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Abstract

Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many
machine learning methods for PPI extraction have achieved promising results. However, the performance is still not
satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel
learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly,
we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic
information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two
semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine
(SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-
of-the-art systems by integrating semantic information.
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Introduction

Extracting biomedical information from the literature is an

important research topic in the field of biomedical natural

language processing (BioNLP). With the rapidly growing number

of research papers, it is becoming increasingly difficult for

biomedical experts to detect the protein information manually.

Thus automated protein-protein interactions extraction (PPIE)

from biomedical literature has attracted substantial attention.

PPIE is of great value on the application and practical significance,

particularly establishing the network of protein knowledge,

predicting the protein-protein relations and developing new drugs

and so on.

At present, many methods have been used to extract protein-

protein interaction relations. Most of these methods for PPI

extraction task are pattern-based methods [1–3] and statistical

machine learning methods [4–7].

The Pattern-based methods employ pre-defined patterns and

rules to match the labeled sequence. Fundel et al. [1] developed

RelEx system for PPI extraction, based on natural language pre-

processing producing dependency parse trees and the application

of a small number of simple rules to these trees. Huang et al. [2]

used a dynamic programming algorithm to compute the

distinguishing patterns by aligning relevant sentences and key

verbs to describe protein interactions, achieving good results. Ono

et al. [3] presented a method for extracting PPI by searching with

protein names, word patterns and simple part-of-speech (POS)

rules. However, the pattern-based method does not cover all of the

modes and cannot produce new models.

The statistical machine learning methods can effectively avoid

the disadvantages of the above methods. The current machine

learning methods for PPI extraction task involve feature vectors

based and kernel-based methods. Liu et al. [4] investigated the

combination of diverse lexical, syntactic and particularly depen-

dency information for feature-based protein-protein interaction

extraction using SVM, achieving a promising F-score of 54.7% on

the AIMED corpus. However, the feature-based methods cannot

utilize the complex structure information in a sentence. Therefore

researchers use kernels rather than a single feature vector. Airola

et al. [5] proposed a graph kernel- based approach for the

automated extraction of PPI from the scientific literature,

achieving 56.4% F-score and 84.8% AUC on the AIMED corpus.

Miwa et al. [6] proposed a method, which combined the kernels

with several syntactic parsers. Their method combined the subset

tree kernel and graph kernel, obtaining an F-score of 61.9% on the

AIMED corpus. Yang et al. [7] presented a weighted multiple-

kernel learning-based approach combining four kernels: feature-

based, tree, graph and POS path, accomplishing a 64.41% F-score

on the AIMED corpus.

However, few studies employed the semantic knowledge

obtained from ontologies such as MeSH [8] and WordNet [9].

To make the most of the semantic resource, this paper proposes a

semantic kernel, and combines it with the feature-based kernel and

tree kernel to extract PPI. In the tree kernel, we extend SPT by a

dynamic extended strategy to capture the richer syntactic
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information. In the semantic kernel, we combine the protein-

protein pair similarity with the context similarity.

The remainder of the paper is organized as follows: The

detailed implementation of our method is described in Section

‘‘Methods’’. Section ‘‘Results’’ presents our experimental results

and the comparisons with other systems. The discussion and error

analysis are illustrated in Section ‘‘Discussions’’, followed by

Section ‘‘Conclusions and Future Work’’.

Methods

Our method is based on SVM and three distinctive types of

kernels are combined, i.e., feature-based, tree and semantic kernel.

Feature-based Kernel
The following features are used in our feature-based kernel.

Word feature. The word features are the most basic and

important feature. There are four sets of words features in our

method.

1) Words from protein names: all the words in two protein

names are included.

2) Words between two protein names: these features include all

words that are located between two protein names. If no word

appears between two protein names, the feature will be

‘‘NULL’’.

3) Words surrounding two protein names: these features include

the left n words of the first protein name and the right n words

of the second protein name. n is set to be five in our

experiments. If there are no words surrounding two protein

names, ‘‘NULL’’ will be used.

