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Objective. Restoring the correct masticatory function of partially edentulous patient is a challenging task primarily due to the
complex tooth morphology between individuals. Although some deep learning-based approaches have been proposed for dental
restorations, most of them do not consider the influence of dental biological characteristics for the occlusal surface reconstruction.
Description. In this article, we propose a novel dual discriminator adversarial learning network to address these challenges. In
particular, this network architecture integrates twomodels: a dilated convolutional-based generative model and a dual global-local
discriminative model. While the generative model adopts dilated convolution layers to generate a feature representation that
preserves clear tissue structure, the dual discriminative model makes use of two discriminators to jointly distinguish whether the
input is real or fake. While the global discriminator focuses on the missing teeth and adjacent teeth to assess whether it is coherent
as a whole, the local discriminator aims only at the defective teeth to ensure the local consistency of the generated dental crown.
Results. Experiments on 1000 real-world patient dental samples demonstrate the effectiveness of our method. For quantitative
comparison, the image quality metrics are used to measure the similarity of the generated occlusal surface, and the root mean
square between the generated result and the target crown calculated by our method is 0.114mm. In qualitative analysis, the
proposed approach can generate more reasonable dental biological morphology. Conclusion. 'e results demonstrate that our
method significantly outperforms the state-of-the-art methods in occlusal surface reconstruction. Importantly, the designed
occlusal surface has enough anatomical morphology of natural teeth and superior clinical application value.

1. Introduction

Tooth defect and edentulous and dentition defect are
common and frequently occurring diseases, which are
mainly caused by dental caries, periodontal disease, trauma,
and congenital malformation [1, 2]. Among them, dental
caries is the main cause of tooth and dentition defects [3].
'e Global Burden of Disease Study [4] reported that about
half of the global population suffers from oral diseases, of
which dental defects account for at least 50%. 'e common
types of restorations for defective teeth are full crown and

inlay, in which full crown is the main type for large area
defect (see Figure 1). However, with the improvement of
human oral health awareness, how to make the dental
restoration process more intelligent, the dental crown
prosthesis more personalized, and fundamentally change the
computer-aided design (CAD)-based dental crown restora-
tion design method will become a great challenge for
dentists.

A CAD-based dental restoration technology has suc-
cessfully applied digital geometry design and manufacturing
into the dental restoration field, which greatly improves the
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design quality of prosthesis and significantly reduces the
work intensity of dentists. Besides, several studies have
successfully used finite element analysis (FEA) as a tool for
anatomical morphology construction and biomechanical
evaluation of the prostheses [5–7]. Although the combi-
nation of CAD and prosthetic dentistry leads to many ad-
vantages, the existing CAD-driven dental restoration
systems all use a standard template tooth database as the
design template, which leads to the present situation that the
occlusal surface shape is uniform [8, 9]. 'erefore, how to
make full use of the efficient digital design method and have
the design experience of dentists to solve the personalized
design of the complex and varied prostheses is the technical
bottleneck in the current restoration.

'e development of intelligent technologies such as deep
learning (DL) has brought new solutions for the dental
medicine. Compared with the CAD-based restoration method,
the empirical data excavated by DL technology are more
suitable for the purpose of the dental personalized service. In
the process of dental restoration, dentists have accumulated
rich experience data on the design of dental crown occlusal
surfaces. 'ese occlusal surface shapes contain enough per-
sonalized anatomical features, which can meet the require-
ments of functional dental restoration. 'erefore, this will
provide basic conditions for the exploration of intelligent
dental restoration technology. However, developing an intel-
ligent dental restoration method is challenging: (1) it is lack of
large-scale oral clinical database to train an intelligent network
for defective teeth restoration [10]; (2) how to design a per-
sonalized dental prosthesis satisfying the normal mastication
function of patient; and (3) the great difference in tooth
morphology among individuals increases the difficulty of
training the network model.

Although a personalized design of dental occlusal surface
morphology is full of difficulties and challenges, great
achievements have been made through the efforts of

researchers, which mainly focus on CAD-based ones and
DL-oriented ones. In CAD-based methods, researchers try
to obtain the desired results by improving and optimizing
algorithms. For example, Buchaillard et al. [8] established a
statistical model comprising a mean shape and a series of
deformation modes to reconstruct the three-dimensional
(3D) crown surface. Jiang et al. [3] adopted iterative Lap-
lacian surface editing and mesh stitching to deform a
standard template tooth for the defective occlusal surface
reconstruction. Fan et al. [11] proposed a dental shape
restoration method combining moving least-squares de-
formation and template feature line matching to reconstruct
the crown surface. Zhang et al. [12] proposed a dual-factor
constrained deformation framework for defective tooth
modeling based on a standard template tooth library. Li et al.
[13] developed an extraction algorithm of biological char-
acteristic curve to achieve close matching of dental pros-
thesis and preparation tooth. It is worth noting that the
above methods of manually adjusting the occlusal surface
shape of a standard tooth by controlling the deformation
point cannot reconstruct the masticatory function of the
defective tooth. So, it is still impossible to design a per-
sonalized dental prosthesis that is the most suitable for
patients. Although the CAD-basedmanual interactive dental
restoration method can restore the shape of the defective
tooth, its shortcomings are also obvious: (1) it requires
highly skilled and professional operation skills; (2) it inte-
grates into more artificial subjective design ideas of dentist;
(3) it is highly dependent on an efficient and robust de-
formation algorithm; and (4) it requires many intraoral trials
and manual grinding for the prosthesis surface, which is
another difficulty to be addressed.

