
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, Leiden University MedicalFrank J. Staal

Center Netherlands

, University Hospital MotolJan Stary

Czech Republic

Discuss this article

 (0)Comments

2

1

REVIEW

Extracoporeal photopheresis treatment of acute
graft-versus-host disease following allogeneic haematopoietic

 stem cell transplantation [version 1; referees: 2 approved]
Aisling M. Flinn , Andrew R. Gennery1,2

Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Paediatric Haematopoietic Stem Cell Unit, Great North Children’s Hospital, Newcastle upon Tyne, UK

Abstract
Acute graft-versus-host disease (aGvHD) continues to be a major obstacle to
allogeneic haematopoietic stem cell transplantation. Thymic damage
secondary to aGvHD along with corticosteroids and other non-selective T
lymphocyte-suppressive agents used in the treatment of aGvHD concurrently
impair thymopoiesis and negatively impact on immunoreconstitution of the
adaptive immune compartment and ultimately adversely affect clinical
outcome. Extracorporeal photopheresis (ECP) is an alternative therapeutic
strategy that appears to act in an immunomodulatory fashion, potentially
involving regulatory T lymphocytes and dendritic cells. By promoting immune
tolerance and simultaneously avoiding systemic immunosuppression, ECP
could reduce aGvHD and enable a reduction in other immunosuppression,
allowing thymic recovery, restoration of normal T lymphopoiesis, and complete
immunoreconstitution with improved clinical outcome. Although the safety and
efficacy of ECP has been demonstrated, further randomised controlled studies
are needed as well as elucidation of the underlying mechanisms responsible
and the effect of ECP on thymic recovery.

 
This article is included in the F1000 Faculty

 channel.Reviews

1 1,2

1

2

  Referee Status:

 Invited Referees

 version 1
published
27 Jun 2016

 1 2

 27 Jun 2016, (F1000 Faculty Rev):1510 (doi: First published: 5
)10.12688/f1000research.8118.1

 27 Jun 2016, (F1000 Faculty Rev):1510 (doi: Latest published: 5
)10.12688/f1000research.8118.1

v1

Page 1 of 8

F1000Research 2016, 5(F1000 Faculty Rev):1510 Last updated: 27 JUN 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
http://f1000research.com/articles/5-1510/v1
http://f1000research.com/articles/5-1510/v1
http://f1000research.com/articles/5-1510/v1
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/articles/5-1510/v1
http://dx.doi.org/10.12688/f1000research.8118.1
http://dx.doi.org/10.12688/f1000research.8118.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.8118.1&domain=pdf&date_stamp=2016-06-27


F1000Research

 Aisling M. Flinn ( )Corresponding author: Aisling.Flinn@newcastle.ac.uk
 Flinn AM and Gennery AR. How to cite this article: Extracoporeal photopheresis treatment of acute graft-versus-host disease following

  2016, (F1000 Faculty Rev):1510allogeneic haematopoietic stem cell transplantation [version 1; referees: 2 approved] F1000Research 5
(doi: )10.12688/f1000research.8118.1

 © 2016 Flinn AM and Gennery AR. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Licence

 Aisling Flinn is funded by the Bubble Foundation UK.Grant information:

 Competing interests: The author(s) declared that they have no competing interests.

 27 Jun 2016, (F1000 Faculty Rev):1510 (doi: ) First published: 5 10.12688/f1000research.8118.1

Page 2 of 8

F1000Research 2016, 5(F1000 Faculty Rev):1510 Last updated: 27 JUN 2016

http://dx.doi.org/10.12688/f1000research.8118.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.8118.1


Introduction
Allogeneic haematopoietic stem cell transplantation (HSCT) 
is used to treat malignant and non-malignant haematological  
conditions1. In primary immunodeficiency, the aim following 
HSCT is to achieve complete and long-lasting immunoreconstitu-
tion (IR) with a diverse T cell receptor (TCR) repertoire, providing 
adequate adaptive T lymphocyte immunity2. Delayed or persist-
ing immunodeficiency is associated with significant morbidity and 
mortality with increased risk of infection, relapse, and development 
of secondary malignancies3,4. Potential strategies to boost thymic 
function and promote faster and complete IR, particularly in older 
patients who exhibit reduced thymic function inherently due to 
aging, have garnered much interest to improve patient outcome. 
Such approaches include the use of Fgf7 or sex steroid hormone 
inhibition, which have been shown to protect thymic epithelial cells 
(TECs) and improve thymopoiesis in experimental models5.

