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Abstract: Bacteria in the oral cavity, including commensals and opportunistic pathogens, are orga-
nized into highly specialized sessile communities, coexisting in homeostasis with the host under
healthy conditions. A dysbiotic environment during biofilm evolution, however, allows opportunistic
pathogens to become the dominant species at caries-affected sites at the expense of health-associated
taxa. Combining tooth brushing with dentifrices or rinses combat the onset of caries by partially
removes plaque, but resulting in the biofilm remaining in an immature state with undesirables’
consequences on homeostasis and oral ecosystem. This leads to the need for therapeutic pathways
that focus on preserving balance in the oral microbiota and applying strategies to combat caries
by maintaining biofilm integrity and homeostasis during the rapid phase of supragingival plaque
formation. Adhesion, nutrition, and communication are fundamental in this phase in which the
bacteria that have survived these adverse conditions rebuild and reorganize the biofilm, and are
considered targets for designing preventive strategies to guide the biofilm towards a composition
compatible with health. The present review summarizes the most important advances and future
prospects for therapies based on the maintenance of biofilm integrity and homeostasis as a preventive
measure of dysbiosis focused on these three key factors during the rapid phase of plaque formation.

Keywords: oral biofilm; dental plaque; dental caries; homeostasis; dysbiosis; anticaries therapeu-
tic approaches

1. Introduction

Dental caries is considered one of the most prevalent human diseases, with the 2019
Global Burden of Disease Study estimating that close to 3.5 billion people worldwide expe-
rience oral disease, with caries in permanent teeth being the most common condition [1].
Globally, it is estimated that 2 billion people are affected by caries in permanent teeth and
that 520 million children are affected by caries in primary teeth [1].

The main ethological component of dental caries consists of bacterial species (mainly
streptococci, lactobacilli, and bifidobacteria) organized in sessile and highly specialized
communities (the supragingival dental plaque) located in the proximal spaces and occlusal
surfaces of the gingival margin [2–7]. Advances in the various omics techniques applied to
the field of dental plaque have revealed that this oral ecosystem is inhabited by hundreds
of bacterial species, most of which are considered commensal but include low levels of
opportunistic pathogens that become the dominant species in caries-affected sites at the
expense of health-associated taxa [8–16].

The conformation of the supragingival biofilm can be influenced by a wide range of
factors, including the intake of food and drink, the availability of endogenous nutrients,
drug treatments, the host’s immune system, and systemic diseases [17–20]. To respond
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to these factors, the oral microbiota maintains the internal stability of the community
through homeostasis. However, certain ecological changes can induce modifications in the
oral microbiota, leading to dysbiosis and dental caries [20–24]. Saliva plays an important
role in oral microbial ecology by supplying nutrients and providing protection against
colonization by nonoral organisms. However, reduced salivary flow has a major effect on
the microbiota, resulting in increased growth/colonization by opportunistic pathogens,
including non-oral bacteria and fungi. Certain systemic diseases, such as diabetes, also
affect the oral microbiome, raising glucose levels in saliva and tissue and affecting bacterial
nutrition. Similarly, excessive and/or frequent consumption of fermentable carbohydrates
affects the composition of the oral bacterial community. The changes induced in these
ecological ecosystems by the aforementioned factors are directly related to bacterial biofilm
dysbiosis and the onset and progression of dental tissue damage [19,20]. If the microbiota
changes, there will be a proliferation of aciduric microorganisms, mainly represented by
Streptococcus, Lactobacillus, Bifidobacterium, Actinomyces, Veillonella, and certain yeasts, among
others. Subsequently, the oral pH falls below the critical point for the demineralization
process for an increased period, resulting in dental tissue demineralization [20,21,23,24].

The biofilm phenotype of oral-caries-causing bacteria provides them with substantial
resistance to anticaries therapies. Thus, for example, mechanical oral hygiene can limit
microbial growth but does not completely eliminate the biofilm, which recomposes itself in a
few hours [23,25,26]. Pharmacological treatments based on antibiotic and antiseptic therapy
are less effective against bacteria organized in biofilm than against planktonic phenotypes,
not exempt, in addition, to unwanted effects [18,26,27]. Despite the knowledge generated
about the onset and evolution of bacterial dysbiosis as a caries-causing agent, there are few
therapies focused on combining more conventional routine mechanical treatment, such as
tooth brushing or rinsing assisted by antiseptic compounds to control the natural growth of
dental plaque, with newer methods that act on the remaining percentage of plaque, which
has survived and will regenerate in a few hours, helping to maintain homeostatic capacity.

In this review of the literature, we focus on describing state-of-the-art methods show-
ing the most important advances and future prospects for this type of therapy based on the
maintenance of biofilm integrity and homeostasis as a preventive measure of dysbiosis.

