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Evolutionary adaptations to new environments
generally reverse plastic phenotypic changes
Wei-Chin Ho1,2 & Jianzhi Zhang 1

Organismal adaptation to a new environment may start with plastic phenotypic changes

followed by genetic changes, but whether the plastic changes are stepping stones to genetic

adaptation is debated. Here we address this question by investigating gene expression and

metabolic flux changes in the two-phase adaptation process using transcriptomic data from

multiple experimental evolution studies and computational metabolic network analysis,

respectively. We discover that genetic changes more frequently reverse than reinforce plastic

phenotypic changes in virtually every adaptation. Metabolic network analysis reveals that,

even in the presence of plasticity, organismal fitness drops after environmental shifts, but

largely recovers through subsequent evolution. Such fitness trajectories explain why plastic

phenotypic changes are genetically compensated rather than strengthened. In conclusion,

although phenotypic plasticity may serve as an emergency response to a new environment

that is necessary for survival, it does not generally facilitate genetic adaptation by bringing

the organismal phenotype closer to the new optimum.
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Phenotypic adaptation to a new environment can comprise
two phases (Fig. 1a). In the first phase, the environmental
shift induces phenotypic changes without mutation; such

changes are referred to as plastic changes (PCs) irrespective of
their fitness effects. After the first phase, there can be a second
phase during which phenotypes are altered by mutations that
accumulate during adaptive evolution. While most past evolu-
tionary studies focused on the second phase, recent years have
seen a growth in the argument for the importance of the first
phase in adaptation1–9. Specifically, it is suggested that plastic
phenotypic changes are often necessary for organismal survival in
a new environment10,11, which is essential because no adaptive
evolution is possible if the environmental shift kills all individuals.
Furthermore, it is suggested that genetic adaptations in the sec-
ond phase are eased by the PCs in the first phase1,2. For example,
plasticity can move the phenotypic value of an organism closer to
the adapted state in the new environment and serve as a step-
ping stone to adaptation7 (Fig. 1b). While some case studies
appear to support this latter assertion8,12,13, its general validity
remains unclear14. Assessing the general validity is especially
relevant because the school of extended evolutionary synthesis
believes that plasticity is generally critical to adaptation and hence
is requesting a major revision of the modern synthesis of evolu-
tionary biology, where the role of plasticity in adaptation is
thought to be largely neglected1,2.

For a trait, its plastic phenotypic change induced by an
environmental shift and the subsequent genetic change (GC)
during the adaptation to the new environment could be in the
same direction toward the optimal phenotypic value in the new
environment. In this case, the PC is reinforced by the adaptive
GC and hence is considered adaptive14,15 (Fig. 1b). The PC and
the subsequent GC could also be in opposite directions. In this
case, the PC is reversed by the adaptive GC and is thus commonly
considered non-adaptive14,15 (Fig. 1c). Because the PCs and GCs
are either in the same direction or opposite directions, the null
expectation under no specific relationship between the two
changes is that reinforcement and reversion are equally probable.
The hypothesis that plasticity generally facilitates adaptation
would be supported if reinforcement is more prevalent than
reversion in a large sample of traits during a large number of
adaptations; otherwise, the hypothesis is refuted. Thus, a test of
the hypothesis can be performed by phenotyping and comparing
adapted organisms in the original and new environments as well
as the organisms right after the environmental shift (i.e., after PCs
but before GCs). Early tests used morphological, physiological, or
behavioral traits, but the number of traits examined was small
and the results varied among studies14. Recent tests with tran-
scriptome data suggested that gene expression level reversion is
more prevalent than reinforcement during experimental evolu-
tion15–18. Although the number of traits is large in these recent
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Fig. 1 Gene expression changes in experimental evolution. a Phenotypic adaptation is studied by comparing the phenotypic values of a trait at three stages:
ancestral organisms adapted to the original environment measured in the original environment (stage o); ancestral organisms measured in the new
environment (stage p); and evolved organisms adapted to the new environment measured in the new environment (stage a). Plastic changes refer to
changes from stage o to p, while genetic changes refer to changes from stage p to a. b A pair of plastic and genetic phenotypic changes of a trait are said to
be reinforcing if both are larger than a preset cutoff and are in the same direction. c A pair of plastic and genetic phenotypic changes of a trait are said to be
reversing if both are larger than a preset cutoff but are in opposite directions. d Fractions of genes with reinforcing (CRI) and reversing (CRV) expression
changes, respectively, in experimental evolution. Organisms as well as the new environments to which the organisms were adapting to are indicated. Each
bar represents an adaptation. The equality in the fraction of reinforcing and reversing genes in each adaptation is tested by a two-tailed binomial test.
When CRV> CRI, P-values are indicated as follows: *P< 0.05; **P< 10−10; ***P< 10−100; when CRV< CRI, P-values are indicated as follows: oP< 0.05; ooP<
10−10; oooP< 10−100
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studies, their analyses vary, rendering the interpretation and
among-study comparison difficult. We thus reanalyze using a
uniform method the transcriptome data from these studies as well
as those from another study that did not address the role of
plasticity in adaptation19.

