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Abstract

To eliminate malaria, scalable tools that are rapid, affordable, and can detect patients with low parasitemia are required. Non-invasive
diagnostic tools that are rapid, reagent-free, and affordable would also provide a justifiable platform for testing malaria in asymp-
tomatic patients. However, non-invasive surveillance techniques for malaria remain a diagnostic gap. Here, we show near-infrared
Plasmodium absorption peaks acquired non-invasively through the skin using a miniaturized hand-held near-infrared spectrometer.
Using spectra from the ear, these absorption peaks and machine learning techniques enabled non-invasive detection of malaria-
infected human subjects with varying parasitemia levels in less than 10 s.

Significance Statement

We provide a report of the application of the near-infrared spectroscopy (NIRS) technique and machine learning algorithms for
non-invasive and reagent-free detection Plasmodium vivax and Plasmodium falciparum infected patients with varying parasitemia
levels. The technique involves a 5 to 10 s interaction of harmless infrared light with the skin of human subjects and subsequent
collection of a diagnostic spectral signature. NIRS is portable, results can be achieved in real time and it has the capacity to screen
thousands of people in a day without consuming any reagents. It is an ideal surveillance tool for screening a large population of
people to identify infected populations with minimal cost and time and can easily be scaled up to guide current malaria elimination
strategies.

Introduction
In 2021, the World Health Organization (WHO) estimated that 241
million malaria-related cases and 627,000 malaria-related deaths
occurred in 2020 [1]. The Plasmodium parasites that cause the dis-
ease are transmitted to people by bites of infected female Anophe-
les mosquitoes. Among them, the two major Plasmodium parasite
species are Plasmodium falciparum and P. vivax. In 2020, P. falciparum
accounted for 98% of estimated malaria cases globally and 99.7%
of the cases were reported in the WHO African region. In the WHO
region of Americas, P. vivax is the predominant parasite repre-
senting 68% of malaria cases in the region [1]. In 2015, WHO set a
strategy to guide countries toward malaria elimination by reduc-
ing global malaria incidences and mortality by at least 90% and
eliminating malaria in at least 35 countries by the year 2030 [2].
One of the pillars on which this strategy is based on is to ensure

universal access to malaria prevention, diagnosis, and treatment.
To achieve this target, WHO recommends universal testing of all
suspected cases of malaria. This is particularly crucial in endemic
areas where a majority of the malaria-infected population can be
asymptomatic [3] as well as in low malaria transmission settings
where the proportion of asymptomatic population among the in-
fected individuals can be as high as 60% [4]. Universal testing is
expected to prompt and facilitate the treatment of asymptomatic
population to limit further community transmission.

Optical microscopy, rapid diagnostic tests (RDTs), and molecu-
lar tests are the three main diagnostic techniques currently avail-
able for malaria diagnosis. Microscopy is the traditional way of de-
tecting malaria parasites in stained thick or thin peripheral blood
films using Giemsa, Wright’s, or Field’s stains. Thick blood films
are used to detect the presence of malaria parasite, whereas thin
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Figure 1. An illustration of non-invasive scanning of the finger and the arm with the NIRvascan spectrometer (A) and reflective spectrum produced
from the scanning (B).

blood films are often used to confirm the Plasmodium species [5]. It
is the most widely used technique for malaria diagnosis due to its
low cost, simplicity, and its capacity to detect parasites, differenti-
ate Plasmodium species, and estimate the parasite concentration.
However, microscopy is technically demanding, time-consuming,
and requires specialized expertise to accurately identify parasites
and differentiate species in samples with low parasitemia or sam-
ples with mixed infections [6–8]. As the average microscopist de-
tection limits are estimated to be 50 to 100 parasites/μL, the likeli-
hood of underestimating infection rates particularly in low trans-
mission settings or among asymptomatic population where para-
sitemia is low has been reported [9]. Microscopy is also often un-
available in rural settings where power supply can be problematic
[10].