In DL-oriented methods, some deep-learned networks
have been widely used in dental-related disease diagnosis
[14–16] and tooth segmentation [17–19] due to their su-
perior performance, but the research on dental intelligent
restoration is relatively lacking. For example, Lee et al. [20]
adopted a pre-trained GoogLeNet Inception v3 network for
the diagnosis and prediction of dental caries. Moran et al.
[21] adopted super-resolution generative adversarial net-
work (SRGAN) model and transfer learning to obtain
higher-quality periapical images for the detection of dental
caries and periodontal disease. Lian et al. [22] designed an
end-to-end 3D convolution network (called MeshSegNet) to
automatically label the individual tooth on dental surface.
Torosdagli et al. [23] developed fully automated image
analysis software for mandible segmentation and anatomical
landmarking based on a long short-term memory network.
'e above methods have achieved impressive results in the
corresponding tasks. However, each of them is tailored for
special dental tasks, rather than for the occlusal surface
reconstruction. Also, the successful application of these
methods indicates that DL-oriented methods have great
application potential in the field of dental restoration. Re-
cently, a few literature studies have reported the GAN-based
frameworks for dental restoration. For example, Hwang
et al. [24] applied a Pix2pix [25]-based model for dental
crown design. On this basis, Yuan et al. [26] reconstructed
the occlusal surface of the missing teeth by introducing

Figure 1: Typical 3D dental crown examples. 'e first row shows
the matching relationship between the dental crown and the
preparation teeth, and the second row provides the related physical
models of the dental crown.
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perceptive loss and gap distance constraint. Tian et al. [10]
proposed a computer-aided deep adversarial-driven dental
inlay restoration framework to automatically reconstruct the
occlusal surface for a defective tooth. However, these
methods only focus on the task of missing small areas of
teeth or do not consider the influence of dental biological
characteristics (occlusal fingerprint, occlusal groove) on the
restoration task, so that the reconstructed occlusal surface by
the above methods do not have the anatomical morphology
of natural crown.

In this article, we propose a dental occlusal surface
reconstruction method using a dual discriminator adver-
sarial network (DentalRecNet) for a partially edentulous
patient. 'e motivation of the proposed method mainly
includes two aspects. Firstly, the previous adversarial
learning network for medical image completion tasks
mainly focuses on the design of the generator, which fails to
make full use of the capabilities of discriminator. We
propose a dual discrimination strategy, in which the joint
decision of two discriminators is applied to minimize the
difference between the generated occlusal surface and the
ground truth, to improve the reliability of the network.
Secondly, aiming at the lack of personalization of occlusal
surface shape designed by existing methods, we believe that
ensuring the correct occlusal relationship and enough
natural anatomical morphological of the generated occlusal
surface is the key factor to evaluate the success of resto-
ration treatment. 'erefore, we adopt a strategy of grad-
ually increasing the training complexity to restore the
complex topography of the tooth surface. Different from
the previously mentioned DL-based restoration methods,
the proposed DentalRecNet method has several benefits: (1)
it is a highly automated solution that no longer requires
manual intervention in the occlusal surface design; (2) it is
highly efficient to design a tooth prosthesis with enough
dental biological characteristics; (3) the reconstruction
error of the occlusal surface is relatively small; and (4) it is
highly efficient for dentists in oral clinic. For this study, the
main contributions are as follows:

(1) We propose an adaptive visual distance-based or-
thogonal projection method for the construction of
the standardized tooth database, which can realize
the bidirectional reversible mapping between 3D
tooth model and depth map.

(2) To reconstruct clear tissue structure and details of the
defective tooth, an encoder-decoder generator model
with dilated convolutional layers is proposed, which
can enhance the transfer of effective features. A
composite loss function is also designed to guide the
network to capture the dental biological character-
istics for accurate reconstruction.

(3) A dual discriminative strategy is proposed to dis-
tinguish fake from real images. 'e global-local
discriminators with different inputs improve the

quality of the generated occlusal surface via joint
learning by augmenting the decision ability of dis-
criminators via complementary information.

(4) Extensive evaluations are conducted on a real-world
dental database. Compared with the state-of-the-art
methods, the designed network can achieve much
better performance regarding both qualitatively and
quantitatively.

'e rest of the article is organized as follows. 'e
proposed method schemes are described in Section 2.
Section 3 provides the experimental results. Relevant issues
are discussed in Section 4. Finally, the conclusion is sum-
marized in Section 5.

2. Proposed Methods

'e proposed method for reconstructing the defective oc-
clusal surface essentially involves dental depth map gener-
ation and dental restoration network, which is graphically
shown in Figure 2. In the depth map generation step, an
adaptive visual distance-based orthogonal projection
method is used to generate the depth maps. In dental res-
toration step, a dual discriminator network architecture is
designed to synthesize missing teeth images, in which two
discriminators are learned to distinguish the reconstructed
missing crown and whole generated tooth image as real and
fake.