2. From Homeostatic to Dysbiotic Supragingival Biofilm

The mouth is a warm and humid habitat that exposes numerous surfaces, including the
mucosa, which are covered by keratinized and nonkeratinized stratified squamous epithe-
lium, the papillary surface of the tongue dorsum or the hard structures of the teeth, which
lie above (supragingival) and below (subgingival) the gingival margin, all of them suscepti-
ble to colonization by a wide variety of microorganisms. Teeth have a unique characteristic
in the human body, providing major advantages for colonization by microorganisms: a
nonscaling rigid surface exposed to an environment abundant in nutrients, facilitating
microorganisms’ organization into sessile communities [2,4,5]. Despite its advantages, this
region also presents nonfavorable conditions for microorganisms, which induce bacteria to
aggregate into biofilms and thereby survive in the extreme conditions in a continuously
changing environment caused by changes in fluids such as saliva and crevicular fluid if
they access the subgingival zone, oxygen concentration gradients, environmental stress,
invasion by other competing microorganisms, and the unbalanced availability of nutrients
derived from eating and chewing [5,17,28].

Supragingival biofilm formation occurs within a few hours in a series of sequential
but arguably almost simultaneous events (Figure 1). The normal development of dental
plaque starts with the selective adsorption of hydrophobic macromolecules onto the tooth
surface —constantly bathed in saliva rich in glycoproteins and other proteins— to create
a conditioning film. The glycoproteins and proteins in the conditioning film serve as
ligands, attracting specific species of Gram-positive and Gram-negative bacteria mainly
from the genera Streptococcus, Actinomyces, Capnocytophaga, Eikenella, Haemophilus, Prevotella,
Propionibacterium, and Veillonella (Figure 1a) [28–30].
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Figure 1. Illustration exemplifying the possible development of multispecies biofilms. Scanning 
electron microscopy corresponds to an in vitro supragingival biofilm model of (a) 3, (b) 12, (c) 24, 
and (d) 48 h of evolution (to methodology [9]): (a) initial colonization of a substratum covered in an 
acquired film composed of polysaccharides and proteins. In vitro, various bacteria of coccoid and 
bacillary morphology can be seen on the surface after 3 h of biofilm process initiation; cell division 
can be appreciated mainly in coccoid bacteria (green arrows; scale bar = 9 µm); (b) rapid growth and 
division of initial colonizers and production of extracellular polysaccharide (EPS) leading to the 
development of microcolonies from several bacterial species—green arrows point to EPS surround-
ing bacteria in a microcolony after 12 h of biofilm development in vitro, which is identifiable in the 

Figure 1. Illustration exemplifying the possible development of multispecies biofilms. Scanning
electron microscopy corresponds to an in vitro supragingival biofilm model of (a) 3, (b) 12, (c) 24,
and (d) 48 h of evolution (to methodology [9]): (a) initial colonization of a substratum covered in an
acquired film composed of polysaccharides and proteins. In vitro, various bacteria of coccoid and
bacillary morphology can be seen on the surface after 3 h of biofilm process initiation; cell division
can be appreciated mainly in coccoid bacteria (green arrows; scale bar = 9 µm); (b) rapid growth
and division of initial colonizers and production of extracellular polysaccharide (EPS) leading to the
development of microcolonies from several bacterial species—green arrows point to EPS surrounding
bacteria in a microcolony after 12 h of biofilm development in vitro, which is identifiable in the image
as a compact mass of greater brightness—(scale bar = 5 µm); (c) coadhesion and coaggregation of
bacteria into a young multispecies biofilm—after 24 h of in vitro evolution, the surface appeared
to be covered by bacteria consisting primarily of a larger colonies—outward-growing masses of
bacterial cells alternating with flat homogenous layers of cells (scale bar = 50 µm); and (d) maturation
of the multispecies biofilm—after 48 h of in vitro incubation, biofilm demonstrated the characteristic
organization of these communities: covering the surface with bacteria clusters, forming stacks, and
showing channels inside the structure—(scale bar = 20 µm).
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Once the surface has been successfully colonized by these pioneer bacteria, the biofilm
has already begun to form and will start differentiating as a highly structured community.
To do this, the bacteria (and, consequently, the biofilm) enter a logarithmic growth phase
(Figure 1b). During this intermediate phase, there is faster growth in the evolution of
the biofilm of Gram-positive bacteria compared to Gram-negative species. Interspecies
communication, now mediated by the quorum-sensing (QS) system, will facilitate biofilm
differentiation, influencing bacterial metabolism and leading to extracellular polysaccharide
matrix formation (EPS) and community maturation [28,29,31].

The union and growth of the first colonizers on the dental surface provides new lig-
ands for colonization by other species that adhere successively, mainly from the genera
Corynebacterium, Eubacterium, and Fusobacterium, among others [30,32–34]. At this stage,
a high bacterial density will have been reached, which entails significant oxygen con-
sumption by the bacteria, thereby generating oxygen gradients inside the biofilm structure
(Figure 1c). An anaerobic environment then begins to develop, which will favor the growth
of these secondary colonizers, which have stricter anaerobic requirements for their growth.
Anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes are located
at the periphery of the consortium. Consumers and producers of certain metabolites, such
as lactate, tend to be near each other [33–35]. Such highly organized spatial arrangements
are likely to result from and facilitate a large variety of interspecies interactions, including
the formation of metabolic networks [27,34,35].