4) Interaction term: the interaction word (such as ‘‘regulate’’,

‘‘interact’’, ‘‘modulate’’) often implies the existence of PPI. If

only one keyword appears between or among the surrounding

words of two protein names, the keyword is added into the

interaction term feature. If there is more than one keyword,

the first one will be used. If no keyword appears, the feature

will be set to ‘‘NULL’’.

Distance feature. From the corpus, we find that the shorter

distance (the number of words) between the two proteins is, the

more likely the protein pair has interaction relation. The distance

feature can be divided into two classes.

1) The number of the non-proteins between two proteins (Word-

Num).

If Word-Num#3, the feature value will be set to ‘‘1’’; if 3,

Word-Num#6, the value will be set to ‘‘2’’; if 6,Word-

Num#9, it will be set to ‘‘3’’; else, it will be set to ‘‘4’’.

2) The number of the proteins between two proteins

If no other proteins appear between the two proteins, the

feature value will be set to ‘‘0’’; otherwise, it is the number of

other proteins.

Tree Kernel
Our tree kernel adopts the convolution tree kernel proposed by

Collins et al. [10]. A convolution tree kernel aims to capture the

structured information in a sentence. It calculates the syntactic

structure similarity between two parse trees by counting the

number of common sub-trees [10,11]. In order to focus on the

most relevant information to relations, a standard tree kernel is

defined on the Minimum Complete Tree (MCT). It is the sub-tree

rooted by the nearest common parent node of the two proteins

under consideration. In our tree kernel, the protein pairs in the

sentence are replaced by PROTEIN_1 and PROTEIN_2, and the

other protein names in the same sentence are replaced by

PROTEIN. Stanford Parser [12] is used to parse the sentence.

However, MCT includes too much left and right context

information, which may elicit many noisy features. Zhang et al.

[13] proposed five pruning strategies and found that the Shortest

Path enclosed Tree (SPT) performed best. SPT is the smallest

common sub-tree including the two proteins. In other words, the

sub-tree is enclosed by the shortest path linking the two proteins in

the parse tree. Figure 1 illustrates the different representation of

MCT and SPT of a relation instance. The candidate interaction

pair is marked as PROTEIN_1 and PROTEIN_2, the other

proteins are marked as PROTEIN. The SPT between the focused

proteins is shown in the dotted line and MCT is the whole figure.

Despite the better performance of SPT, in some cases, the

information contained in SPT is not sufficient to determine the

relation between two proteins. For example, the word ‘‘interact’’ is

critical to determine the relation between PROTEIN_1 and

PROTEIN_2 in the sentence ‘‘PROTEIN_1 and PROTEIN_2

interact with each other’’. However, it is not contained in the SPT

(dotted circle in Figure 2). By analyzing the corpus, the quantity of

nodes in these SPTs are found often less than seven, so they

include less information except the two protein names. Here, we

propose a novel dynamic extended strategy. By default, the tree

kernel adopts the original SPT; When the number of the nodes in

a SPT is smaller than 7:

1) If SPT is different with MCT, SPT will be replaced with

MCT;

2) Otherwise, SPT will be replaced with the MCT rooted by the

parent node of the root of the original SPT.

Thus the extended SPT (solid circle in Figure 2) will include

richer context information than the original SPT. In the above

example, SPT and MCT are the same, then the SPT will be

extended from ‘‘(NP (NNP PROTEIN_1) (CC and) (NNP PRO-

TEIN_2))’’ to ‘‘(S (NP (NNP PROTEIN_1) (CC and) (NNP

PROTEIN_2)) (VP (VBP interact) (PP (IN with) (NP (DT each)

(JJ other)))))’’, which includes the keyword ‘‘interact’’ and richer

context information. We call it Dynamic Extended Tree (DET).

Semantic Kernel
Our semantic kernel consists of two parts: Protein Pair

Similarity (simpp) and Context Semantic Similarity (simcon). They

are mainly based on the following two assumptions:

1) If the semantic information between two different protein

pairs is closer, the instances including them are more likely to

have the same type of relations;

2) If two instances have similar context, they will have the same

type of relations.