Effect of graft-versus-host disease on T lymphocyte 
immunoreconstitution
Conditioning given prior to HSCT results in an inevitable period of 
aplasia with obliteration of innate and adaptive immune responses, 
subjecting the patient to a period of increased risk of infection and 
other complications until the stem cells engraft and reconstitution 
of the immune system compartments ensues. Rebuilding of innate 
immunity, including monocytes, granulocytes, and epithelial barri-
ers, occurs relatively quickly following HSCT, providing protection 
against bacterial and fungal infections6. In contrast, T lymphocyte 
reconstitution is lengthier and more complex, involving two  
pathways6–8. Peripheral thymic-independent expansion of surviving 
host T lymphocytes and/or transferred donor T lymphocytes pro-
vides a degree of immediate T lymphocyte immunity but of limited 
diversity and permanency5. Complete IR following lymphodeple-
tion requires durable de novo thymic regeneration of naïve T lym-
phocytes from donor progenitor cells with a broad TCR repertoire, 
which requires a functioning and structurally intact thymus8,9. These 
naïve T lymphocytes (termed recent thymic emigrants [RTEs]) can be 
measured quantitatively by identification of surface markers such as 
CD45RA and CD31 using flow cytometry and by determination of 
TCR excision circle (TREC) levels. TRECs are circular pieces of 
DNA produced as a consequence of TCR α and β chain formation, 
and quantification of TREC content in T lymphocytes provides a 
practical and accepted measurement of thymic output10. The quality 
of the T lymphocyte compartment can be assessed by measuring 
TCR diversity, as this is almost completely reflective of the naïve 
T lymphocyte population11. This can be done using flow cytom-
etry, spectratyping of the complementarity determining region 
3 (CDR3), and nucleotide sequencing. Flow cytometry is widely 
available and cheaper and results can be obtained quickly12. Spec-
tratyping analyses the lengths of the hypervariable region CDR3 
in each Vβ family using real-time polymerase chain reaction13,14.  
Compared to flow cytometry, spectratyping provides more detailed 
resolution of TCR diversity; however, there is no accepted single 
standardised method of analysing data at present, and this technique 
gives equal weighting to all Vβ families measured, independent of 
how many genes they contain13. Nucleotide sequencing of DNA 
CDR3 regions provides even more in-depth analysis but is expen-
sive and, although evolving, is not widely available at present15. 
Thymic damage disrupts normal T lymphocyte ontogeny, resulting 

in reduced export of RTEs and a distorted TCR repertoire, nega-
tively impacting on IR and clinical outcome5,16–18.

Graft-versus-host disease (GvHD) is a leading cause of post-HSCT 
mortality19,20. Acute (a)GvHD is mediated by alloreactive mature 
donor T lymphocytes, which attack disparate recipient antigens, 
resulting in a harmful inflammatory response and tissue injury21. 
Elucidation of aGvHD pathophysiology is based on experimen-
tal models20: (1) damage to host tissue by conditioning regimens, 
underlying disease, and/or infections increases pro-inflammatory 
cytokines activating host antigen-presenting cells (APCs); (2) donor 
T lymphocytes recognise the disparate alloantigens on activated 
host APCs and become activated, proliferate, differentiate, pro-
duce further inflammatory cytokines, and migrate to target organs;  
(3) effector cells, primarily cytotoxic T lymphocytes and natural killer 
(NK) cells, and soluble effectors cause apoptosis of target cells.

Although aGvHD principally involves the skin, gastrointestinal  
tract, and liver, the thymus is also a primary target, resulting in 
disruption of thymic architecture with loss of cortico-medullary 
demarcation, alteration of TEC subpopulations, and depletion of  
thymocytes22–24. The precise mechanisms behind aGvHD-induced 
thymic injury in humans remain incompletely understood, but 
experimental models have helped delineate the underlying cellu-
lar and molecular mechanisms22. TECs are initiators and targets 
of thymic aGvHD, capable of activating alloreactive donor T lym-
phocytes independently of APCs, leading to secretion of interferon 
gamma (IFNγ) and triggering signal transducer and activator of 
transcription 1 (STAT1)-induced apoptosis of cortical and medul-
lary TECs9. The resulting disruption of architecture and organisa-
tion of the thymic microenvironment with thymic atrophy disturbs 
the normal signalling required for immature thymocyte develop-
ment, particularly at the triple-negative proliferative stage and 
with increased apoptosis of double-positive cells22,25,26, resulting in 
impaired lymphopoiesis and reduced thymic export (Figure 1)11,27. 
Acute GvHD also impairs the thymic-independent pathway with 
reduced expansion of transferred mature donor T lymphocytes,  
possibly due to loss of peripheral T lymphocyte niches28.

A distorted TCR repertoire is observed in patients with aGvHD10. 
Disparate donor and recipient major histocompatibility complex 
(MHC) complexes disturb thymic positive and negative selec-
tion, impacting on TCR selection, resulting in thymocytes escap-
ing negative selection, and increasing the survival of autoreactive  
T lymphocytes29–32. Thus, aGvHD is detrimental to the quantity and 
quality of T lymphocyte recovery. The thymus is particularly sensi-
tive to aGvHD, with thymic output being significantly affected, even 
in grade 1 disease11. Subclinical thymic aGvHD may have an under-
appreciated adverse effect on the reconstitution of adaptive immu-
nity, causing ongoing infections and incomplete IR post-HSCT.