RDTs detect malaria antigens in blood by targeting Plasmodium-
specific proteins such as histidine-rich protein II (HRP-II) or lactate
dehydrogenase (LDH) [11, 12]. RDTs are simple, relatively cheap,
and can be used in remote areas without specialized equipment
or need for electricity. However, RDTs can only reliably detect 50
to 100 parasites/μL [11, 12], they have to be coupled with other
techniques in areas where more than one malaria parasite species
is present due to their inability to differentiate Plasmodium species
[9, 13], and they can generate false positives due to the persistence
of HRP-II following an infection [14].

Molecular tests such as polymerase chain reaction (PCR) are
currently the most accurate and the most sensitive techniques
for detecting malaria in low- or sub-microscopic samples, for
mixed infections, and for differentiating Plasmodium species [15–
17]. However, molecular techniques are costly, time-consuming,
and require skilled expertise [18]. In addition, none of these tra-
ditional techniques are equipped for large-scale surveillance of
malaria cases in endemic countries.

Here, we explored the potential of a miniaturized near-infrared
spectrometer that could easily be scaled up for universal surveil-
lance of malaria cases to guide the proposed WHO malaria elimi-
nation strategy. The near-infrared spectroscopy (NIRS) is a simple
to use, non-invasive, reagent-free technique that uses the near-
infrared part of the electromagnetic spectrum to characterize bi-
ological samples. It involves shining a beam of light on a sample
for approximately 5 s and subsequent collection of a spectral sig-
nature. The spectral signature is a reflection of the chemical com-
position of a sample and can be analyzed using machine learn-
ing algorithms to identify diagnostic features. We hypothesized
that the presence of malaria parasites in red blood cells can pro-
duce unique infrared signatures that could potentially be used for
diagnosis of malaria. We used a handheld spectrometer to non-
invasively collect spectral signatures from the right and left ears,

arms, and fingers of malaria-positive and -negative individuals liv-
ing in a malaria-endemic area in Brazil where both P. falciparum
and P. vivax are prevalent at a 30%/70% ratio.

Materials and Methods
Study area, population, and malaria prevalence
The study was conducted in the municipality of São Gabriel da
Cachoeira (SGC), located in the Upper Rio Negro region, State of
Amazonas, northern Brazil (0◦07′51′ ′S; 67◦05′15′ ′W). SCG is sur-
rounded by the Amazon and is the municipality with the high-
est percentage of self-declared indigenous people (over 75%) in
Brazil, with an estimated 30,000 people living in the area, and
over 20 ethnic groups [19]. The Amazon region represents 99.8%
of all malaria cases in Brazil and cases of both P. vivax and P. falci-
parum have been recorded. In 2019, a total of 8,605 cases were re-
ported in SCG, and from January 2019 to June 2020, an estimated
34% of malaria cases were caused by P. falciparum and mixed
infections [20].

Ethics approval
The study was approved by the human ethics committee of In-
stituto Oswaldo Cruz (Ethics Protocol No. 94,070,418.7.0000.5248).
Patients with malaria symptoms who were seeking diagnosis and
treatment at the basic health units were approached to volunteer
for this study. Prior to recruitment, a written informed consent
was obtained from patients after the nature and possible conse-
quences of the studies were explained. The written consent form
was previously approved by human ethics committee at Fiocruz.
Further work to determine presence of malaria parasites in volun-
teer’s blood was approved by the National Genetic Heritage Man-
agement System (A88B262).