Protein pair similarity. The semantic information of

proteins can be derived from MeSH. MeSH is a taxonomic

hierarchy of medical and biological terms suggested by the U.S

National Library of Medicine. Hliaoutakis et al. [14] investigated

several semantic similarity measures between proteins in MeSH

and verified that the similarity measures outperformed others on

MeSH as proposed by Li et al. [15] and Lin et al. [16]. Li et al.’s

method was based on edge counting and Lin’s method was based

on the information content of each concept. Therefore, we

propose a hybrid way by combining them to calculate the

Protein-Protein Interaction Extraction
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similarity between two proteins as formula (1), where pro1 and

pro2 are two proteins in a sentence, P represents the protein pair.

simP pro1,pro2ð Þ~

1

2
e{aL: e

bH{e{bH

ebHze{bH
z

ln pmis pro1,pro2ð Þ
ln p pro1ð Þz ln p pro2ð Þ

� � ð1Þ

In formula (1), L and H are the length of shortest path and the

larger depth between 1 and pro2 in MeSH database respec-

tively, a and b are parameters scaling the contribution of L and H,

p proð Þ is the probability of encountering a protein pro,

pmis pro1,pro2ð Þ is the information content of the shared parents

of two terms pro1 and pro2.

simpp is defined to calculate the similarity between two protein

pairs P1 and P2 as formula (2):

simpp P1,P2ð Þ~1{jsimP1
{simP2

j ð2Þ

where simP1
is the similarity between the two proteins in P1, simP2

is the similarity of P2.

Context semantic similarity. WordNet is a well-known

upper ontology, storing rich semantic information. Unlike MeSH,

entries in WordNet are more common. We take advantage of

Figure 1. The MCT and the SPT of the sentence, ‘‘PROTEIN coexpression largely abolished PROTEIN_1 induced activity of an
PROTEIN_2 promoter’’. The SPT between the focused proteins is shown in the dotted line and MCT is the whole figure.
doi:10.1371/journal.pone.0091898.g001

Figure 2. An example of the extension of SPT. The sentence is ‘‘PRITEIN_1 and PROTEIN_2 interact with each other’’. The original SPT is in
dotted circle and the extended SPT is in solid circle.
doi:10.1371/journal.pone.0091898.g002
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WordNet to measure the context semantic similarity. All words are

treated as a context except protein names and stop words in a

sentence.

According to previous assumptions, the similar contexts indicate

the same relations. We exploit the Kuhn-Munkres Algorithm [17]

(also known as Munkres’ Assignment algorithm) to calculate the

context semantic similarity. In our approach, two different

contexts are regarded as two disjoint sets U and V in a bipartite.

The words in the contexts are vertices in U and V respectively.

Lin’s method [16] is used to calculate the weight between a vertex

in U and a vertex in V . Therefore, a weighted completed bipartite

graph can be modeled. The context semantic similarity can be

obtained by finding the maximum matching in the bipartite graph.

An example of maximum match is demonstrated in Figure 3. The

algorithm to calculate the context semantic similarity based on

Munkres’ Assignment Algorithm is exhibited in Figure 4.

simcon c1,c2ð Þ is defined to calculate the Context Semantic

Similarity as formula (3):

simcon c1,c2ð Þ~

P
i,j[A

weight i,jð Þ

min len c1ð Þ,len c2ð Þð Þ ð3Þ

where len cð Þ is the number of words in context c, A is the

maximum matching of U and V obtained by Munkres’

Assignment Algorithm, weight i,jð Þ stands for the similarity

between the ith vertex in U and the jth vertex in V .

Semantic kernel. The semantic kernel (Ksim) is defined as

formula (4):

Ksim~simppzsimcon ð4Þ

where simpp represents Protein Pair Similarity and simcon

represents Context Semantic Similarity.

Ensemble Kernel
Each kernel can capture some aspects of the available

information in a sentence while losing other aspects. Combining

different kernels produce a new useful similarity measure to reduce

the danger of missing important information. We define the liner

ensemble kernel as formula (5):

Kfinal~KfeazKDETzKsim ð5Þ

where Kfea represents the feature-based kernel, KDET stands for

the dynamic extended tree kernel, and Ksim is the semantic kernel.