Synergistic and antagonistic interactions with neighboring species will be established
at this time in the biofilm, generating an exchange of food and oxygen that strengthens
the biofilm matrix and creating the ideal environment for the coexistence of bacteria with
diverse survival mechanisms. The biofilm thereby reaches a mature state and equilibrated
homeostasis (Figure 1d) [30,32]. Synergism includes the collective degradation of sali-
vary glycoproteins by microbial consortia, in which complementary enzymatic activities
allow the utilization of mucins in saliva as an energy source or of food chains in which a
metabolic product of one species is used as the primary energy source for a partner species.
Antagonistic interactions are mediated by the production of bacteriocins and hydrogen
peroxide (H2O2) [36–38]. When there is a balance between acid production and alkaline
compensation, the biofilm enters into symbiosis with the host, establishing a neutral pH
between the biofilm and the ecosystem. This condition allows the biofilm to be stable in
its bacterial composition and helps regulate and strengthen the inflammatory response
provided by the host’s immune cells to attack by pathogenic bacteria. At this mature phase,
the biofilm and host can coexist in harmony [27,39].

The last step in the development of a biofilm is the release and migration of bacteria to
other surfaces, which causes a reorganization of the microbial structure and composition of
the biofilm [3,30,32].

Normal supragingival biofilm development can, however, be affected by the various
aforementioned factors, which the bacterial community will be unable to counteract by
the homeostatic capacity, and, as a result of the ecological changes, the microbiota will be
modified. An increase in carbohydrates in the environment to be metabolized by bacteria
and the subsequent generation of a low environmental pH can change the composition and
metabolic properties of the bacterial communities in dental plaque, leading to enrichment
of acid producers (acidogenic) and acid-tolerant (aciduric) microorganisms [21,40]. The
overgrowth of these bacteria and the excessive carbohydrate fermentation modify the
oxygen gradient, creating a more anaerobic environment, thereby favoring rapid growth
of pathogenic genera such as Porphyromonas, Tannerella, Treponema, Capnocytophaga and
Aggregatibacter, which were present in very low latent numbers and were waiting for
favorable conditions to grow in the biofilm [35,40]. In this dysbiotic condition, the supragin-
gival biofilm could be the initial point for developing diseases other than caries, such as
periodontal and peri-implant diseases [21,38].
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3. Benefits Derived from Biofilms in Homeostasis and the Disadvantages of Dysbiosis

The supragingival biofilm in homeostasis promotes oral health, providing advantages
to the bacterial community and the host. In contrast, its dysbiosis can cause certain
deleterious effects on both.

Resident commensal microbiota behave as a barrier against invasion by other com-
peting microorganisms, preventing the colonization of this niche. Streptococci are the
main early colonizers due to their ability to bind to any cell, whether human or bac-
terial [41]. Even at the onset of biofilm formation, species such as Streptococcus mitis,
Streptococcus sanguinis, and Streptococcus cristatus use arginine deiminase to suppress the
expression and production of fimbrial proteins and gingipains in pathogenic bacteria such
as Porphyromonas gingivalis and reduce their adhesion [42–44].

The buffer capacity of saliva also benefits from commensal microbiota. Species such
as Streptococcus salivarius, S. mitis, Streptococcus gordonii, S. sanguinis, S. cristatus, and
Actinomyces naeslundii buffer the acid produced by certain cariogenic bacteria through
the salivary lactoperoxidase system, which increases H2O2 and the pH of saliva. This
action favors the saliva’s ability to neutralize acid and maintain the demineralization–
remineralization process [36,45,46].

Commensal bacteria in homeostasis, through antagonistic bacterial interactions medi-
ated by the production of bacteriocins and H2O2, can also affect community association, as
occurs with S. mitis and/or Haemophilus parainfluenzae, which enhance the behavior of other
caries-related streptococci [47,48]. Commensal bacteria also help reduce nitrate, which is
essential for homeostasis and cardiovascular health. Through the action of nitrate reductase
enzymes, commensal facultative anaerobic bacteria located in the tongue can reduce nitrate
to nitrite, which functions as a vasodilator and antihypertensive when it passes into the
bloodstream [49,50].

Biofilm in homeostasis strengthens the immune response and provides important
benefits to the host. Oral streptococci suppress cytokine expression in epithelial cells, which
reduces the inflammation of epithelial cells in oral mucosa and stimulates type I and II
interferon response [51–53]. Commensal Lactococcus lactis also produces an antibiotic sub-
stance called nisin, which helps reduce tumor formation, cancer cell migration, squamous
cell invasion, and dental caries [54–58].