More importantly, five considerations prompt us to expand the
analysis from gene expression levels to another set of traits—
metabolic fluxes. First, it is desirable to test the hypothesis across
diverse environmental shifts, but experimental evolution studies
with transcriptome data are currently limited in this aspect. By
contrast, fluxes in well-annotated metabolic networks can be
computationally predicted with reasonably high accuracy under a
wide range of environments20,21. Second, it is necessary to
examine if the finding from gene expression traits applies to other
phenotypic traits. Third, organisms acquired at the end of
experimental evolution are usually partially rather than fully
adapted to the new environment, making the distinction between
reinforcement and reversion less certain. Fourth, in experimental
evolution, it is unknown whether an observed gene expression
change is beneficial, neutral, or even deleterious. For example, an
expression change accompanying organismal adaptation could be
responsible for, a result from, or even unrelated to the fitness
gain. Some authors assume that expression changes observed in
replicate experiments are beneficial15, but it is also possible that
they are consequences of adaptation and have positive, zero, or
negative fitness effects. Thus, not all expression changes observed
in experimental evolution are relevant to the hypothesis that
plasticity is a stepping stone to genetic adaptation. By contrast, in
the metabolic network analysis, all flux changes observed in the
maximization of fitness are required and therefore are beneficial.
It has been shown, for instance, that upon the maximization of
fitness, alteration of any non-zero flux would be deleterious22.
Last and most importantly, because the regulatory and evolu-
tionary mechanisms of gene expression changes are not well
understood, it would be difficult to discern the mechanistic basis
of expression level reinforcement or reversion. By contrast, pat-
terns of computationally predicted flux changes can be under-
stood mechanistically by the metabolic model used in the
prediction. We thus test whether plasticity facilitates adaptation
by computational metabolic flux analysis of the model bacterium
Escherichia coli. Our analyses of transcriptome and fluxome
changes in numerous adaptations consistently show that pheno-
typic reinforcement is not only no more but actually less pre-
valent than reversion, indicating that plasticity is not a
stepping stone to genetic adaptation. More importantly, we
uncover the underlying cause of the preponderance of phenotypic
reversion.

Results
Prevalence of expression reversion in experimental evolution.
We identified five studies that conducted six different adaptation
experiments and collected transcriptome data suiting our analy-
sis. These six experiments included 10 replicates of E. coli
adapting to a high-temperature environment17, 6 replicates of
another strain of E. coli adapting to a high-temperature envir-
onment18, 7 replicates of E. coli adapting to a glycerol medium16,
7 replicates of E. coli adapting to a lactate medium16, 1 replicate
each of 12 different yeast (Saccharomyces cerevisiae) strains
adapting to an xylulose medium19, and 2 replicates of guppies
(Poecilia reticulata) adapting to a low-predation environment15.
In total, we analyzed 44 cases of adaptation.