NIRS instrument used
NIRvascan near-infrared spectrometer reflective model G1 (Allied
Scientific Pro, Canada) was used in this study (Fig. 1). The model
used is a diffuse reflectance spectrometer with wavelength rang-
ing from 900 to 1700 nm, a 5000:1 signal-to-noise ratio, and an
optical resolution of 10 nm pixel resolution. It has an inGaAs de-
tector (Hamamatsu model G12180-010A), a dark current of 0.8nA
@VR = 1 V, noise equivalent power of 1.4 × 1014 @λp, and a light
source with two integrated tungsten halogen lamps of 1 W, built-
in at 45◦ from the surface. It weighs 136 g and measures 82.2 × 63
× 40 mm. The spectrometer is rechargeable and can be operated
by either a computer or a smartphone via Bluetooth.
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Scanning
Participants presenting with malaria symptoms were scanned
with the NIRvascan spectrometer, which was connected to a note-
book using Bluetooth. The participants left and right arm, ear, and
finger were one after the other placed directly onto the spectrom-
eter’s scan window and spectra was collected by pressing the scan
button. Two spectra were collected from each body part scanned.
A total of 60 patients were scanned and a total of 360 spectra
were collected. In addition, 1 mL of whole blood was collected
intravenously from each patient into EDTA tubes and stored for
microscopy and PCR. Patient metadata, including gender, age,
weight, skin color, and height were also recorded. An example of a
raw spectrum collected by the NIRvascan spectrometer is shown
in Fig. 1.

Gold standard microscopy and PCR confirmation
of malaria-positive and malaria-negative cases
To validate NIR technique’s capacity to differentiate infected from
uninfected subjects, differentiate Plasmodium species and deter-
mine parasitemia level of subjects, the WHO gold standard tech-
nique of blood films, and microscopy was used.

Blood films were read by at least two microscopists. Readings
were averaged, and quality assurance was provided by a WHO
Level 1 certified malaria microscopist. Microscopy results were
grouped into four levels of parasitemia groups; high parasitemia
(>100,000 parasites/μL); moderate parasitemia (10,000 to 100,000
parasites/μL); low parasitemia (500 to 10,000 parasite/μL); and
very low parasitemia (300 to 500 parasites/μL).

The infection status and Plasmodium species type were further
confirmed by standard PCR. Genomic DNA from whole blood sam-
ples were extracted using the QIAamp DNA Blood Mini Kit accord-
ing to the manufacturer’s instructions (Qiagen, Hilden, Germany)
and stored at −20◦C until amplification. Detection and identifi-
cation of Plasmodium species was performed using Nested PCR
with specific primers for genus (Plasmodium sp.) and species (P.
falciparum and P. vivax) as described by Snounou et al. [21, 22].
In the first amplification reaction, 3 μL of purified genomic DNA
were used in a 25 μL reaction with genus specific primers. Dur-
ing the second PCR reaction, 3 μL of PCR amplification product of
the first reaction was used as a template in a 25 μL reaction with
species specific primers. The amplified PCR products were size-
fractionated by electrophoresis in 2% agarose gel (Sigma Aldrich,
Missouri, MO, USA), 1 × TAE buffer (0.04 M TRIS-acetate, 1 mM
EDTA) in the presence of 1 × GelRed nucleic acid stain (Biotium,
Fremont, CA, USA). PCR products were visualized by ultraviolet
(UV) illumination. The species of Plasmodium were determined by
species-specific amplicon sizes.

Data analysis
Savitzky-golay least-square filtering
To determine unique absorption peaks for malaria parasites, all
spectra from malaria-infected subjects were averaged based on
the body part scanned regardless of the Plasmodium species they
were infected with and compared against averaged spectra of un-
infected subjects. To identify absorption peaks for P. falciparum and
P. vivax, raw spectra of each species were averaged separately.

To smoothen the signal and provide a better visualisation of
the important peaks, Savitzky–Golay (SG) smoothing filters were
used. When coefficients of SG filter are performed on NIR signal
using weighted moving average, a polynomial P of the degree k is

fitted to a window size using the formular;

N =Nr+Nl+1,

where, N is the window size, Nr and Nl are signal points on the
right and left of the current signal, respectively [23]. Least-squares
smoothing digital filters with 15 smoothing points were applied to
all averaged raw spectra to allow visualization of important peaks.