In contrast, dysbiosis represents the alteration of the symbiotic state of the oral mi-
crobiome on the supragingival surface of the teeth [20,38]. Most of the enzymatic ac-
tivities of bacteria that allow them to adapt to an environment are influenced by the
acidification of the environment. When there is a high and constant consumption of
carbohydrates and fermentable sugars, the pH of the medium alters from an alkaline
condition (6.0–7.0)—favorable for commensal bacteria—to a more acidic 5.5, which de-
creases the flow and buffering capacity of saliva [24,59], resulting in changes in the bacterial
composition. These changes favor the rapid growth of Streptococcus, Actinomyces, and
Lactobacillus, which metabolize carbohydrates more easily, degrading glucose into pyru-
vate, lactate, and acetate, generating an anaerobic environment [9,59]. In this scenario,
the growth of certain species of P. gingivalis, Treponema denticola, Tannerella forsythia, and
Aggregatibacter actinomycetemcomitans also produce other acids, such as lactic and formic
acid [9,59,60], which complicate the situation. The accumulation of more diverse micro-
biota tolerant to an acidic environment on the supragingival surface of the tooth, along
with elevated carbohydrate fermentation, disrupts the demineralization–remineralization
balance of dental tissues, facilitating the onset of carious lesions [23,40,60,61].

The dysbiosis of supragingival biofilm also decreases the H2O2 production of S. gordonii
and reduces its competitiveness against Streptococcus mutans [37,45]. Likewise, the dysbiosis
promotes the growth of cariogenic bacteria, such as S. mutans, Lactobacillus, Actinomyces,
and Veillonella [21,39,40]. These bacteria produce lactic acid, which alters the exopolysac-
charide matrix and modifies the chemical gradients that contribute to decreasing the pH
of the medium. These alterations affect the genotypic and phenotypic selection of the
microorganisms within the biofilm consortium, increasing their cariogenicity and causing
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the demineralization of dental tissues. If left untreated, this can lead to more advanced oral
pathologies, such as pulp involvement, that can lead to abscess formation [38,61].

4. Strategies to Combat Caries by Maintaining the Integrity of Biofilm and
Homeostasis during the Rapid Phase of Supragingival Plaque Formation

In view of the aforementioned, adequate methods of homeostatic maintenance of oral
biofilms are currently a subject of research, as it could prevent the onset and progression
of caries.

Dental plaque is mainly affected by oral hygiene. To effectively control plaque, tooth
brushing is combined with toothpaste or mouthwashes that contain a variety of chemical
agents; however, this does not provide optimal plaque removal [62], an issue that has been
extensively reviewed, resulting in the biofilm remaining in an immature state with high
proportions of early-plaque-forming bacteria, particularly streptococci. In the rapid phase
of supragingival plaque formation from firmly attached bacteria on a previously cleaned
surface, bacteria double in number in 3–4 h [63]. Adhesion, nutrition, and communication
are essential in this phase for bacteria that have survived those adverse conditions to
rebuild and reorganize the biofilm. These three bacterial biofilm development factors can
be the target of preventive strategies to guide the biofilm towards a composition compatible
with health and equally healthy metabolic behavior (Figure 2). The preventive strategies
at this phase mainly act on the primary colonizers—those that can quickly begin biofilm
restoration. This review therefore summarizes the most important advances and future
prospects for this type of therapeutic approach aimed at restoring the ecological balance at
this immature state to prevent dysbiosis.
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Figure 2. Summary of possible therapeutic approaches presented in the revision aimed at strategies
to combat caries by maintaining the integrity of biofilm and homeostasis during the rapid phase of
supragingival plaque formation.

4.1. Preventive Approaches Related to Initial Bacterial Adhesion

The initial adhesion phase is a crucial step in designing strategies to intervene in the
development of a cohesive and stable plaque structure compatible with health. However,
this is a very ambitious project. Although various mechanisms have been described
to inhibit specific bacterial adhesion and even complete biofilm attachment, the bacterial
community as a whole has a wide variety of alternative strategies that allow it to circumvent
such approaches. Several studies have presented compounds that by various means inhibit
bacterial adhesion in vitro. This is the case for graft copolymer M239-144, which acts
significantly on the hydrophobicity-mediated adhesion of Streptococcus species but does
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so less effectively in vivo [64,65]. Natural polyphenols and other active plant-derived
compounds have also been studied. Current studies have focused on evaluating the ability
of active plant-derived compounds to reduce the adhesion of pathogens and inhibit the
formation of biofilms in disease development processes [66,67]. Phytochemicals, mainly
polyphenols and flavonoids, have been widely studied to manage the growth inhibition,
acid production, and adhesion of pathogens during biofilm formation and to prevent
dysbiosis [68].

4.1.1. Polyphenols

Various natural sources provide polyphenols with antimicrobial effectiveness. Green
tea (Camellia sinensis) contains epigallocatechin gallate, a polyphenol with a strong antimi-
crobial effect capable of suppressing the acid production of S. mutans [68]. In addition, this
polyphenol promotes the adhesion of other beneficial streptococci, controlling the efficacy
and safety between the medium and oral homeostasis. Black tea maintains the pH of the
medium and inhibits bacterial glycolysis in the supragingival biofilm [67].