In each case, transcriptome data were respectively collected for
the organisms in the original environment (o for the original
stage), shortly after their exposure to the new environment (p for
the plastic stage), and at the conclusion of the experimental

evolution in the new environment (a for the adapted stage;
Fig. 1a). Note that the time between o and p is so short that no
newly arisen allele is expected to have reached an appreciable
frequency in stage p to impact the average phenotype of the
population. The expression level of each gene is treated as a trait.
Let the expression levels of a gene at the o, p, and a stages be Lo,
Lp, and La, respectively. In each experiment, we first identified
genes with appreciable PCs in expression level by requiring PC = |
Lp–Lo| to be greater than a preset cutoff. We also identified genes
with appreciable GCs in expression level by requiring GC = |La–
Lp| to be greater than the same preset cutoff. For those genes
showing both appreciable PCs and appreciable GCs, we ask
whether the two changes are in the same direction (i.e.,
reinforcement) or opposite directions (i.e., reversion; Fig. 1b, c).
We used 20% of the original gene expression level (i.e., 0.2Lo) as
the cutoff in the above analysis. The fraction of genes exhibiting
expression level reinforcement (CRI) is smaller than the fraction
of genes exhibiting reversion (CRV) in 42 of the 44 adaptations,
and the difference between CRI and CRV is significant in 40 of
these 42 cases (nominal P< 0.05; two-tailed binomial test;
Fig. 1d). Among the two adaptations with CRI> CRV, their
difference is significant in only one case (Fig. 1d). The general
preponderance of expression level reversion (i.e., 42 of 44 cases)
in adaptation is statistically significant (P = 1.1 × 10−10, two-tailed
binomial test). The same trend is evident when the cutoff is
altered to 0.05Lo (Supplementary Fig. 1a) or 0.5Lo (Supplemen-
tary Fig. 2a), suggesting that the above finding is robust to the
cutoff choice. Clearly, the transcriptomic data do not support the
hypothesis that plasticity generally facilitates genetic adaptation.

Metabolic flux reversion in environmental adaptations. To
assess the generality of the above finding and understand its
underlying cause, we expanded the comparison between pheno-
typic reinforcement and reversion to metabolic fluxes (see
Introduction). Because our metabolic analysis is not meant to
model the above experimental evolution or expression changes,
the parameters used are unrelated to the experimental evolution.
Specifically, we computationally predicted plastic and genetic flux
changes during environmental adaptations using iAF1260, the
reconstructed E. coli metabolic network23. We used flux
balance analysis (FBA) to predict the optimized fluxes of fully
adapted organisms in the original (stage o) and new (stage a)
environments, respectively, under the assumption that the
biomass production rate, a proxy for fitness, is maximized by
natural selection20. FBA predictions match experimental
measures reasonably well for organisms adapted to their envir-
onments24–29 and are commonly used in the study of
genotype–environment–phenotype relationships22,27,29–37. When
predicting plastic flux changes upon environmental shifts (stage
p), we employed minimization of metabolic adjustment (MOMA)
instead of FBA because MOMA better recapitulates the
immediate flux response to perturbations21 (see Methods). We
treated the flux of each reaction in the metabolic network as a
trait, and modeled environmental shifts by altering the carbon
source available to the network. There are 258 distinct exchange
reactions in iAF1260, each transporting a different carbon source.
We therefore examined 258 different single-carbon source
environments.

We started the analysis by using glucose as the carbon source
in the original environment, because this environment was the
benchmark in iAF1260 construction23. We then considered the
adaptations of E. coli to 257 new environments each with a
different single-carbon source. We found that these new
environments are naturally separated into two groups in the
MOMA-predicted biomass production rate, a proxy for the
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fitness at stage p (fp) (Supplementary Fig. 3). One group shows fp
< 10−4, suggesting that E. coli is unlikely to sustain in these new
environments. We therefore focused on the remaining 50 new
environments with fp> 10−4, to which E. coli can presumably
adapt (Supplementary Table 1).