Machine learning
Raw spectral signatures were organized in MS Excel spreadsheet
before they were imported for analysis using JMP version 16.2
software (SAS institute, North Carolina, NC, USA). Data in excel
spreadsheet were classified according to patient ID, infection sta-
tus, parasitemia level, and Plasmodium species type.

In JMP, supervised machine learning was used to analyze the
data. Data from infected patients were pooled regardless of the
Plasmodium parasite they were infected with, their parasitemia
level and the body part scanned. This allowed us to assess the ca-
pacity of NIRS to differentiate malaria infected from uninfected
subjects regardless of their parasitemia level. As there was not
enough P. falciparum infected samples to train a model for pre-
dicting Plasmodium species, we did not attempt to differentiate
patients infected with P. vivax from those infected with P. falci-
parum. Spectra was first divided into a training set consisting 60%
of all the data containing 216 spectral signatures from 16 malaria-
positive and 20 malaria-negative subjects and the resultant model
was used to predict an independent set of 11 malaria-positive
and 13 malaria-negative subjects. We applied the model screen-
ing feature to simultaneously fit several machine learning algo-
rithms, including Support Vector Machines, Decision Tree, K Near-
est Neighbors, Bootstrap Forest, Boosted Tree, Discriminant, Logis-
tic Regression, Artificial Neural Network (ANN), and Fit Stepwise
on the data to allow us to compare and select the best predictive
model for infection prediction using unique spectral peaks identi-
fied. Malaria infection status was used as the response factor and
the identified unique spectral signatures for malaria, skin color,
age, height, weight, body part scanned, and gender were used as
predictors. The best predictive model selected for differentiating
infected from uninfected samples was ANN. The ANN networks
were fully connected, consisting of an input layer with the prior
identified unique peaks, and an output layer. Activation between
nodes was performed using the TanH function. The output layer
was trained as a binary outcome (e.g., infected vs. uninfected). The
resultant model was applied to predict individuals that were left
out of the model.

Results
Results from PCR confirmed 45% (N = 27) of the 60 people scanned
were positive with malaria, while the rest were malaria negative.
Of the malaria-positive individuals, 75% (N = 20) and 25% (N = 7),
were infected with P. vivax and P. falciparum, respectively. Results
from microscopy indicated that out of the 27 infected patients,
7.4% (2 subjects) had extremely high parasitemia, 18.5% (5 sub-
jects) had moderate parasitemia, 44.4% (12 subjects) had low par-
asitemia, and 29.6% (8 subjects) had very low parasitemia. Malaria
positive and negative groups consisted of 60% and 66% women,
respectively. Of those subjects that were malaria positive, their
age ranged between 19 and 73 y old with 66% of them ≤40 y old
whereas the age of the malaria-negative subjects ranged from 20
to 75 y old with 55% of them ≤40 y old. Out of the total, 70% of
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Figure 2. Raw average spectra of (A) malaria-positive and malaria-negative subjects irrespective of the Plasmodium species they were infected with and
(B) P. falciparum and P. vivax infected patients.

Figure 3. Second derivative spectra showing absorption peaks for malaria positive (red line) and negative (blue line) individuals collected from the ear
(A), finger (B), arm (C), and purified P. falciparum (D). Spectra presented for A to C is an average of 27 infected subjects and 33 negative subjects.

malaria-negative subjects and 80% of malaria-positive subjects
weighed under 70 kg.

Raw absorbance spectra
Absorption differences were seen from the raw spectra collected
from malaria-positive and malaria-negative patients. Malaria-
positive patients were generally seen to have higher absorbance
values than malaria-negative patients. Similarly, patients with P.
falciparum generated spectra with higher absorbance values rela-
tive to those that were infected with P. vivax (Fig. 2).