2.1. Dental Map Generation. 'e dental depth map has the
characteristics of visual image and contains the spatial in-
formation of tooth model, which directly reflects the 3D
geometric information of occlusal surface. To preserve the
geometry information of a dental model, the Euler angle
transform and bounding box are firstly used to normalize the
3D tooth model (see Figure 3). 'e detailed description of
the standardized processing is concluded as in Algorithm 1.
'en, an image entropy-assisted adaptive visual distance
orthogonal projection method is proposed to calculate the
dental depth map with more detailed features for network
training, and this method can realize the pixel-distance
bidirectional reversible mapping.

'e detailed steps for calculating depth maps are shown
in Algorithm 2. According to the pixel-distance conversion
relationship, the dental depth maps are constructed by
Algorithm 2. 'e calculation formula is as follows:

pixel �
255 h

α
− d

α
( 􏼁

h
α , (1)

where α is an image enhancement factor, and h� 6mm. It is
specified that the dental model beyond this plane will not be
projected, but will be converted into a pixel value of 0 in the
depth map. By adjusting the parameter α, dental depth maps
with different qualities can be generated.
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Figure 2: Overall flowchart of the proposed DentalRecNet. Firstly, the dental depth images are calculated from the 3D tooth models by an
orthogonal projection method.'en, dental restoration network based on an encoding-decoding generator and a global-local discriminator
is employed to reconstruct the missing occlusal surface.
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Figure 3: Standardized processing of tooth model posture.

Input: P0, P1, and P2 are the three feature points on the first molar, the secondmolar, and the second premolar, respectively; N0 is the
normal vector of the point P0.

Output: tooth model posture (x, y, z).
Step 1: construction of local coordinate system: the normal vector N0 of P0 is calculated, and then, the local coordinate system of the

tooth model is constructed by P1, P2, and N0.
Step 2: adjusting the normal vector of the occlusion surface: firstly, the translation matrix T from the origin P0 of the local coordinate

system (P1, P2, N0) to the world coordinate system (X, Y, Z) is calculated, and then, the rotation matrix R between the z-axis of the
system (P1, P2, N0) and system (X, Y, Z) is calculated. Finally, the compound matrix RT is applied to the tooth model to adjust the
position of the occlusion surface.

Step 3: automatic axis setting by bounding box: firstly, the central point o of the bounding box of the tooth model is calculated, and the
local coordinate system (x, y, z) with point o as the origin is constructed. 'en, point o is moved to the origin O of system (X, Y, Z);
finally, the long axis y-axis of the bounding box is parallel to the Y-axis of system (X, Y, Z) by the Euler angle transform, so as to
complete the standardized processing of the dental model posture.

End.

ALGORITHM 1: Standardized processing of the dental model posture.
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Image entropy is a statistical form of image features,
which reflects the amount of information carried by the
image [27]. 'erefore, image entropy is used to assist in
evaluating the quality of dental depth maps with different α
values (see Figure 4). 'e entropy calculation formula is
defined as follows:

H � − 􏽘
m

t�0
Ptlog2Pt, (2)

where m is the range of pixel values (0–255), Pt is the
probability of the pixel t in the image. Based on a large
number of experiments, the detailed information of an
occlusal surface can be retained when α� 2.

2.2. Dental Restoration Network. Generative adversarial
network (GAN) has mademany remarkable achievements in
the field of medical image restoration, and its application can
avoid the problem of manually designing complex abstract
features and inpainting rules [28–32]. Recently, some ef-
fective network architectures [10, 33, 34] have been devel-
oped to enhance the ability of the adversarial learning, e.g.,
dual discriminator GAN [35], which simultaneously adopt
global and local image content consistency in the
discriminative part from different scales. Here, we design a
new DL-based occlusal surface reconstruction method by
constructing a generative model and a dual discriminative
model. As demonstrated in Figure 5, our approach is based
on deep convolutional neural network trained for the dental
restoration task. A single generative model is used for the
missing occlusal surface synthesis, while the two discrimi-
nator networks are trained to determine whether or not the
occlusal surface has been completed.

2.3. Deep Generative Model. Due to the excellent perfor-
mance of the encoder-decoder architecture in a variety of
medical image analysis tasks [36, 37], we adopt a similar
network architecture as a generator, which allows for im-
proved computational efficiency by initially decreasing the
resolution before further processing the image. 'en, the
output is restored to the original resolution image using
deconvolution (Dconv.) layers. Unlike other pooling-based
architectures to decrease image resolution, our network
model uses a convolution operation with fractional strides
(¼) to decrease the resolution twice, which can generate an

occlusal surface with the clear tissue structure in the missing
teeth. As shown in Figure 5(a), the network is formed by
layers in which a bank of filters is convoluted with the input
images to produce an occlusal surface image. After each
convolution (Conv.) layer, except the last one, a batch
normalization (BN) and a rectified linear unit (ReLU) ac-
tivation function are added, while the output layer consists
of a Conv. layer with a sigmoid function to normalize the
output to the [0, 1] range.