Blueberries (Vaccinium macrocarpon) are also rich in polyphenols, such as proanthocyani-
dins, that prevent the adhesion of pathogens such as Escherichia coli and Helicobacter pylori to
mucous membranes [69]. Yamanaka A. et al. [70] described the capacity of cranberry juice
in preventing the progression of supragingival plaque to dental caries via the reduction in
the activity of fructosyltransferase and glucosyltransferase enzymes in charge of glucose
metabolism and the formation of the EPS matrix. Cranberry juice also inhibits the adhesion
of S. mutans to hydroxyapatite. These inhibitory and antibacterial effects were also ob-
served with other natural extracts, such as clove methanol and aqueous and clove methanol
extracts of Syzygium aromaticum and Myrtaceae, according to Rahim Z. et al. [71]. In a study
by Karygianni [72], Pistacia lentiscus and Olea europaea (oleuropein, maslinic acid, hydroxy-
tyrosol, oleocanthal, oleacein) extracts also reduce the acidogenicity and metabolic activity
of oral biofilms, affecting P. gingivalis and Fusobacterium nucleatum. Philip N et al. [73] and
other authors observed that berries inhibited the growth of S. mutans.

4.1.2. Flavonoids

Numerous flavonoids have been analyzed; at the oral biofilm level, however, only
a few have shown efficacy in maintaining homeostasis. Artocarpine and artocarpesin
from Artocarpus heterophyllus have shown effectiveness in inhibiting the growth of oral
cariogenic bacteria, such as S. mutans and certain Actinomyces and Lactobacillus species [68].
Other flavonoids with a high capacity to interfere with the uptake of glucose and other
metabolites in S. mutans and other cariogenic bacteria are the phytoalexin flavones and
the erycristagallin present in Erythrina variegata (Leguminosae) [68]. The therapeutic
effect of baicalein (5,6,7-trihydroxyflavone), a flavonoid present in Scutellaria baicalensis
and Scutellaria lateriflora, is being evaluated but is believed to affect the expression of
several virulence genes that interact with the genes of S. mutans, which would alter the
progression of biofilm to caries [74]. Propolis contains flavonoids which have conferred
good antimicrobial activity against a number of oral bacteria and inhibition of the adherence
of S. mutans and Streptococcus sobrinus [68].

4.1.3. Other Natural Active Compounds with Anti-Adhesion Biofilm Effect

Rhodiola (Rhodiola rosea) is a plant whose extract can inhibit S. mutans when combined
with other extracts from, for example, Psidium sp., Mangifera sp. and Mentha sp. These
inhibit the adhesion of S. mutans and prevent acid production that can change the medium’s
pH [75,76]. When combined with Psidium sp., Mangifera sp., and Mentha sp. natural extracts,
a reduction has been observed in the hydrophobicity of the cell surfaces of S. sanguinis
and S. mutans, reducing adherence in biofilm formation. Psidium sp. extract has also been
observed to inhibit adherence of these bacteria in the biofilm, while Mangifera sp. decreases
the initial pH change in mixed populations of S. sanguinis and S. mutans [77].
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Babchi (Psoralea corylifolia, Fabaceae) contains bakuchiol, which has shown antibacte-
rial activity against Gram-positive and Gram-negative bacteria. In oral biofilms, bakuchiol
inhibits the growth and adhesion of S. mutans. Another terpene with antimicrobial activity
is Sagittaria A-D from the arrowhead plant (Sagittaria sagittifolia), which has shown activity
against S. mutans, A. naeslundii, and Actinomyces viscosus [68].

Xylitol—a sugar alcohol found naturally in plants such as birch (Betula), bark plants,
and fruits—has anticariogenic properties, inhibits S. mutans, S. saliviarius, and is widely
included in toothpastes, mouthwashes, and foods to prevent tooth decay [78].

In addition to the natural active compounds already mentioned, other herbs described
in different studies, such as bloodroot, chamomile, caraway, myrrh, echinacea, rosemary,
sage, aloe vera, thyme, and other useful herbs in dentistry may be good alternatives to
current treatments for oral health problems, but clearly, more research is required to study
their effectiveness on caries by maintaining the integrity of biofilm and homeostasis at the
rapid phase of supragingival plaque formation [79].

4.2. Preventive Approaches Related to Bacterial Nutrition

The primary nutritional source for oral bacteria at the supragingival level is
saliva [28,30,32], although the host’s diet is used by the bacteria in dental plaque. Bacteria
attached to the tooth surface use salivary glycoproteins and dietary carbohydrates (mainly
by streptococci) and proteins, which are degraded mostly by anaerobic Gram-negative
proteolytic bacteria and amino acids and consumed by bacteria with aminopeptidase
activity [80].

