, like 
humans, have decreased control at the level of the larynx 
with dopamine denervation. However, although denervation 
with unilateral 6-OHDA infusion alters the acoustic structure 
of rat USVs, certain features do not change or change to a 
small degree. We calculated effect sizes from the Ciucci 
2009 paper and there was a large effect on amplitude 
(Cohen’s d 8.0, r=0.97) but a smaller effect on maximum 
frequency (Cohen’s d=2.6, r=0.79), while there was no 
statistically significant difference in USV duration.  

 In another study, neurodegeneration was induced by 
unilaterally injecting recombinant adeno-associated virus 
(rAAV) serotype 2/5-expressing human wildtype α-synuclein, 
a protein implicated in the neuropathology of Parkinson 
disease, in the rat substantia nigra [68]. Functional 
impairment in measures of forelimb use were observed in 
rats with 8 week duration of α-synuclien (α-syn) expression 
and these deficits were highly correlated with striatal 
tyrosine hydroxylase loss. Rats in this cohort also 
demonstrated decreased USV amplitude and rate, but there 
were no significant differences in USV type, duration, 
bandwidth, peak frequency or latency to call between naïve 
control and rAAV2/5-α-syn rats [68]. This suggests that 
while dopamine denervation affects acoustic properties of 
the USV, it does not affect all aspects of the USV, pointing 
toward other mechanisms. This in part has been recently 
addressed in a mouse model over-expressing human wildtype 
α-syn. Mice showed a significant reduction in the duration 
and amplitude of USVs with an altered USV profile [69]. 
These acoustic deficits occur in the absence of nigrostriatal 
dopamine loss, although α-syn pathology was found in the 
periaqueductal gray, a region important for vocal production 
[70-72]. Thus, we can tentatively conclude that dopamine 
denervation as well as other pathological mechanisms 
associated with Parkinson disease contribute to vocal 
dysfunction. In other words, like humans, vocal 
communication in rats is susceptible to pathologies related to 
Parkinson disease, exhibit acoustic changes that mimic those 
seen in the human manifestation of the disease (reductions in 
frequency bandwidth and amplitude), and can serve as useful 
tool in understanding the behavioral and underlying 
neurological complexities of Parkinson disease. 
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PHARMACOLOGICAL MANIPULATIONS OF 
DOPAMINE 

 Although it is beyond the scope of the current paper to 
review all effects of pharmacologic manipulation on USVs, a 
considerable amount of work has been done to characterize 
dopaminergic mechanisms in the production of USVs [42, 
73-75]. Specifically, manipulations of dopamine with drugs 
such as amphetamine [40, 43, 48, 76, 77], cocaine [78, 79], 
apomorphine [79], and methylphenidate [80] result in an 
increase in the quantity of 50-kHz USVs. Likewise, 
agonizing or antagonizing dopaminergic receptors affects 
both the quantity and quality of 50-kHz vocalizations [81-
86]. For example, selective antagonism of the dopamine D2 
receptor sub-type with haloperidol results in decreased 
bandwidth, amplitude (loudness), and complexity of USVs, 
similar to what is observed following unilateral infusions of 
6-OHDA [63, 64]. Likewise, selective D1, D2, or combined 
D1 + D2 antagonism results in not only decreased call rate 
and altered call profile [81, 82], but also reductions in 
latency to call, duration, intensity, bandwidth and peak 
frequency [82]. Given the role of dopamine in rewarding and 
appetitive behaviors, there is also a body of literature 
devoted to characterizing both direct manipulations of  
the nucleus accumbens [40, 43, 46, 76, 87] and the 50-kHz 
USV as an indicator of positive affect (for examples, see [54, 
88, 89]). While not as well characterized as dopaminergic 
mechanisms in USVs, manipulations of other neurotransmitters 
such as norepinephrine [75, 90-96] and serotonin [97] have 
also been shown to play a role in the production of 50-kHz 
USVs. Although pharmacological manipulations do not 
recapitulate dopaminergic denervation, as it relates to 
Parkinson disease, these studies offer valuable insight into 
the relationship between specific dopaminergic mechanisms 

and qualitative aspects of USVs. This, in turn, may help to 
better understand how and why voice deficits manifest in 
Parkinson disease and inform future treatment approaches.  

EFFECT OF ADVANCED AGE ON 50-kHz 
VOCALIZATIONS 

 Only a handful of studies have looked at the effects of 
advanced age on rat USVs [98-100]. Overall, age-related 
acoustic changes in 50-kHz USVs are similar to those found 
with unilateral dopamine denervation with 6-OHDA, with 
aged rats demonstrating decreases in measures of frequency 
(smaller bandwidth and decreased maximum and peak 
frequency) and decreased amplitude of vocalizations relative 
to young adult rats [98-100]. Different than the findings in 
the 6-OHDA model, however, vocalization complexity and 
rate do not appear to be influenced by advanced age. 
Furthermore, aging does appear to impact the duration of 
complex vocalizations, with longer mean durations of step 
[98] and frequency modulated [99] USVs in old adult rats 
compared to USVs of young adult rats. Peterson et al. (2013) 
[100] did not report results on duration. Although few in 
number, these studies indicate aging does have an impact on 
the acoustics of rat 50-kHz USVs, and that the acoustic 
deficits have some similarities with those found with 
dopamine denervation. 