To ensure that the network can handle complicated
occlusal surface reconstruction, we add dilated convolu-
tional layers [38] to enhance the learning ability of the
network, which mainly uses kernels that are spread out and
allows each output pixel to be calculated with a much larger
input area. Different from the general connection, the di-
lated convolutional layers concatenate the previous feature
maps to subsequent outputs in the channel, respectively, as
illustrated in Figure 6. Moreover, the dilated convolution
layer obtains fine-grained structural information and ex-
pands receptive fields for efficient feature representation. To
reconstruct clearer tissue structure of the dental occlusal
surface, the different dilation rates are set to obtain receptive
fields with suitable scales. In addition, this connection allows
each feature map to undergo several convolution operations
at different dilation rates, to capture different types of feature
information. 'e feature mapping of each layer is integrated
into the output of the last dilated convolution, so that the

Input: h is the center point of the bounding box to a projection plane.
Output: pixel is the pixel value of the corresponding point on the tooth model.
Step 1: a projection plane is constructed at the vertical distance h of the bounding box with the center of the tooth model as the origin.
Step 2: the projection plane is divided into 256× 256 small grids, and the corresponding relationship with the pixel position (i, j) of the

depth map is established.
Step 3: the shortest distance d from each grid center point P(i, j) on the projection plane to the occlusal surface is calculated by the ray

intersection method.
Step 4: the calculated distance d is converted to the range of 0–255 pixel values.
End.

ALGORITHM 2: Depth map calculation.
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Figure 4: Entropy values of occlusal surface images under different
enhancement factor α values.
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generative model can extract more effective and richer bi-
ological characteristics.

More specifically, if one 2D layer is an ith channel hi × wi

image and the next layer is an i+1th channel h1 + 1 × wi + 1
image, the dilated convolution operator can be written for
each pixel as follows:

y � F b + 􏽘

kh+1

i�−kh+1

􏽘

kw+1

j�−kw+1

Mkh+1+i,kw+1+jxλi,λj
⎛⎝ ⎞⎠, (3)

where kn + 1 � kn − 1/2 and kw + 1 � (kw − 2)/2 are the
kernel width and height, respectively; y and x are the pixel
component of the input and the output of the layer; F(·)
denotes a component-wise nonlinear transfer function; b is a
bias vector; M represents i+ 1-by-i matrices of the kernel;
and λ is the dilation factor.

2.4. Global-Local Discriminative Models. Relative to a re-
markable generative model, a powerful discriminator is
somehow more significant for training a good restoration
network. To encourage more realistic crown details, we
adopt a dual discriminator network as GAN discriminator to
differentiate high-resolution real and synthesized dental
images. During the training, both global discriminator DG
and local discriminator DL share the same generator G but
examine its output in different ways. 'e global discrimi-
nator DG takes preparation teeth and adjacent teeth as the
input, while the local discriminator DL takes only the
preparation teeth as the input. An overview of two dis-
criminators can be seen in Figures 5(b) and 5(c). Given a
preparation tooth with adjacent teeth x1, and the corre-
sponding target crown with adjacent teeth z1, the objective
function of the adversarial learning is formulated as follows:
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Figure 5: Proposed dental restoration network: (a) generator network; (b) global discriminator network; and (c) local discriminator
network. 'e global discriminator takes the entire occlusal surface image as input, while the local discriminator takes only a small region
around the missing tooth as input. Note. n and k refer to number of feature maps and kernel size, respectively.

r: 2, s: 1 r: 4, s: 1 r: 8, s: 1

Concatenation

r: 16, s: 1

Figure 6: Dilated convolution layers are composed of four blocks of Conv.-BN-ReLU. Note. r and s refer to number of dilation rate and
stride, respectively.
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LDG
G, DG( 􏼁 � Ex1 ,c1 ,c2 ,d,z1

log DG x1, c1, c2, d, z1( 􏼁􏼂 􏼃 + Ex1 ,c1 ,c2 ,d log 1 − DG G x1, c1, c2, d( 􏼁( 􏼁( 􏼁􏼂 􏼃, (4)

where c1 denotes the opposing tooth, c2 denotes the dental
biological morphology (occlusal fingerprint and occlusal
groove), and d represents the gap distance between two jaws.
'e generator G makes effort to minimize this objective

function, while global discriminator DG tries to maximize it by
minGmaxDG,DL

LDG
(G, Dk). Similarly, the objective function of

the second discriminator is formulated as follows:

LDL
G, DL( 􏼁 � Ex1′,c1′,c3 ,d,z1′

log DL x1′, c1′, c3, d, z1′( 􏼁􏼂 􏼃 + Ex1′,c1′,c3 ,d log 1 − DL G x1′, c1′, c3, d( 􏼁( 􏼁( 􏼁􏼂 􏼃, (5)

where x′1 denotes a preparation tooth, z′1 is the corre-
sponding target crown, c′1 represents the opposing tooth of
the preparation tooth, and c3 represents occlusal groove of
the target crown.

Effective adversarial training is necessary to ensure the
quality of the occlusal surface reconstruction. 'erefore, the
global discriminator takes the convolutional filter with the
size of 5 × 5 and the stride with the value of 2. 'e fun-
damental idea is that the generated occlusal surface should
not only be realistic, but also consistent with the adjacent
teeth shape. Local discriminator follows the same structure
pattern, which consists of five convolutional layers and a
fully connected layer. It determines whether the recon-
structed occlusal surface on the missing tooth location is real
or not. Finally, the outputs of two discriminators are fused
together by a concatenation layer, which predicts a con-
tinuous value corresponding to the probability of the dental
image being real. Our ultimate goal is to learn the generator
network conditioned on the preparation tooth and the
dental biological morphology. 'en, the different scale
images generated by generator G are encouraged to be re-
alistic enough to fool the two discriminators DG and DL.
'erefore, the adversarial learning problem becomes a
multi-objective learning problem, which is defined as
follows:

min
G

max
DG,DL

􏽘
k�G,L

LGAN G, Dk( 􏼁. (6)

2.5. Loss Function. To train the network to reconstruct the
realistic dental crown, the adversarial loss (Ladv) of GAN in
(6) is improved by adding a perceptual loss (Lper), a L1 loss
(LL1), and a mean-squared error (Lmse). Using the mixture of
the four loss functions allows the stable training of the
occlusal surface reconstruction network. Below, we will
explain the reason why we choose these loss terms.