Defining flux reinforcement and reversion and using the cutoff
of 0.2Lo as in the transcriptome analysis, we found CRV to be
significantly greater than CRI (nominal P< 10−10, two-tailed
binomial test) in each adaptation. The chance probability that all
50 adaptations show CRV> CRI is 1.8 × 10−15 (two-tailed binomial
test; Fig. 2a), suggesting a general predominance of flux reversion.
The mean and median CRV are 30.2% and 30.5%, respectively,
while those for CRI are only 1.0% and 0.8%, respectively. The
above trend holds when we alter the cutoff to 0.05Lo
(Supplementary Fig. 1b) or 0.5Lo (Supplementary Fig. 2b).
Because an FBA or MOMA problem may have multiple solutions,
the order of the reactions in the stoichiometric matrix could affect
the specific solution provided by the solver. Nevertheless, when
we randomly shuffled the reaction order in iAF1260, the general
pattern of CRV> CRI is unaltered (Supplementary Fig. 4a).
Because quadratic programming—required by MOMA—is
harder to solve than linear programming used in FBA, CRV

could have been overestimated compared with CRI. To rectify this
potential problem, we designed a quadratic programming-based

MOMA named “MOMA-b” and used it instead of FBA to predict
fluxes at stage a (see Methods), but found that CRV still exceeds
CRI (Supplementary Fig. 4b). Thus, this trend is not a technical
artifact of the solver difference between MOMA and FBA.

Flux reversion largely restores the original fluxes. To examine
whether the flux reversion during genetic adaptation restores the
fluxes at stage o, we compared the total change TC = |La–Lo| with
0.2Lo for each reaction showing flux reversion, in each adapta-
tion. If TC < 0.2Lo, the flux is considered restored (Fig. 2b).
Otherwise, we further compare PC with GC. If GC> PC, the flux
is over-restored; otherwise, it is under-restored (Fig. 2b). Across
the 50 adaptations, the mean fractions of reactions showing
“restored”, “over-restored”, and “under-restored” flux reversion
are 26.4%, 3.1%, and 0.7%, respectively, and the medians are
30.2%, 0.3%, and 0.1%, respectively (Fig. 2c). Clearly, flux
reversion largely restores the fluxes at stage o.

Predominance of flux reversion irrespective of the original
environment. To investigate the generality of our finding of the
predominance of flux reversion, we also examined adaptations
with a non-glucose original environment. For many original
environments, however, only a few new environments are adap-
table by the E. coli metabolic network. We thus focused on 41
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original environments (including the previously used glucose
environment) that each has more than 20 adaptable (i.e., fp> 10
−4) new environments (Supplementary Table 2). For each of these
original environments, we calculated the CRI/CRV ratio for each
adaptable new environment, and found it to be typically lower
than 0.1 (Fig. 2d). We then computed the median CRI/CRV across
all adaptable new environments from each original environment.
Across the 41 original environments, the largest median CRI/CRV

is 0.11 and the median of median CRI/CRV is only 0.02. Hence,
regardless of the original environment, flux reversion is much
more prevalent than reinforcement during genetic adaptations to
new environments.

Why phenotypic reversion is more frequent than reinforce-
ment. Our finding that phenotypic reinforcement is not only no
more but actually much less common than reversion is unex-
pected and hence demands an explanation. The observation of
this trend in both transcriptomic and fluxomic analyses suggests a
general underlying mechanism, which we propose is the

occurrence of PC> TC. Geometrically, it is obvious that when
PC> TC, the GC must reverse the PC (the left and middle dia-
grams in the top row in Fig. 3a). By contrast, when PC< TC,
reversion and reinforcement are equally likely if no other bias
exists (the left and middle diagrams in the bottom row in Fig. 3a).
Let the probability of PC> TC be q (> 0). CRI/CRV is expected to
be [0.5(1 − q)]/[0.5(1 − q) + q] = (1 − q)/(1 + q)< 1. In other
words, as long as PC> TC for a few traits, reversion is expected to
be more frequent than reinforcement (under no other bias).