4.2.1. Preventive Approaches Related to Host Diet as Bacterial Nutrition Source

Scientific evidence has shown that an increased frequency of carbohydrate intake will
favor the cariogenic process, but other properties, such as food texture and the amount
of time food remains in the oral cavity, should be taken into account in the disease’s
progression [28,81]. For example, the consumption of soft drinks and sugary beverages
decreases the pH of dental plaque in vivo [81,82]. Acids are neutralized by saliva, and
it is estimated that saliva can neutralize the pH of plaque 20–30 min after consumption.
However, if the consumption of acids is repetitive, the saliva’s capacity decreases, and
the time for the bacteria to act is extended, leaving the tooth surface susceptible to the
development of caries. The same situation occurs with sugary and sticky foods that remain
longer on the tooth surface, releasing acids slowly and constantly so that the bacteria
continue to metabolize the acids and causing caries to progress [38,81,82].

Surprisingly, a specific group (the amino sugars) related to carbohydrates can be
considered a strategy for caries control and prevention focused on homeostatic balance.
This group of compounds includes sugar molecules that contain an amino group instead
of a hydroxyl group in one of their radicals and those derivatives of amines that contain
sugars, such as N-acetylglucosamine and sialic acid, which—although they formally do not
contain primary amines—are also considered amino sugars [83,84]. It has been reported that
amino sugars can enhance the beneficial properties of oral streptococci and can moderate
the cariogenicity of oral biofilms without disturbing homeostatic balance [40]. Amino
sugars such as glucosamine and N-acetylglucosamine can increase the competitiveness of
S. gordonii against S. mutans, reducing the viability of S. mutans against other commensal
species. Streptococci can also metabolize amino sugars and arginine deiminase more
easily, increasing H2O2 production and releasing ammonia, which raises the medium’s
pH [80,83,84].

4.2.2. Preventive Approaches Related to Saliva as a Bacterial Nutrition Source

In terms of saliva as the oral bacteria nutrition source, prebiotics play a relevant role in
prevention and are defined as a substance or molecule that can be used by microorganisms
and can alter bacterial growth or metabolic activity to confer benefits to the host. In the
oral cavity, prebiotics help nonpathogenic bacteria balance the oral microbiome, showing
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promising results in combating the progression of biofilm dysbiosis [51,85]. In certain cases,
these benefits for the host will not only include control of plaque homeostasis but will also
have systemic repercussions.

Nitrate is being studied as a possible prebiotic to beneficially modify plaque micro-
biota and play a protective role in maintaining cardiovascular health [49,50]. Through the
enterosalivary circuit, nitrate from the diet or taken as a prebiotic supplement is absorbed
in the stomach and passes into the bloodstream to later return in a concentrated form in the
saliva, where it is reduced to nitrite by oral bacteria to ultimately become nitric oxide [50,86].
Nitrate supplementation has been observed in vivo to induce certain changes in the micro-
biota, such as an increase in nitrate-reducing bacteria, including Neisseria and Rothia, which
are obligate aerobic bacteria related to oral health [87]. Nitrate supplementation has also
been shown to have significant effects in lowering blood pressure [49,50,86].

Due to its ability to act during the initial phase of biofilm development to the detri-
ment of the progression of dysbiosis towards caries, the amino acid arginine (L-arg) is also
postulated as a good prebiotic in the oral cavity [44,80]. L-arg, present in peptides and
proteins of salivary secretions [88], is metabolized by the arginine deiminase system (ADS)
to release ornithine, ammonia, and carbon dioxide to counteract the acid production of the
medium, protect cells from acidification, and facilitate the generation of adenosine triphos-
phate for the growth and maintenance of dental biofilms [44,88]. L-arg has been considered
an alkaline substrate, and certain species such as S. gordonii, Streptococcus parasanguinis,
Streptococcus intermedius, Streptococcus australis, and S. cristatus contain ADS and catabolize
it, promoting the alkalinity of the biofilm and inhibiting S. mutans [89–91]. In addition
to affecting the change in the medium’s pH, L-arg can reduce adherence to the substrate
and prevent bacterial congregation between Prevotella oris and P. gingivalis, inhibiting the
growth of species such as S. mutans, S. sobrinus, and S. sanguinis while not affecting other
bacteria. Promoting a change in the microbial community is therefore an alternative to
favoring alkaline-base-producing bacteria and preventing the progression of caries [92,93].

Other compounds that have shown efficacy as prebiotics in other areas of the human
body are currently being evaluated as prebiotics in the mouth. Substances such as gluco-
mannan hydrolysate increase the growth of Lactobacillus acidophilus, which has probiotic
properties and reduces the growth of S. mutans [94,95]. Similarly, lactitol, known as a
prebiotic for gastrointestinal health, was evaluated by Slomka V. et al. [96], showing a
specific increase in the growth of S. salivarius and no growth of pathogenic bacteria.

Sugar alcohols, such as arabinose, xylose, maltitol, and xylitol, have also been proposed
as prebiotics due to their ability to act on acid production by saccharolytic bacteria, thereby
reducing the risk of caries [78,97–101]. Kojima Y et al. [102] observed a favored growth
of lactobacilli, which inhibited the growth of pathogenic species such as Candida albicans,
S. mutans, and P. gingivalis.