Results

Evaluation Measures
We evaluate our method on the AIMED corpus [18]. The

corpus is a popular dataset for the evaluation of PPI extraction

methods, consisting of 225 biomedical paper abstracts available in

Medline.

There are many assessing methods for PPI extraction. Von

Mering et al. [19] used accuracy to measure the performance of

protein-protein interactions. Xia et al. [20] used the sensitivity,

precision and accuracy for assessment. A ROC curve was drawn

in You et al’s method [21]. A special versus sensitivity analysis was

performed in [22]. In these discriminative assessing methods [19–

22], the performance of protein-protein interaction can all be

measured by the quantity of true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). In this study, the

AUC measure (the area under the ROC [receiver operating

characteristics] curve) and the balanced F-score are used for

quantifying the performance of our methods, both of which can be

calculated by TP, TN, FP and FN. F-score is the harmonic mean

of P and R, where P denotes Precision and R denotes Recall. The

ROC curve is a plot of the true positive rate (TPR) vs. the false

positive rate (FPR) for different thresholds. AUC has the important

property of being invariant to the class distribution of the used

dataset and has been advocated for performance evaluation in the

machine learning community [23]. Because of these two different

points of view, the best result in AUC may be different from the

best result in the F-score. Here, we report both results.

In the following experiments, our results are obtained with

10-fold cross-validation.

Experimental Results
In this section, we firstly discuss the effectiveness of SPT and its

dynamic extended tree (DET). Then the results of different kernels

on AIMED corpus are presented.

Effectiveness of our DET kernel. Table 1 shows the

performance of different tree kernels.

We achieve an F-score of 51.95% and an AUC of 85.50% with

the original SPT. With the dynamic extended tree, the F-score and

AUC are improved to 53.27% and 87.00% respectively (1.32%

increase in F-score and 1.50% increase in AUC). Yang et al. [7]

proposed a tree kernel consisting of SPT Extension and

Dependency Extension, while our tree kernel adopted SPT

Extension only. Our method outperforms theirs by 1.03% in F-

score and 0.81% in AUC. Yang et al. [7] used a static extended

strategy to extend SPT, namely, if the number of leaf nodes is

smaller than four, the parent node of the root node of the original

SPT will be used as the new root node. Our tree kernel (SPT

extension) is a dynamic one, containing information most relevant

to PPI extraction.

Effectiveness of different kernels. The performance of

different kernels is shown in Table 2.

Figure 3. An example of the maximum matching in the bipartite graph. Cona and Conb are two different contexts. The maximal matching
between Cona and Conb is flagged with solid lines. Edges with weight 0 are bypassed and all weights are rounding in this figure.
doi:10.1371/journal.pone.0091898.g003
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The experimental results show that, better performance is

achieved if two or more individual kernels are combined. When

the tree kernel is combined with the feature-based kernel, the

performance is improved by 14.01% in F-score and 2.10% in

AUC. When further combined with context semantic similarity,

the F-score is improved by 4.44% while AUC slightly reduces by

0.10%. Added the protein pair similarity, the F-score and AUC

are improved to 69.38% and 92.00% respectively (5.68% increases

in F-score and 1.20% in AUC). Finally, the addition of Ksim (that

is, the context similarity is integrated to the protein pair similarity)

increases 0.08% in F-score (69.46% vs. 69.38%), and AUC

performs same with 92.00%.

From the above experimental results, we can see: (1) the context

semantic similarity does not contribute more than the protein pair

similarity (4.44% vs. 5.68% in F-score); (2) when the context

semantic similarity is combined with the feature-based, DET and

protein pair similarity, the F-score only increases 0.08% and AUC

does not change. One reason is that all words in the sentence are

Figure 4. Context Semantic Similarity calculation based on Munkres’ Assignment Algorithm. Each element in the matrix M is calculated
by Lin et al.’s method [16].
doi:10.1371/journal.pone.0091898.g004

Table 1. Effectiveness of our DET kernel.