Absorption peaks for malaria-infected patients
Using the second derivative spectra of the ear, finger, and arm,
absorption differences between malaria-positive and malaria-

negative subjects were observed (Fig. 3). Spectra from the ear pro-
duced the most distinct bands whereas less distinct bands were
seen from spectra collected from the arm. Distinct absorption
peaks for malaria-positive patients were observed within the 1st

to 3rd overtone regions and these bands were present in at least
two body parts scanned. They include absorption peaks around
937, 1120, 1160, 1200, 1300, 1370, 1407, 1516, 1538, 1560, 1607,
and 1660 nm (Fig. 3). Among them, those that were reduced in
malaria-infected patients include peaks around 977, 1160, 1205,
1407, and 1516 nm whereas absorption peaks that increased in
malaria-infected patients include those around 1120, 1300, 1538,
1560, and 1607 nm. Peaks in the second overtone region are domi-
nated by overtones of O–H, N–H, and C=H combinations whereas
the absorption peaks around 1400 to 1660 nm in the first overtone
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Table 1. Unique malaria parasite peaks identified in this study,
their bond vibration characteristics, and the structure as de-
scribed in literature [24, 25].

Peak identified∗ Bond vibration Structure

930,937 C–H third overtone CH3

1121,1127 C–H second overtone Lipids
1154,1160,1170 C–H stretch second

overtone
CH3 groups

1192,1205 C–H stretch second
overtone

CH3, Hemoglobin

1302,1309 C–H overtones and
combinations

Fats/oils

1356,1368,
1370,1377

C–H stretch first overtone CH3 groups

1407,1413,
1421,1431

O–H first overtone ROH Oil

1516,1519 N–H stretch first overtone Protein
1530,1538 O–H stretch first overtone

N–H
Starch

1560,1569 N=H stretch first overtone CONH
1607 N=H stretch first overtone
1636,1640, 1642 N=H stretch first overtone Malaria

hemozoin protein
1658,1660 C–H first overtone Polyunsaturated

fatty acid

Other peaks that were analogous to those described in the table but have not
been described in literature are shown in Figs. 3 and 4.

region are dominated by C=H and O–H compounds related to par-
asite proteins (Table 1).

Absorption peaks for P. falciparum and P. vivax
Similarly, spectra from the ear produced the most distinct peaks
for P. falciparum and P. vivax. The second derivative spectra of P. fal-
ciparum and P. vivax infected patients from the ear indicates that
across the entire spectrum, distinct peaks for patients with P. fal-
ciparum parasites and P. vivax were around 960,1170, 1413,1474,
1569, 1538, and 1642 nm. When the ear was scanned, peaks at
960,1170, 1413, and 1538 nm were observed and these peaks were
reduced in P. vivax infected subjects. Contrary, when the finger was
scanned, peaks at 960 and 1474 nm increased in absorbance in P.
vivax infected patients. The absorption peaks observed for the two
species were also responsible for differentiating infected from un-
infected subjects (see Fig. 3). Table 1 shows an average of all peaks
identified that could be related to the presence of Plasmodium par-
asites.

Change of absorption peaks with parasitemia
The absorbance peaks of infected subjects were compared against
parasitemia levels as well as against peaks from malaria-negative
subjects. The absorbance at 960 nm was lowest and highest for pa-
tients with very high parasitemia and malaria-negative patients,
respectively. The absorption peaks at 1110 and 1290 nm were high-
est for patients with very low parasitemia but lowest for subjects
that were malaria negative whereas the peak at 1180 nm was low-
est for subjects with very low parasitemia but highest for malaria-
negative patients. Generally, absorption peaks were stable across
patients with low and high parasitemia (Fig. 5).

Sensitivity, specificity, and accuracy of NIRS
We tested on a preliminary scale whether the identified absorp-
tion peaks could predict infected and uninfected subjects using

ANN machine learning models. Spectra collected from the ear
produced the most accurate prediction of infection in the inde-
pendent subjects with an accuracy of 92% (N = 24), sensitivity of
100% (N = 11) and specificity of 85% (N = 13). Moreover, sensitiv-
ity was 100% across all parasitemia levels. Sensitivity and speci-
ficity were similar between replicate body parts scanned indicat-
ing the spectra was collected with minimal errors between the
left and right body parts. Comparatively, the accuracy, sensitivity,
and specificity of the spectra collected from the finger was 70%
(N = 24), 72 (N = 11), and 69% (N = 13), respectively, whereas spec-
tra of the arm resulted into a predictive accuracy of 72% (N = 24),
sensitivity of 59% (N = 11), and specificity of 85% (N = 13). Fig-
ure 6 shows a summary of the differentiation of infected and un-
infected patients based on the spectra of the ear alone.