To seek empirical evidence for the above explanation, for each
of the 44 cases of experimental evolution, we calculated the
fraction of genes whose expression changes satisfy PC> TC
(Fig. 3b). The mean and median fractions are 0.51 and 0.48,
respectively. Furthermore, after we remove all genes for which
PC> TC, there is no longer an excess of reversion (Supplemen-
tary Fig. 5a), indicating the sufficiency of our explanation.
Similarly, we computed the fraction of metabolic reactions
showing PC> TC in the adaptation of the E. coli metabolic
network from the glucose environment to each of the 50 new
environments (Fig. 3c). The mean and median fractions are 0.85
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and 0.93, respectively. Similarly, after the removal of reactions
showing PC> TC, there is no general trend of more reversion
than reinforcement across the 50 adaptations (Supplementary
Fig. 5b). These transcriptome and fluxome results support that
the excess of reversion relative to reinforcement is explainable by
the occurrence of PC> TC for non-negligible fractions of traits.

Why does PC exceed TC for many traits? A likely reason is that
PCs allow organisms to survive upon a sudden environmental
shift but the fitness is much reduced compared with that in the
original environment as well as that after the adaptation to the
new environment. Thus, the overall physiological state of the
organisms may be quite similar between the adapted stages in the
original and new environments, but is much different in the low-
fitness plastic stage right after the environmental shift. This may
explain why PC exceeds TC for many traits, regardless of whether
the trait values are causes or consequences of the organismal
fitness and physiology.

We found strong evidence for the above model by metabolic
network analysis. First, using the predicted biomass production
rate as a proxy for fitness, we compared the E. coli fitness at the
plastic stage (fp) and that after adaptation to a new environment
(fa), relative to that in the original glucose environment, for each
of the adaptations to the 50 new environments. In all cases, fp< 1
(Fig. 3d), confirming that environmental shifts cause fitness drops
before genetic adaptation. We found that fa is typically close to 1,
although in a few new environments it is much >1 (Fig. 3d). In a
log10 scale, fp is more different from 1 than is fa in 43 of the 50

adaptations (P = 1.0 × 10−7; one-tailed binomial test). Second, our
model assumes an association between flux changes and fitness
changes22. Across the 50 adaptations from the glucose environ-
ment, there is a strong negative correlation between fp and mean
PC (Spearman’s ρ = −0.98, P< 10−300; Fig. 3e). An opposite
correlation exists between fa and mean TC (ρ = 0.57, P = 1.1 × 10
−5; Fig. 3f). Together, our analyses demonstrate that the primary
reason for a higher frequency of phenotypic reversion than
reinforcement during adaptation is that in terms of fitness and
associated phenotypes, organisms at stage p are more different
than those at stage a, when compared with those at stage o.

Phenotypic reversion in random metabolic networks. The PCs
and GCs in gene expression level and metabolic flux during
adaptations depend, respectively, on the regulatory network and
metabolic network of the species concerned. Because these net-
works result from billions of years of evolution, one wonders
whether the predominance of phenotypic reversion is attributable
to the evolutionary history of the species studied, especially the
environments in which the species and its ancestors have been
selected in the past, or an intrinsic property of any functional
system. To address this question, we applied the same analysis to
500 functional random metabolic networks previously gener-
ated22. These networks were constructed from iAF1260 by
swapping its reactions with randomly picked reactions from the
universe of all metabolic reactions in Kyoto Encyclopedia of
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Genes and Genomes38 as long as the network has a non-zero
FBA-predicted fitness in the glucose environment upon each
reaction swap39.