 These acoustic changes in USVs may be due to age-
related changes in laryngeal structure and/or central and 
peripheral denervation-like neuromuscular adaptations. In 
the aging rat larynx, senescence is associated with 
neuromuscular deficits, including decreased laryngeal 
kinematics during resting breathing, reduced capillary 
surface area and branch points in the thyroarytenoid muscle 
(the primary muscle of the vocal fold), and a shift to slower 

 

Fig. (1). Representative spectrograms of frequency modulated trill-type USVs demonstrating the reduced amplitude and bandwidth in 
unilateral 6-OHDA infusion (dopamine denervation model of Parkinson disease) male rats compared with control. Averages and standard 
errors of the maximum and minimum peak frequency are represented by the bar graphs. Solid color between the maximum and minimum 
peak frequency indicates the bandwidth of the call. Reprinted with permission from Ciucci, et al., 2008 [65]. 
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contracting muscle fiber types in the thyroarytenoid muscle 
[101-103]. In both the human and rat larynx, aging impacts 
laryngeal neuromuscular junction (NMJ) morphology in a 
manner similar to denervation, but in ways unique from 
NMJs found in the limb musculature [32, 104-106]. Peterson 
et al. (2013) [100] reported age-related acoustic deficits of 
USVs were correlated with structural changes in the 
microarchitecture of the vocal folds, including an increase in 
connective tissue and collagen and a decline in elastin and 
hyaluronic acid, all of which may result in increased stiffness 
of the vocal folds. Peripheral neuromuscular changes, such 
as dispersion of the motor endplate within the NMJ [99], and 
central changes, such as a decreased number of motoneurons 
in the nucleus ambiguus [98], have also been associated with 
acoustic deficits in 50-kHz USVs. Furthermore, other 
unexplored mechanisms underlying USV production may be 
impacted by advanced age and cause changes in acoustic 
parameters. For example, frequency modulation of USVs is 
related to respiratory patterns [67]; therefore, age-related 
changes in respiratory capacity and function may also play a 
role in acoustic deficits. No direct studies have been 
performed, however, investigating USV production and 
respiratory function in an aging model. Overall, these results 
suggest advanced age negatively impacts the physiology of 
the rat laryngeal neuromuscular system, and therefore, the 
acoustic signal of 50-kHz USVs. 

 Age-related acoustic deficits in USVs correspond to 
those found in the aging human voice. Typical age-related 
acoustic changes in the human voice include alterations in 
average fundamental frequency, decreased fundamental 
frequency range, decreased vocal stability (increased 
perturbation), and decreased volume (amplitude) (for review, 
see Baken (2005) [107]). As with the rat, these acoustic 
changes in the human voice are likely due to underlying age-
related changes in vocal fold microarchitecture and 
biomechanics [108-110] and neuromuscular deficits [111]. 
Therefore, study of age-related changes in rat USVs and 
laryngeal neuromuscular system can provide insight into 
age-related changes in the human voice. 

DISCUSSION  

 This paper reviewed the currently published literature on 
male rat USVs as it pertains to dopamine denervation and 
aging. There were only 2 papers published on dopamine 
denervation with the neurotoxin 6-OHDA and one paper 
using viral transfection of α-syn to deplete dopamine in the 
substantia nigra; no other neurotoxin or herbicide/pesticide 
studies examining USVs were found. Findings from these 
papers show an altered USV profile (less complex and more 
simple USVs) along with reduced bandwidth and amplitude 
of USVs. Other acoustic parameters, such as duration, were 
not affected. Thus, unilateral denervation of nigrostriatal 
fibers in the medial forebrain bundle or substantia nigra is 
associated with acoustic deficits in male rat USVs. However, 
as vocal deficits appear early in humans and are refractory to 
treatments aimed at nigrostriatal dopamine depletion, other 
mechanisms in the complex pathology of Parkinson disease 
are indicated with potential association to dopamine 
pathways. Midbrain dopamine cells that die in the disease 
appear particularly susceptible to abnormal alpha-synuclein 

protein deposits [26]. Transgenic mouse models that over-
express human wild type α-syn under the Thy-1 promoter 
demonstrate early and progressive USV deficits accompanied 
by α-syn pathology in the periaqueductal gray (PAG) which 
happens prior to substantial dopamine cell loss [69].  