Discussion
We assessed whether a rapid, non-invasive, and reagent-free tech-
nique that uses the near-infrared region of the electromagnetic
spectrum could produce unique malaria spectral signatures and
if those signatures could be applied to predict malaria infection
status in human subjects. The spectral signatures collected from
27 malaria-positive individuals, regardless of (1) their parasitemia
level and (2) whether they were positive with P. falciparum or P. vi-
vax, were seen to be different from signatures of the 33 malaria-
negative individuals. The spectra from the ear produced the most
distinct bands for the two groups. Similarly, remarkable albeit few
differences were observed for spectral signatures of subjects that
were infected with P. falciparum and P. vivax indicating their chem-
ical profile could be different. When these unique signatures were
applied to differentiate infected from uninfected subjects, sensi-
tivity of 100% and accuracy of 92% were achieved using spectra
collected from the ears.

We hypothesized that the invasion of Plasmodium parasites into
the human host’s red blood cells results in significant structural,
biochemical, and functional changes that generate unique in-
frared absorption peaks for malaria-positive and -negative indi-
viduals. This include the loss of the discoid shape of the red blood
cells, reduced hemoglobin concentration, increased adhesiveness
and permeability to Plasmodium species infection [26]. In addi-
tion, over 400 Plasmodium parasite-related proteins, including the
commonly used biomarker for malaria infection, i.e., the hemo-
zoin protein, hydroxy fatty acids, and lipids, are released into red
cells [27–29]. These molecules can absorb light at specific wave-
lengths to generate unique absorption bands that could be used as
biomarkers for malaria infection (Fig. 3). We also tested whether
P. vivax and P. falciparum cause remarkable differences to host
red cells resulting into a unique NIR spectrum. For example, it
has been reported that an infection with P. vivax results in en-
larged, pale, fine stippling parasitized red cells known as Schuf-
fener’s dots [30], whereas infection with P. falciparum results in
fine stippling non-enlarged parasitized cells known as Maurer’s
clefts [ 31]. There are also remarkable genomic and structural dif-
ferences between schizonts, trophozoites, and gametocytes of the
two species that are expected to generate unique infrared spectral
signatures [32].

The infrared absorption peaks for malaria identified in this
study through non-invasive scanning were consistent with peaks
observed when pure P. falciparum parasites were scanned (Fig. 3D).
The peaks in our study were also consistent with peaks reported
by two previous studies that used NIRS to detect P. falciparum and
hemoglobin in red blood cells in vitro [33, 34]. To our knowledge,
this is the first study to report unique NIR absorption peaks for



6 | PNAS Nexus, 2022, Vol. 1, No. 5

Figure 4. Second derivative spectra showing absorption peaks for P. falciparum (red line) and P. vivax (blue line) for the spectra collected from the ear
(A), finger (B), and arm (C). Spectra shown is an average of 7 P. falciparum and 20 P. vivax infected subjects.

malaria parasites acquired non-invasively through the skin of hu-
man subjects with diagnostic features. Our previous NIR studies
have indicated that the technique can also non-invasively detect
other infections in mosquitoes such as malaria [35], Zika [36], Wol-
bachia [37], and chikungunya [38]. NIRS has also been used to de-
tect cancer tumors in patients [39–41].