Kernel P R F AUC

Our SPT 73.74% 40.10% 51.95% 85.50%

Our DET kernel 75.01% 41.30% 53.27% 87.00%

Tree Kernel [7] 43.71% 64.65% 52.24% 79.19%

doi:10.1371/journal.pone.0091898.t001
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treated as the context except for protein names and stop words,

which might introduce random noise features to degrade the

performance when combined with protein pair similarity; the

other is that the sparseness of the training set affects the

performance. No common or similar words exist in the

corresponding contexts, resulting in the lower context semantic

similarity. The same or similar contexts indicate the same relation,

thus the sparseness of the training set produces certain effect on the

performance. However, the kernels with context semantic

similarity always perform better than the kernels without

integrating any semantic information.

Figure 5 depicts the ROC curves of different prediction results

based on feature-based kernel, kernel with addition of DET kernel,

and kernel integrating three individual kernels. It shows obviously

that the combination of three kernels performs best on AUC.

Comparisons
This section presents the comparisons between our method and

some state-of-the-art works on the AIMED corpus.

Table 3 shows our approach achieves the best performance with

an F-score of 69.46% and an AUC of 92.00%. The methods in

[6,7,24] also adopted an ensemble kernel to extract PPI. Miwa

et al. [6] combined the tree kernel with graph kernel and reached

61.90% in F-score and 87.60% in AUC. Yang et al. [7] combined

several kernels to extract PPI: feature-based, tree, graph and POS

path kernel. Our method outperforms it by 5.05% and 3.54% in

F-score and AUC respectively. Miwa et al.’s methods [24]

attained an F-score of 63.50% and an AUC of 89.70%. They

integrated multiple layers of syntactic information for PPI

extraction. Unlike the three above systems, Li et al. [25] combined

the new features generated by feature coupling generalization

(FCG) with local lexical features without any syntactic and

semantic information, obtaining an F-score of 63.54% and an

AUC of 87.24%. The performance of our method still outper-

forms it by 5.92% in F-score and 4.76% in AUC. Overall, our

method achieves the best performance.

Discussions

Discussions
We combine the dynamic extended tree kernel and semantic

kernel with feature-based kernel to extract PPI. Experimental

results show that our PPIE method outperforms most of the state-

of-the-art systems. The effectiveness analysis is as follows.

(1) Effective Individual Kernel

Firstly, a novel dynamic extended method is proposed. The

extended SPT contains the information most relevant to PPI

extraction. For example, the protein pair ‘‘HFE’’ and ‘‘TfR’’ in

the instance S1 will be replaced by PROETIN_1 and PRO-

TEIN_2 in our tree kernel. And the corresponding SPT and DET

are also given as follows.

S1: ‘‘The HFE-TfR complex suggests a binding site for

transferrin on TfR and sheds light upon the function of HFE

in regulating iron homeostasis.’’

SPT: (NP (NN PROTEIN_1)(NN PROTEIN_2)

DET: (NP (DT The)(NN PROT_1)(NN PROT_2)(NN complex))

The protein pair ‘‘HFE’’ and ‘‘TfR’’, classified as a false

negative case by SPT, can be classified correctly as a true positive

one by DET, because DET includes the interaction word

‘‘complex’’ to get richer context information.

Secondly, the semantic kernel takes advantage of the semantic

knowledge derived from MeSH and WordNet, to calculate the

semantic similarity between two instances. Results in Table 2 show

that, with addition of semantic information, the performance of

our PPI extraction algorithm is improved. For example, the

instance S2 contains the interaction term ‘‘interact’’, but the

feature-based kernel and DET kernel both classified the protein

pair ‘‘JAK2’’ and ‘‘Raf-1’’ as a false negative instance. However,

they can correctly be classified as a true positive one by

introducing the semantic kernel. The reason is that the semantic

resource provides richer and deeper information from the

perspective of language understanding.

S2: ‘‘JAK2, a member of the Janus kinase superfamily was found

to interact functionally with Raf-1, a central component of

the ras/mitogen-activated protein kinase signal transduction

pathway.’’