'e mean-squared error (MSE) is one of the most widely
used fidelity measuring metrics in medical image analysis
research. It evaluates the difference between the generated
dental image G(x) and the corresponding target dental
crown z at the pixel-wise level and objectively quantifies the
strength of the error signal [38]. So, we use MSE loss to
stabilize the training:

Lmse � Ex,z ‖G(x) − z‖
2
F􏽨 􏽩, (7)

where ||·||F represents the Frobenius norm.
In contrast to MSE loss, perceptual loss evaluates two

dental images at the feature level rather than at the pixel
level, which helps to preserve the details of the generated
occlusal surface and make it clearer in terms of the structure.
'erefore, the perceptual loss is added to the training of the
network to further improve the ability to reconstruct the
biomorphic features of missing teeth. 'e perceptual loss
can be expressed as follows:

Lper � Ex,z

1
CHW

􏽘

N

i�1
hi(z) − hi(G(x))

����
����1

⎡⎣ ⎤⎦, (8)

where ||·||1 represents the L1 norm, hi indicates the feature
map obtained by the ith convolution layer, and C, H, andW
stand for the width, height, and depth of the feature space,
respectively.

'e total loss function is a weighted sum of the above
losses, which is formulated as follows:

Ltotal � Ladv + λL1LL1 + λmseLmse + λperLper, (9)

where λL1, λmse, and λper are three constant weighting factors.

3. Experiment Results

3.1.DentalDataset. Since we do not have enoughmanpower
and professional knowledge of stomatology to collect the
damaged and repaired tooth of patients, it is difficult to build
up a sufficient number of dental database for network
training by ourselves. In view of this situation, this project is
cooperated with Peking University Hospital of Stomatology,
which provides us withmanually designed tooth preparation
and extracted dental biological morphology. Many studies
have reported that the caries rate of mandibular first molar is
the highest [3, 10, 12], so we selected patients with defective
#46 or #36 teeth as research object (see Figure 7). 'e 3D
digital dental dataset is collected from subject’s dental plaster
model by 3Shape dental scanner (D700, Denmark), and the
dental samples are randomly divided into three parts: 850 for
training, 90 for validating, and the remaining 60 dental
samples for testing.

3.2. Implementation. 'e proposed dental restoration net-
work is based on TensorFlow framework [39], and all ex-
periments are performed on an Intel (R) Platinum 8168 CPU
@ 2.70GHz machine running Windows 10 with 128GB
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RAM and GeForce GTX 1080Ti GPU. To train the model, we
optimize the network using the Adam solver with the fol-
lowing hyper-parameters: λL1 � 100, λmse � 50, λper � 50,
β1 � 0.5, β2 � 0.999, learning rate� 0.0002, and all ReLUs in
the network with slope 0.2.

3.3. Ablation Study

3.3.1. Loss Function Results. To make all the objective
constraint functions play the expected role and give full play
to the characteristics of the function itself, we adopt a
strategy to gradually increase the training complexity on the
basis of ensuring sufficient gradient update in the early stage
of training. 'e training process is split into three phases:
first, the generator network is trained with occlusion spatial
constraint, dental biological morphology constraint, and the
L1 loss to yield a basic occlusal surface (marked as Stage I).
Afterwards, the generator network is fixed and the two
discriminators are trained from scratch with MSE loss and
perceptual loss (marked as Stage II). Finally, the generator
network and a dual discriminator network are trained jointly
until the end of the whole training (marked as Stage III).
Figure 8 shows two typical restoration samples with three
different settings, one of which is #36 tooth and the other is
#46 tooth. 'e occlusal surface shape generated on the
preparation teeth is very close to the object shape when the
training reaches the third stage.

In addition to visual results (see Figure 8), three
metrics are used to evaluate the performance of occlusal
surface generation task. 'e peak signal-to-noise ratio
(PSNR) has become common method to evaluate the
quality of compressed and inpainted images [40], which
provides pixel-based errors for the processed image to-
wards the target image. 'e second one is the feature
similarity index measure (FSIM) [10], which directly
measures the difference in pixel values at the local position
of two images. 'e third metric is the structural similarity
index measure (SSIM) [41] that evaluates the holistic

structural similarity between two images. Table 1 provides
the average performance of different settings. We can see
that the average PSNR value obtained by Stage III in-
creases by 6.431 dB compared with Stage I. In addition,
FSIM increases from 0.961 to 0.993, showing the capa-
bility of the proposed network to measure the difference in
pixel values at the local position of the generated occlusal
surface image and target image. 'e improvement in
terms of SSIM, which increases from 0.933 to 0.985,
demonstrates the strong capacity of the proposed network
in maintaining occlusal surface structures.