When Plasmodium parasites consume hemoglobin in red blood
cells, they produce a toxic compound known as heme. Heme is
detoxified by the parasite into hemozoin pigment through me-
tabolization of hemoglobin. Hemozoin is therefore considered a
powerful and reliable biomarker for malaria infection. Using sec-
ond derivative average spectra of malaria-positive and malaria-
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Figure 5. Absorption peaks of malaria-positive subjects with varying parasitemia relative to malaria-negative subjects using average spectra collected
from the ear for a peak at 960 nm (A) and peaks at 1110,1180, and 1290 nm (B).

Figure 6. Results of the ANN model used to differentiate infected and uninfected subjects who were used to validate the model. Each circle represents
one subject and results shown are for scans of the left ear (ear1) and the right ear (ear2) of each patient.

negative patients, we observed several bands that have previ-
ously been reported as hemozoin absorption bands. Figure 3
shows absorption bands around 1505 to 1560 nm, 1636 to 1642 nm,
and 1515 nm previously observed from synthetic hemozoin (β-
hematin) and dry hemozoin isolated from infected red blood cells
[33]. Absorption bands around 1205, 1431, and 1642 nm in the

second overtone region are related to hemoglobin as reported by
Kuenstner and Norris [34] and more recently by Adegoke and col-
leagues [33]. Absorption bands around 1432 and 1388 nm were ob-
served when pure P. falciparum parasites were scanned (Fig. 3D). In
this study, hemoglobin bands around 1205 nm and bands around
1400 to 1431 nm were reduced in malaria positive individuals. A
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reduction in hemoglobin concentration is expected for a malaria-
infected patient as the presence of the malaria parasite consumes
hemoglobin and other red blood cell proteins to produce heme.

Current malaria elimination strategies require high-
throughput approaches that can facilitate cost-effective, rapid,
and large-scale surveillance of malaria cases. Here, we have
identified unique peaks for malaria parasites and have gone a
step further to show that the peaks could differentiate infected
from uninfected malaria subjects with low and extremely high
parasitemia providing the first evidence of the potential use of
an affordable, light-based technology for rapid and non-invasive
surveillance of malaria in large-scale programmatic studies. By
removing the need to draw blood, non-invasive surveillance of
malaria by NIRS has the potential to revolutionize our ability
to rapidly detect malaria in large-scale human populations and
facilitate timely treatment to reduce further transmission. With a
sensitivity of 100% achieved at very low parasitemia, NIRS could
enable rapid large-scale screening of communities to identify
asymptomatic patients and make malaria diagnosis among
babies a painless undertaking. Following the development of
predictive models, NIRS could enable thousands of individuals to
be screened in a day with unskilled personnel. Furthermore, the
spectrometer used for this study allows cloud-based prediction
for real-time monitoring of malaria infections among large-scale
community groups and in multiple locations including in rural
areas. Cloud-based and real-time surveillance means data will
be available to decision-makers in real time, thereby facilitating
rapid decision-making and timely distribution of resources where
required to stop further transmission and outbreaks.

Furthermore, NIRS is a unique tool that could facilitate timely
isolation and treatments of infected cases, through mass screen-
ing of populations at risk, including at ports of entry such as air-
ports or even at household levels, to stop transmission to local
mosquito populations by overseas travellers, reduce global out-
breaks, and prevent reintroduction in areas under elimination.
The NIRS unit that was assessed under this study is an off-the-
shelf spectrometer that could easily be integrated and scaled
up into existing programmatic malaria epidemiological surveil-
lance programs. However, further work is recommended on a
larger scale in multiple malaria epidemiological settings to de-
velop robust predictive models. Factors such as malaria species
type, asymptomatic malaria cases, age groups, blood groups, skin
color, and most importantly the presence of mixed/co-infections
of malaria species or other pathogens should be considered in
future studies for developing robust malaria-specific predictive
models. Future work should also assess the capacity of the tool
to quantify parasitemia of infected individuals and ability to dif-
ferentiate subjects infected with different Plasmodium species.

In conclusion, our proof-of-concept study provides insights into
the potential application of NIRS and machine learning tech-
niques for rapid, non-invasive, and large-scale surveillance of
malaria and potentially other human pathogens.
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