Only 20 new environments that iAF1260 can adapt to (from
the glucose environment) are adaptable by at least 20 of the 500
random networks. We thus analyzed the adaptations of random
networks to each of these 20 new environments, with the glucose
environment being the original environment. For each new
environment, the median CRV of all random networks that can
adapt to this environment is generally around 0.1 (box plots in
Fig. 4a), with the median of median CRV being 0.11. By contrast,
median CRI across random networks for a new environment is
generally below 0.01 (box plots in Fig. 4b), with the median of
median CRI being 0.0033. Median CRI/CRV ratio across random
networks for a new environment is generally below 0.05 (box plot
in Fig. 4c), with the median of the median CRI/CRV being 0.0033.
Clearly, the predominance of flux reversion is also evident in
functional random networks, suggesting that this property is
intrinsic to any functional metabolic network rather than a
product of particular evolutionary histories. Indeed, the mechan-
istic explanation for this property in actual organisms (Fig. 3)
holds in the random metabolic networks examined here.
Specifically, the fraction of reactions exhibiting PC> TC is
substantial (Fig. 4d) and fp is mostly lower than 1 (Fig. 4e).
Furthermore, fp is generally more different from 1 than is fa in a
log10 scale, because |log10fp|–|log10fa| is largely positive (Fig. 4f).

Intriguingly, however, for 19 of the 20 new environments, CRV

in the E. coli metabolic network exceeds the median CRV in the
random networks (Fig. 4a). A similar but less obvious trend holds

for CRI (Fig. 4b). For 16 of the 20 new environments, CRI/CRV

from E. coli is smaller than the median CRI/CRV of the random
networks (P = 0.012, two-tailed binomial test; Fig. 4c). Hence,
although both the E. coli metabolic network and random
networks show a predominance of flux reversion, this phenom-
enon is more pronounced in E. coli. Mechanistically, this disparity
is explainable at least qualitatively by our model in the previous
section. Specifically, for 15 of the 20 new environments, the
fraction of E. coli reactions with PC> TC exceeds the
corresponding median fraction in random networks (P = 0.021,
one-tailed binomial test; Fig. 4d). For all 20 new environments, fp
of E. coli is lower than the median fp of random networks (P =
9.5 × 10−7, one-tailed binomial test; Fig. 4e). For 19 of the 20 new
environments, |log10 fp| – |log10 fa| for E. coli is larger than the
corresponding median value for the random networks (P = 2.0 ×
10−5, one-tailed binomial test; Fig. 4f). But, why is fp of E. coli
lower than that of random networks? One potential explanation
is that the composition and structure of the E. coli metabolic
network have been evolutionarily optimized for growth in the
glucose environment and/or related environments, while the
same is not true for the random networks, which were only
required to be viable in the glucose environment. As a result,
when glucose is replaced with a new carbon source in a new
environment, the fitness of E. coli drops substantially, but those of
random networks may drop only mildly. Although the absolute
fitness in the plastic stage may well be higher for E. coli than the
random networks, the relative fitness, which fp is, is expected to
be lower for E. coli than the random networks. Thus, the higher
prevalence of flux reversion relative to reinforcement in E. coli

E. coli in 42 °C (2014)

1 2 3 4 5 6 7 8 9 10

Evolved lines

0

10

20

30

40

50

F
ra

ct
io

n 
of

 g
en

es
 (

%
)

Evolved/mutant lines

0

20

40

60

80
E. coli in
glycerol medium

Evolved lines

0

10

20

30

40

50
E. coli in
lactate medium

Evolved lines

0

10

20

30

40

50
Yeast in
xylulose medium

Evolved lines

0

20

40

60

80
Guppy in
low-predation
streams

1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 101112 1 2

Evolved lines

0

1

2

3

4

5

1 5 10 15 20 25 30 35 40 45 50

New environments

0

5

10

15

20

F
ra

ct
io

n 
of

 r
ea

ct
io

ns
 (

%
)

Reinforcing

Reversing

a

b

E. coli in
42 °C (2016)

Fig. 5 Fraction of reinforcing traits (CRI) is no greater than that of reversing traits (CRV) in adaptations even when the total change exceeds a preset cutoff.
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than random networks is likely a byproduct of stronger selection
of E. coli compared with random networks in the original
environment used in our adaptation analysis.