 As described in the seminal works by Braak [21, 26, 62], 
dopamine neurons appear to be vulnerable to degeneration 
and alpha-synuclein aggregation and the association between 
alpha-synuclein and dopamine signaling pathways may be 
mediated by molecular intermediaries. The forkhead family 
of transcription factors including Foxp1 and Foxp2 are likely 
candidates. Knockout mice with α-syn deficiency and altered 
USVs show downregulation of Foxp1 mRNA in the striatum 
during developmental and adult periods [112]. Recent 
evidence from the zebra finch songbird suggests that 
lentiviral-mediated knockdown of the speech-related gene 
FoxP2 in the basal ganglia song nucleus, Area X, affects 
dopamine modulation in cortico-striatal circuitry and 
modification of the song [113]. In addition to these FoxP 
molecules, a whole cascade of other behaviorally-driven 
genes in zebra finches associate with dopamine-modulated 
pathways in the basal ganglia [114, 115]. These molecular 
interactions may be key mediators of vocal plasticity 
necessary for song learning and on-going maintenance. 
These examples from multiple species highlight the need to 
leverage the advantages of genetic tools in mice and rats 
with the well-characterized neural circuitry of songbirds in 
order to move forward in the investigation of the onset, 
progression, and pathology of vocalization deficits in motor 
disorders, particularly ones associated with dopamine 
denervation.  

 The results of the aging studies may indicate an age-
related decrease in fine motor control needed to accurately 
produce these relatively short (<50 ms), rapidly-modulated 
vocalizations. Loss of fine motor control may result from an 
increase in the size of the motor unit seen with aging [116]. 
Indeed, age-related acoustic changes in rats are associated 
with a decrease in the number of primary motoneurons in the 
nucleus ambiguus [98] and pre-synaptic remodeling of the 
NMJ [99], suggesting motor unit remodeling with age. This 
interpretation is supported by findings using electro- 
myography in the human larynx that show longer motor unit 
durations in older adults [117]. Additionally, age-related 
changes at the NMJ may be a primary cause of motor unit 
remodeling [118]. Evidence is limited, however, by the few 
studies on age-related changes in USVs and related changes 
in underlying neuromuscular mechanisms. Age-related changes 
both within the larynx and throughout the body likely impact 
USVs. For example, USVs are produced with an egressive 
airflow and, therefore, age-related changes in breathing and 
pulmonary function likely contribute to changes in USVs. 
Studies of human speech breathing have shown older adults 
use different respiratory mechanisms when producing speech, 
likely due to changes in the strength of respiratory musculature, 
compliance of the chest and lungs, and lung volume [119, 
120]. Changes in rat pulmonary function with aging has been 
identified [121], although subglottal pressure during USV 
production has only been studied in young rats [50]. These 
multiple neurological and physiological mechanisms involved 
with USV production make USVs a unique behavioral 
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biomarker of aging, and offer a relatively untapped area of 
research. 

 One of the primary acoustic USV variables affected by 
both dopamine denervation and aging is USV amplitude. 
When measuring changes in amplitude, variations in distance 
from the sound source to the microphone will result in 
variations of amplitude. In the reviewed studies, rats were 
allowed to roam freely while vocalizations were recorded. 
Variability of individual rats was accounted for by taking an 
average measurement of many vocalizations for each rat. 
Therefore, the observed differences in USV amplitude were 
likely due to true differences between groups and not 
variations in mouth-to-microphone distance. A potential 
solution to control for this variation in microphone distance 
could be to use an array of microphones, allowing for 
localizing of the animal and subsequent calculation of a 
calibrated amplitude measure. Future investigations may 
consider this or another controlled method of measuring 
amplitude to provide further insight into USV amplitude 
changes. 

 Many of the reported changes in USV acoustics differed 
by vocalization subtype; however, there is no standard 
method for classifying USVs and, therefore, different 
methods of classification were used across studies. Although 
one study analyzed all 50-kHz USVs together without 
further classification [100], most of the studies discussed in 
this review manually classified 50-kHz USVs into at least 2 
subtypes by frequency, either “flat” (constant frequency) or 
frequency modulated. The frequency modulated USVs are 
often further divided into 2, 4, or as many 12 different sub-
classification [64, 77, 88]. Although automatic classification 
schemes have been proposed for both rat [122, 123] and 
mouse [124] USVs, none have been widely accepted. 
Evidence for a reliable, automated, meaningful classification 
scheme is critical for comparing results across studies.  

 Despite some methodological limitations, rat 50-kHz 
USVs have been a useful tool for studying changes to vocal 
production with regard to dopamine denervation and aging. 
Additionally, USVs also offer an opportunity to study 
behavioral interventions targeted at preventing and/or 
reversing these changes in vocal production and the 
underlying neurological and sensorimotor deficits [99, 125]. 
Although only a limited number of studies were identified by 
this review, it is clear rat 50-kHz USVs are an emerging tool 
to investigate many disorders of the nervous system and 
genetic conditions that cause communication deficits. 
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