During the training process, the L1 loss (LL1), the
mean-squared error (Lmse), the perceptual loss (Lper), and
the adversarial loss (Ladv) in each iteration are recorded
for monitoring the convergence of DentalRecNet. To
evaluate the performance of each loss used in the pro-
posed DentalRecNet, we adopt a staged training method
during the network training process. Figure 9 plots the
training loss of our network versus the number of iter-
ations, which shows that the network achieves a stable
decrease in the loss value.

3.4. Parameter Selection Results. By adjusting the enhance-
ment factor α, we further evaluate the influence of the
generated dental image quality of the proposedmethod, with
the results shown in Figure 10. It can be seen that the en-
hancement factor 2.0 achieves the best performance than the
other six parameters, which is consistent with the conclusion
as shown in Figure 4. 'erefore, the dental depth map
obtained by these parameters is used to train DentalRecNet
in the experiment.

3.5. Effectiveness of the Dilated Convolutional Layers. We
then conduct a set of experiments to validate the effectiveness
of the dilated convolutional layers used in DentalRecNet. In
these experiments, we use the general convolutional layers
(General Conv.) to replace the dilated convolutional layers

Preparation
tooth

Adjacent
teeth 

#36 #46

Occlusal fingerprint 

Occlusal groove 

Figure 7: Example of a patient dentition with defects (#46) occurring at the first mandibular molar. 'e seagreen biomorphic structures
(occlusal groove and occlusal fingerprint) of the occlusal surface are shown in the red boxes.
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Preparation Ground truth Stage I Stage II Stage III

Figure 8: Occlusal surface generation results. 'e third to fifth columns denote three restored teeth under various training stages. 'e
extracted occlusal fingerprint (in yellow box) and occlusal groove (in red box) are similar to the targets.

Table 1: Average results in terms of three quality metrics. Note: values are denoted as mean± standard deviation.

Metric PSNR ↑ FSIM ↑ SSIM ↑
Stage I 27.833± 0.336 0.961± 0.016 0.933± 0.014
Stage II 28.129± 0.274 0.967± 0.012 0.948± 0.009
Stage III 34.264± 1.228 0.993± 0.008 0.985± 0.005
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Figure 9: Training loss versus training iterations.
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Figure 10: Standard box plots of different enhancement factors, in terms of PSNR, FSIM, and SSIM.
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(Dilated Conv.) to construct the generator for the result
analysis. According to the gray distance mapping relationship,
the 3D model of dental depth image is obtained using an
adaptive mesh reconstruction method based on point cloud
density. Figure 11 shows a typical restoration sample with two
different settings. It is observed that Dilated Conv.-based
generator achieves the better results compared with General
Conv.-based generator. In particular, the occlusal fingerprint
distribution generated by theDentalRecNet is relatively close to
the ground truth sample.

To evaluate the quality of the occlusal surface, the deviation
between the generated result and the target crown is calculated
under the constraint of the adjacent teeth. As shown in Fig-
ure 11, we can see that the standard deviation (SD) value and
root-mean-square (RMS) value obtained by the proposed
generator decrease by 0.078mm and 0.081mm compared with
the General Conv.-based generator, respectively.

3.6. Comparison Results with State-of-the-Art Methods

3.6.1. Qualitative Results. In this section, we compare the
proposed method with five representative GAN-based
methods, including Pix2pix [25], CrownDesNet [24],
Dental-GAN [27], DAIS [10], and GL-GAN [34]. Pix2pix is a
conditional GANmodel, which is used to learn a translation
function from input to output image domain with paired
training samples. CrownDesNet is a dental crown design
network, which is used to learn the mapping between the
prepared jaw and the dentist-designed jaw with paired
training samples. Dental-GAN is a dental crown restoration
network based on Pix2pix, which generates more realistic
occlusal surface images by adding the perceptual loss and
occlusal groove filter loss functions. DAIS is dental inlay
restoration network, which is composed of a generative
model with a specially designed training strategy, a dual
local-global discriminative model, and a parsing model. GL-
GAN consists of a completion network based on a fully
convolutional network and a global-local context
discriminator.

According to the pixel-distance bidirectional reversible
mapping relationship, the 3D dental occlusal surface is
reconstructed from a generated image using the mesh re-
construction method based on region growth. We visually
compare the reconstructed results with three typical ex-
amples presented in Figure 12 and provide the occlusal
fingerprint (seagreen color) extracted by a dentist. It can be
seen that the occlusal surfaces generated by Pix2pix and
CrownDesNet have fewer occlusal fingerprints or a
smoother occlusal groove. Dental-GAN and GL-GAN show
better performance compared with CrownDesNet. 'e
distributions of the occlusal fingerprints generated by DAIS
are more reasonable than for the other methods. 'e
reconstructed results of DentalRecNet are relatively close to
a natural tooth crown, especially for the occlusal fingerprint
distribution and the occlusal groove characteristic.

In addition, an experimental case (see Figure 13) has
been added to further verify the effectiveness of the proposed
method. In theory, the left teeth (#36) and right teeth (#46)

of a person are symmetrical. As can be seen, the dental
crown model designed by our method is more personalized
than the crown designed by dentist. 'e dental prosthesis
generated by the proposed DentalRecNet model is mor-
phologically similar to the contralateral tooth, which further
shows that our method has superior clinical applicability.