Corticosteroid treatment of acute graft-versus-host 
disease
Corticosteroids, with potent immunosuppressive and anti- 
inflammatory effects, are the first-line treatment for aGvHD, but a 
complete response is witnessed in only 25–50% of patients33. Short, 
intensive courses of corticosteroids induce thymic involution, 
causing a profound reduction in naïve T lymphocyte production, 
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Figure 1. Normal thymopoiesis, effect of acute graft-versus-host disease (aGvHD) and corticosteroids on thymic function, and the 
potential effect of extracorporeal photopheresis (ECP) allowing thymic recovery. Thymic damage occurs secondary to allogeneic  
T lymphocytotoxicity during aGvHD, corticosteroid-mediated damage, and other non-selective T lymphocyte-suppressive agents used in 
the treatment of aGvHD, causing impaired thymopoiesis (A), with reduced thymic export and a distorted T cell receptor (TCR) repertoire 
with potentially autoreactive thymocytes escaping negative selection (B). ECP, by promoting immune tolerance and enabling reduction and 
cessation of conventional immunosuppression, may allow thymic recovery, resumption of normal thymopoiesis, and complete and long-
lasting immunoreconstitution post-haematopoietic stem cell transplantation (C). Abbreviations: Treg, regulatory T lymphocyte; DP, double 
positive.
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although with complete recovery following cessation34. However, 
the precise effects in human thymus and of long-term corticosteroid 
use are unknown. There is no consensus for second-line therapy 
for steroid-dependent/-refractory aGvHD, which usually involves 
the intensification of systemic immunosuppression with a plethora 
of therapeutic agents that non-selectively target T lymphocytes35,36. 
Second-line options include mycophenolate mofetil, anti-
tumour necrosis factor alpha antibodies, or mammalian target of  
rapamycin (mTOR) inhibitors. The use of mesenchymal stro-
mal cells has also been advocated, with mixed success, in part 
because the product is a cellular therapy and it is difficult to 
ensure consistency of the cellular content37–39. Acute GvHD and  
immunosuppressive treatment concurrently impair thymopoi-
esis, subjecting patients to further risk of infection, relapse, and  
development of secondary malignancies, as well as associated 
toxicity40,41. A targeted therapy for aGvHD without systemic  
immunosuppression and that allows thymic recovery is needed42.

Extracorporeal photopheresis
Extracorporeal photopheresis (ECP) exposes apheresed mono-
nuclear cells to 8-methoxypsoralen and UVA radiation, with  
re-infusion of photoactivated cells into the patient43. This induces 
DNA damage and apoptosis of exposed cells, with activated T lym-
phocytes preferentially affected44,45. As only 5-10% of lymphocytes 
are exposed during the procedure, which is insufficient to explain 
the effects of ECP, it is speculated that the apoptotic cells have indi-
rect immunomodulatory actions on other immunocompetent cells43. 
These immunomodulatory mechanisms are poorly understood, 
but generation of regulatory T lymphocytes (Tregs), alteration of 
cytokine patterns, and modulation of dendritic cells (DCs) appear 
to be fundamental46–52.

The modulation of DCs includes increased number due to dif-
ferentiation of ECP-exposed monocytes53,54 and stimulation of a  
DC-tolerogenic state upon phagocytosis of apoptosed cells, char-
acterised by down-regulation of maturation markers and co- 
stimulatory molecules and increased secretion of anti-inflammatory  
cytokines, particularly interleukin-1055–60. Upon interaction with 
T lymphocytes, tolerogenic DCs can induce T lymphocyte anergy 
or apoptosis or stimulate Treg production58,61. In aGvHD, DCs, 
as the major APC, present disparate host antigens to donor T  

lymphocytes, propagating the pathway of cellular injury. Inducing a 
DC-tolerogenic state and dampening T lymphocyte activation could 
attenuate the trigger for aGvHD. The modulation of DC number and 
function may be a central mechanism of ECP. Tregs are essential 
in maintaining self-tolerance, down-regulating immune responses, 
and limiting inflammation that may be harmful to the host and  
contribute to the mechanism of ECP62–67.

The unique advantage of ECP as a therapy is lack of global immuno-
suppression but preservation of the graft-versus-leukaemia effect68. 
Promoting immune tolerance, with selective down-regulation of 
immune stimulation, could reduce aGvHD and enable a reduction 
in other immunosuppression, facilitating thymic recovery, restora-
tion of normal T lymphopoiesis, and complete IR (Figure 1) with 
improved clinical outcome as ability to fight infections improves 
and risk of secondary malignancy or relapse diminishes. It is well 
tolerated with few adverse effects, and reports of clinical efficacy 
are impressive69–77. Whilst the immune-sparing effects of ECP 
have been demonstrated78,79, further randomised controlled studies 
are needed as well as investigation of the effect of ECP on thymic 
recovery. Further elucidation of the underlying mechanisms at play, 
as well as the optimal treatment schedule, is required to ascertain 
fully the role of ECP in aGvHD treatment.
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