(2) Combination of Kernels

We propose an ensemble kernel including the feature-based

kernel, tree kernel and semantic kernel. The feature-based kernel

is simple and efficient, but can not capture the syntactic and

semantic information. The tree kernel can calculate the similarity

between two shortest paths by utilizing the syntactic structure

information. The semantic kernel considers the deep semantic

information. Given their individual characteristics, different

kernels calculate the similarity between two instances from

different aspects. Thus, combining different kernels produce a

new useful similarity measure to reduce the danger of missing

important information.

From the above analysis, it can be seen that our PPI extraction

algorithm based on integrated kernels is statistically effective.

Error Analysis
Our method improves the performance of PPI extraction on

AIMED, but there are still some disadvantages. A few error

examples are listed here. In these instances, the protein pairs

focused are marked with bold slash.

Table 2. Experimental results of different kernels.

Kernel P R F AUC

Kfea 73.63% 37.50% 49.69% 88.70%

Kfea+KDET 74.93% 55.40% 63.70% 90.80%

Kfea+KDET+simcon 71.48% 65.10% 68.14% 90.70%

Kfea+KDET+simpp 72.52% 66.50% 69.38% 92.00%

Kfea+KDET+Ksim 72.45% 66.70% 69.46% 92.00%

doi:10.1371/journal.pone.0091898.t002

Protein-Protein Interaction Extraction
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(1) The feature-based kernel considers the negative words as an

indicative feature. When a negative word exists in an instance,

it tends to be classified as a negative one. However, it may

lead to a false negative instance. For example, it can be

observed that ‘‘not’’ exists in the instance ‘‘Moreover,

mutation of Raf-1 residues 143–145 impairs binding of 14-

3-3, but not Ras, to the Raf-CRD’’. Our method classifies it

as a negative instance while it is a positive one in fact.

(2) Some instances have no sufficient information. For example,

the protein pair in the instance ‘‘Sos and 80K-H, pp66’’ will

be classified as a false negative instance. The instances have

no adequate lexical features, syntactic features and rich

context information, except for the protein names.

(3) Some errors in the corpus’s annotation. This case will lead to

some incorrect classifications.

(4) Confined by the complexity of the PPI expression as well as

the quantity and quality of the corpus, some inevitable false

classifications will be generated which are not itemized here.

Figure 5. The ROC curves of three experiments: the feature-based kernel, the combination of feature-based kernel and DET kernel,
and the kernel integrating three individual kernels.
doi:10.1371/journal.pone.0091898.g005

Table 3. Comparisons between our method and some state-of-the-art systems.

Methods P R F AUC

Miwa et al. [6] 58.70% 66.10% 61.90% 87.60%

Yang et al. [7] 57.72% 71.07% 64.41% 88.46%

Miwa et al. [24] 60.40% 69.30% 63.50% 87.90%

Li et al. [25] 60.47% 68.31% 63.54% 87.24%

Ours 72.45% 66.70% 69.46% 92.00%

doi:10.1371/journal.pone.0091898.t003

Protein-Protein Interaction Extraction
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Conclusions and Future Work

In this paper, a multiple-kernel learning-based approach is

presented for the protein-protein interaction extraction. The

approach contains the following three individual kernels: feature-

based kernel, tree kernel and semantic kernel. Our method aims to

improve the performance of PPIE by embedding the semantic

information into kernel calculation. Experiments and comparisons

demonstrate that our PPIE method works better than the state-of-

art systems on the AIMED corpus, with an F-score of 69.46% and

an AUC of 92.00%.

There are still spaces for improvement. For example, the DET

kernel only contains the structure of parse tree and neglects the

dependency path tree. When the dependency tree kernel is

combined with SPT tree kernel, the performance is expected to be

improved [7]. Yang et al. [7] once used a weighted linear

combination of individual kernels instead of assigning the same

weight to each individual kernel, which will be studied in our

future work. Apart from this, how to improve the semantic kernel

would be the core of future research, specifically, how to select

more proper contexts, how to compute the semantic similarity

more effectively and utilize more ontologies.
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