3.6.2. Quantitative Results. Quantitative comparisons in
terms of PSNR, FSIM, and SSIM are summarized in Table 2.
It can be seen that Pix2pix, CrownDesNet, and GL-GAN
have lower values for PSNR, FSIM, and SSIM, indicating that
it cannot accurately reconstruct more biological charac-
teristics of the occlusal surface. Compared with the crown
design network (CrownDesNet), Dental-GAN and DAIS
can obtain better results. At the same time, DentalRecNet
significantly outperforms the other five methods, which is
consistent with the visual results as shown in Figure 12.
'erefore, the practical utility of DentalRecNet for auto-
mated occlusal surface reconstructing on the missing tooth
is further demonstrated.

In addition, we further evaluate the effectiveness of the
proposed method with the other existing methods intui-
tively.'e RMS value between the generated occlusal surface
and the natural tooth crown is measured, and a series of
statistical analyses are performed on the similarity mea-
surement results (see Figure 14). It can be seen that the
results obtained by our method are significantly better than
other methods. In particular, the detection error by Den-
talRecNet is 0.114mm, while the detection error by the
optimal DAIS in other methods is 0.164mm. Furthermore, a
one-way ANOVA test is conducted to evaluate the similarity
of the deviation measurements between the generated and
object tooth crowns. For these six methods, we find a
statistically significant difference in deviation measurements
(p≪1e− 3). Similarly, we find a statistically significant
difference between DentalRecNet and the other fivemethods
(p≪1e− 3) using the Kruskal–Wallis test.

4. Discussion

Reconstructing the correct spatial occlusal contact rela-
tionship of the defective tooth is the basis for evaluating the
successful restoration and for maintaining oral health.
Considering that each tooth has the same characteristic
shape as its standard tooth of the same name, bionic ge-
ometry morphology design-basedmethods tend to adopt the
standard dental to design crown [12, 42]. In the process of
crown design, occlusal fingerprint is necessary to fully reflect
the functional characteristics of the occlusal surface since it
provides reference for the position and direction of the
correct occlusal contacts [43]. If the occlusal fingerprint
distribution is not considered during the design process,
there will be a large amount of unreasonable interference
areas on the designed crown. 'is becomes particularly
important since occlusal fingerprint helps in dissipating
tensile stresses over the dental crown [44]. 'e unique
occlusal groove characteristics of the dental crown deter-
mine the direction of food flow and masticatory efficiency
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during the chewing process, which is also used as a criterion
to evaluate the success of the dental restoration. 'us, oral
restorations that do not consider occlusal fingerprint and
occlusal groove may favor the occurrence of enamel crack
and other disruptive processes.

To verify the effectiveness of the proposed DentalRecNet,
we compare it with two representative GAN models [25, 34]
and three GAN-based dental restoration methods
[10, 24, 27]. 'e visual example results are shown in Fig-
ure 12. Compared with Pix2pix and GL-GAN, DentalRecNet
can obtain more realistic occlusal surface morphology, and
the dental biological characteristics (occlusal fingerprint,

occlusal groove) are closer to natural teeth. In addition, our
method is also superior to the existing state-of-the-art dental
restoration methods, and it can generate more and suitable
functional feature areas on the occlusal surface.

Having introduced an approach to represent occlusal
surface morphology using depth map, we solve the problem
that it is difficult to reconstruct the occlusal surface, which
satisfies the normal masticatory function and natural shape
based on the template tooth. Despite appearing simple at
first glance, bionic geometry morphology design-based
method requires large numbers of sample teeth and manual
interactions; one would need to define what is the most
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Figure 11: Ablation studies of the different convolutional layers. 'e first column provides a sample with the goldenrod color representing
the defective region to be repaired. 'e second column provides the corresponding ground truth sample. 'e third to fourth columns
provide a comparison between two convolutions and the deviation analysis of the occlusal surface.

Pix2pix CrownDesNet Dental–GAN DAIS GL–GAN DentalRecNet Ground truth

Figure 12: Qualitative comparisons of three occlusal surface samples.
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suitable occlusal surface and how many feature points are
selected, when the occlusal surface design is completed, and
how to quantify the occlusal functional characteristics area.
To find such evaluation criteria and determine the relevant
parameters, one in principle needs to analyze the designed
crown models (thousands or even more) of 32 tooth types.
'ese design rules would presumably be different across
types and consequently lead to different types of teeth are
used with different design standards and parameters.
However, it has been proved that all these challenges can be
solved through deep learning network. 'ese multilevel

network architectures are trained by large-scale data to
obtain numerous more representative feature information.
Hence, instead of manual deformation for each specific
tooth, we collect large numbers of cases that specify the
constraint condition (opposing jaw, gap distances, occlusal
groove, and occlusal fingerprint) for a given input (prepa-
ration tooth) and then minimize loss function, which
quantifies the statistical differences between the features of
the object image and the generated image. 'rough this
minimization, the weights of the network are optimized to
improve its generation ability. In particular, deep network

#36

#46

Preparation tooth

(a) (b)

Figure 13: One real-world dental crown prosthesis: (a) the occlusal fingerprint distribution of the dental crown (#36) designed by our
method and the contralateral tooth (#46) and (b) the dental crown designed by dentist.

Table 2: Average results in terms of three quality metrics.