The amino acid proline has also been postulated as a prebiotic. In vitro assays have
indicated that proline affects host–pathogen interactions by modulating cell signaling and
osmotic stress either as an antibacterial molecule or as a prebiotic [9,103]. Studies have
also reported that a proline-containing peptide (tripeptide Ile-Pro-Ile (described as diprotin
A)) led to increased resistance in biofilms to sucrose-induced decreases in pH [95,96].
Furthermore, the behavior of methionine–proline dipeptide has been evaluated, and it
has been observed that methionine-proline succeeded in changing the composition of
an oral biofilm model by reducing the pathogenic species to a predominantly beneficial
species [104].

4.3. Preventive Approaches Related to Bacterial Coaggregation and Communication
4.3.1. Probiotics and Supragingival Homeostasis

Probiotics in the oral cavity are considered microorganisms that benefit oral health
and have the potential to intervene in biofilm formation and in the niche’s pH among other
actions, rebalancing the dysbiosis [102,105–107] but also producing effects on the host’s
general health. Probiotics in the oral cavity act through three important mechanisms: direct
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bacterial inhibition through the production of antimicrobial substances, competition for
nutrients and binding sites on host cell surfaces that prevent coaggregation, and modulation
of the humoral and cellular immune response [107].

In caries prevention, probiotics can colonize the oral cavity and displace cariogenic
bacteria. In general, probiotics can produce various antimicrobial substances—such as bac-
teriocins and bacteriocin-like peptides, lactic acid, and H2O2—that increase the medium’s
pH and activate immune response cells such as macrophages, neutrophils, and natural
killer cells to attack pathogens [107–112].

Several bacterial species of extraoral and intraoral origin have been proposed as oral
probiotics, classified according to genus, species, and strain. Several species of the genus
Streptococcus can attenuate the inflammatory response by decreasing interleukin-8 pro-
duction by oral keratinocytes when attacked by A. actinomycetemcomitans [111,112]. The
probiotics based on S. cristatus and Streptococcus A12 species produce proteases that inter-
rupt bacteriocin production in S. mutans and produce antibacterial factors, such as organic
acids and H2O2, that prevent the production of pathogenic bacterial compounds [42,48,108].
Other species, such as S. gordonii and S. sanguinis, produce H2O2, which inhibits the se-
cretion of bacteriocins and interferes with intracellular signaling pathways to combat
S. mutans [36,108,113]. The study by Thurnheer et al. [114] showed that Streptococcus pro-
duces bacteriocins that kill cryogenic bacteria and dampen salivary pH, preventing tissue
demineralization. Similarly, the S. salivarius strain produces bacteriocins, such as streptin
and salivaricin, with inhibitory power over other microorganisms. S. salivarius M18 pro-
duces urease and dextranase enzymes that neutralize the acidity of saliva and inhibit the
microorganisms present in oral biofilms. Streptococcus oligofermentans has shown strong
adhesion and a low capacity to metabolize carbohydrates but can produce H2O2 to inhibit
pathogens such as S. mutans [115,116].

Various species of the genus Lactobacillus—including Lactobacillus reuteri, Lactobacillus brevis,
Lactobacillus rhamnosus GG, Lacticaseibacillus casei, Lactobacillus plantarum, and L. lactis—have
been reported to produce inhibitory substances such as ammonia that buffer the pH in
saliva to prevent the growth of S. mutans [107,109,117]. Furthermore, as already mentioned,
L. lactis produces nisin, a natural antimicrobial peptide highly active against Gram-positive
bacteria with a potential role as a caries-preventive agent in the oral cavity with an effect
on cariogenic bacteria and root canal pathogens. Nisin produce inhibition of common
cariogenic-relevant bacteria such as S. sanguinis, Lactobacillus fermenti, L. acidophilus and
S. mutans, which showed significant cell damage after nisin treatment. This confers con-
siderable potential for used as an antibacterial agent to prevent dental caries and makes
L. lactis a promising probiotic strain [56–58].

Other genera and species—such as Neisseria, Streptococcus sp. A12, S. sanguinis BCC23,
Actinomyces, Veillonella, Granulicatella, diverse species of Bifidobacterium (animalis, lactis,
bifidum, longum), and Bacillus coagulans—are currently being analyzed for their relationship
to the recovery of symbiosis in biofilms [105,107,118–120].

Studies on the use of probiotics in the oral cavity are ongoing, and probiotics have
demonstrated a beneficial role in preserving health; however, their effects are transitory,
and strategies such as the use of prebiotics that enhance probiotics’ therapeutic effects are
currently being researched [102,107,119].