Metric PSNR ↑ FSIM ↑ SSIM ↑
Pix2pix [25] 28.352± 1.891 0.961± 0.014 0.953± 0.011
CrownDesNet [24] 28.917± 2.248 0.975± 0.009 0.966± 0.012
Dental-GAN [27] 30.133± 2.099 0.976± 0.017 0.968± 0.014
DAIS [10] 31.454± 1.708 0.982± 0.013 0.974± 0.010
GL-GAN [34] 29.705± 2.419 0.973± 0.011 0.968± 0.016
DentalRecNet 34.264± 1.228 0.993± 0.008 0.985± 0.005
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Figure 14: Boxplots for deviation measurements.
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has the ability to automatically learn high-level and more
discriminative features from the sample dataset, and GAN
has achieved outstanding results in synthesizing realistic
images by learning complex generative model [23, 45, 46].

5. Conclusions

In this article, a novel dental occlusal surface reconstruction
model for masticatory function restoration from partially
edentulous patient is proposed, which includes a dilated
convolutional-based generative model and a dual discrim-
inative model. In particular, the dilated convolution struc-
ture is exploited in the generative model to obtain
discriminative feature representations and preserve more
fine-grained biological feature information for accurate
reconstruction. 'e dual global-local discriminative model
attempts to enhance the discrimination ability for a better
decision, which optimizes the generative model more ef-
fectively with two separate yet complementary discrimina-
tors. Experimental results demonstrate that, under the same
conditions, the proposed approach outperforms recent
advances on the real-world dental database. In particular, the
detection error by our method is 0.114mm, while the op-
timal detection error of other methods is 0.164mm.
Meanwhile, it also verified that the proposed DentalRecNet
has potential application value as an intelligent and per-
sonalized dental restoration method. Importantly, the
proposed method realizes the transformation of prosthesis
from geometric shape design to functional characteristic
design.

Although DentalRecNet has achieved the most advanced
performance in solving the challenging problem of per-
sonalized dental occlusal surface reconstruction, several
technical issues should be still considered in the future. (1) In
current DentalRecNet, the dental depth images are used for
network training, which requires an additional post-pro-
cessing process to design a 3D dental crown. 'erefore, an
end-to-end solution for dental crown reconstruction can be
explored to further simplify the restoration process; (2) the
current training dataset contains only mandibular first
molar (#36 or #46) with the highest tooth defect rate.
Considering the randomness of defective teeth, it is nec-
essary to establish a larger dataset containing more tooth
types, which can further improve the clinical performance of
DentalRecNet.
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L. Blažić, “Influence of the restorative procedure factors on
stress values in premolar with MOD cavity: a finite element
study,” Medical, & Biological Engineering & Computing,
vol. 56, no. 10, pp. 1875–1886, 2018.

[9] T. Yuan, Y. Wang, Z. Hou, and J. Wang, “Tooth segmentation
and gingival tissue deformation framework for 3D ortho-
dontic treatment planning and evaluating,” Medical, & Bio-
logical Engineering & Computing, vol. 58, no. 6, pp. 2271–2290,
2020.

[10] S. Tian, M. Wang, F. Yuan et al., “Efficient computer-aided
design of dental inlay restoration: a deep adversarial frame-
work,” IEEE Transactions on Medical Imaging, vol. 40, no. 9,
pp. 2415–2427, 2021.

[11] R. Fan and X. Jin, “Tooth shape restoration with template
feature line matching,” Journal of Computer Aided Design and
Computer Graphics, vol. 26, no. 2, pp. 280–286, 2014.

[12] C. Zhang, T. Liu, W. Liao, T. Yang, and L. Jiang, “Computer-
aided design of dental inlay restoration based on dual-factor
constrained deformation,” Advances in Engineering Software,
vol. 114, pp. 71–84, 2017.

[13] X. Li, X. Wang, and M. Chen, “Accurate extraction of out-
ermost biological characteristic curves in tooth preparations
with fuzzy regions,” Computers in Biology and Medicine,
vol. 103, pp. 208–219, 2018.

[14] L. Liu, J. Xu, Y. Huan, Z. Zou, S.-C. Yeh, and L.-R. Zheng, “A
smart dental health-iot platform based on intelligent hard-
ware, deep learning, and mobile terminal,” IEEE Journal of

Journal of Healthcare Engineering 13



Biomedical and Health Informatics, vol. 24, no. 3, pp. 898–906,
2020.

[15] C.-H. Wu, W.-H. Tsai, Y.-H. Chen, J.-K. Liu, and Y.-N. Sun,
“Model-based orthodontic assessments for dental panoramic
radiographs,” IEEE Journal of Biomedical and Health Infor-
matics, vol. 22, no. 2, pp. 545–551, 2018.

[16] Y. Lai, F. Fan, Q. Wu et al., “LCANet: learnable connected
attention network for human identification using dental
images,” IEEE Transactions on Medical Imaging, vol. 40, no. 3,
pp. 905–915, 2021.

[17] B. Cheng and W. Wang, “Dental hard tissue morphological
segmentation with sparse representation-based classifier,”
Medical, & Biological Engineering & Computing, vol. 57, no. 1,
pp. 1629–1643, 2019.

[18] D. Xiao, C. Lian, H. Deng et al., “Estimating reference
bony shape models for orthognathic surgical planning
using 3D point-cloud deep learning,” IEEE Journal of
Biomedical and Health Informatics, vol. 25, no. 8,
pp. 2958–2966, 2021.

[19] J. Hatvani, A. Basarab, J.-Y. Tourneret, M. Kouame, and
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