Due to the rapid elimination of probiotic bacteria from the oral mucosa, the use of
mucoadhesive and prebiotic polymer composites has been proposed as a strategy to prolong
the contact time between the bacteria and the oral mucosa without delaying disintegration.
One of these polymers that facilitates the prolongation and stability of probiotics in the
mucosa is nanochitosan [121,122], which has been used to release salivary proteins and
electrolytes, prolong the permanence of probiotics and therefore prebiotics in the mucosa,
improve the pH of the medium, and prevent oral diseases [122,123]. Studies have shown
that nanochitosan accompanied by sodium alginate and used as a coating for quercetin
starch prolongs the resistance of L. acidophilus, L. rhamnosus GG, and other species such as
B. longum [121–126].
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4.3.2. QS System Inhibition

The development and maturation of biofilms is regulated by various chemical com-
munication systems between bacteria, known as the QS. When bacteria receive stimuli, the
QS regulates gene expression by secreting specific signaling molecules, called autoinducers,
which favor the development and communication of bacterial communities and incite coor-
dinated behavior in the population. This mechanism also induces changes in the surface
and in bacterial metabolism, which help form the biofilm matrix from the extracellular
polysaccharide substances secreted by the bacteria [30,127,128].

The three most common autoinducer molecules are autoinducing peptides (AIP)
produced by Gram-positive bacteria: autoinducer-2 (AI-2), present in Gram-positive and
Gram-negative bacteria, and acyl homolactones (AHL), produced mainly by Gram-negative
bacteria. A better understanding of the functioning of QS in dysbiotic processes has al-
lowed the development of new strategies for controlling pathogen growth in oral biofilms.
QS inhibition by degradation or inhibition of the synthesis of the signaling molecule IAs
and interference of its functions in biological treatment systems are being considered as
strategies. The use of a bacterial cell extract with QS enzymes that act extracellularly
to degrade autoinducer molecules can be used to inhibit IA-2 and prevent biofilm for-
mation in S. mutans [129–131]. Lactonase, acylase, decarboxylase, and deaminase have
the ability to degrade AHL in biofilm formation [132]. D-galactose has been shown to
reduce biofilm formation in F. nucleatum, P. gingivalis, and T. forsythia by blockading the
AI-2 receptor [131–133]. AIP can affect intercellular communication and biofilm formation
and promote microbial resistance. In the Streptococcus genus, a competence-stimulating
peptide (CSP) has been identified that corresponds to AIP signaling. CSP-mediated QS
is believed to inhibit and control mutacin (bacteriocin) transcription in S. mutans. When
synthesized by commensal bacteria such as Streptococcus oralis and A. naeslundii, AI-2 allows
beneficial growth among bacteria. However, AI-2 is mostly produced by pathogens such
as F. nucleatum, P. gingivalis, and Prevotella intermedia, delaying the growth of commen-
sal bacteria. AI-2 would therefore favor the change from a commensal to a pathogenic
biofilm community. The role of AHL in oral biofilm formation has recently been demon-
strated. This autoinducer has been identified in samples of saliva, tongue cells, and oral
cavity biofilms containing isolated strains including Enterobacter sp., Klebsiella pneumoniae,
Pseudomonas putida, and Citrobacter amalonaticus [129,132,133].

Although these new approaches have shown an ability to inhibit QS, their exact role
and the mechanisms of QS inhibition have not been precisely defined, and further studies
are required [129].

4.3.3. Glucose Oxidase Nanohybrid (Dex-IONP-Gox)

A bifunctional nanohybrid system for selectively targeting pathogenic bacteria and
preserving commensal bacteria in oral biofilms has recently been described. The system
is composed of a glucose oxidase (GOx) that is covalently attached to a dextran-coated
iron oxide nanoparticle (Dex-IONP). GOx can catalyze intracellular glucose and oxygen to
increase H2O2 in the biofilm, while Dex-IONP decomposes H2O2 into oxygen ions, free
radicals that induce reactive oxygen species with capacity for inhibit bacteria and degrade
the extracellular polysaccharide substance matrix [134]. The study by Yue Huang et al. [134]
showed that Dex-IONP-GOx preferentially binds and kills S. mutans more effectively than
commensal S. oralis, an important strategy given that it does not disturb the commensals
and host microbiota. The strategy also showed efficacy in reducing caries when compared
with chlorhexidine without producing side effects on tissues and without affecting the
gastrointestinal microbiome.

5. Conclusions

Dental caries is a highly prevalent multifactorial disease that results from the interac-
tion between cariogenic bacteria, a diet rich in fermentable carbohydrates, and a susceptible
host. Dental caries is mainly combated with daily oral hygiene through various strategies,
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which even today are not entirely effective. Undesirable effects such as pigmentation and
bacterial resistance have therefore increased. There is therefore a need for new therapeutic
pathways that focus on preserving the balance in the oral microbiota, applying strategies to
combat caries while maintaining biofilm integrity and homeostasis in the rapid phase of
supragingival plaque formation from bacteria firmly adhered to a previously clean surface.

Long-term prevention will only be achieved if oral homeostasis is maintained by
controlling the factors that favor dysbiosis. If these mechanisms are not addressed, the
disease might reappear. This literature review discussed the general benefits of these
strategies and their mechanisms of action in the fight against oral pathogenic bacteria in the
early stages of biofilm formation after the daily hygiene process. More studies are needed
to better understand the mechanisms of action, toxicity, and effectiveness of these strategies
with the aim of developing commercial products that are easily accessible to the entire
population and thus mitigate the high rates of tooth loss due to caries and improve quality
of life.
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