Reversion is at least as common as reinforcement even for
traits with appreciable TC. In the foregoing analyses of tran-
scriptomes (Fig. 1d) and fluxomes (Fig. 2a), we considered all
traits exhibiting appreciable PCs and GCs. In comparative and
evolutionary studies, however, phenotypes at stage p are typically
inaccessible. As a result, comparative and evolutionary biologists
usually focus on traits whose phenotypic values differ between
stages o and a, despite that the other traits could have also
experienced adaptive changes (from the values at stage p to those
at stage a). To study if our foregoing findings apply to the traits
that are the subject of most comparative and evolutionary biol-
ogists, we focus on a subset of traits above analyzed that satisfy
the condition of TC> 0.2Lo. Of the 44 cases of experimental
evolution, 33 showed CRV> CRI (P = 0.0013, two-tailed binomial
test), in 30 of which CRV significantly exceeds CRI (nominal P<
0.05; two-tailed binomial test; Fig. 5a). Of the 50 environmental
adaptations of the E. coli metabolic network originating from the
glucose environment, three cases had equal numbers of flux
reversion and reinforcement. Among the remaining 47 cases,
22 showed more reversion than reinforcement, while 25 showed
the opposite (P = 0.77, two-tailed binomial test; Fig. 5b). When
CRI is significantly different from CRV, 15 cases showed CRV< CRI

while 11 showed the opposite (P = 0.70, two-tailed binomial test;
Fig. 5b). Hence, even among traits with TC> 0.2Lo, there is no
evidence for significantly more reinforcement than reversion. Of
note, in the above metabolic analysis, on average 139 reactions
satisfied TC> 0.2Lo per adaptation. Because all flux changes
observed in the maximization of fitness are required and therefore
are by definition beneficial, even the adaptation to a simple car-
bon source change apparently involves much more than a few
reactions.

Discussion
Using the transcriptome data collected in a total of 44 cases of six
different experimental evolutionary adaptations of three species
(E. coli, yeast, and guppy) and the computationally predicted
fluxomes of E. coli in hundreds of different environmental
adaptations, we showed that genetic adaptations to new envir-
onments overwhelmingly reverse, rather than reinforce plastic
phenotypic changes. Our fluxome analyses have several caveats
worth discussion. First, because MOMA minimizes the total
squared flux difference from the original flux, PCs could have
been underestimated, but this bias would only make our con-
clusion more conservative. Second, a bias could exist owing to
potentially different accuracies of MOMA and FBA that are
respectively used to predict plastic and genetic flux changes. To
tackle this problem, we designed a MOMA-based algorithm to
infer both PCs and GCs, but found the results to be qualitatively
unchanged (Supplementary Fig. 4b). Third, we considered only
single-carbon source environments in our analyses while the
natural environments of E. coli can be much more complex. We
thus simulated adaptations from the glucose environment to
environments with mixed carbon sources (see Methods), but
found our conclusion unaltered (Supplementary Fig. 6). Fourth,
computational flux predictions by FBA and MOMA inevitably
contain errors. But, the fact that our fluxome-based conclusion
qualitatively match the transcriptome-based conclusion suggests
that our fluxome analysis is reliable. Furthermore, some of our
metabolic analyses are largely immune to flux prediction errors.
For example, because the E. coli metabolic network and random
metabolic networks were analyzed using the same method, their

difference discovered is unlikely explainable by flux prediction
errors. As mentioned, our transcriptome analysis also has a
potential shortcoming. Because the organisms were not fully
adapted to the new environments at the end of experimental
evolution, it is possible that a trait currently not considered to
show reversion or reinforcement due to insufficient GC would
show one of these two patterns if allowed to adapt further.
However, because our results are robust to different cutoffs used
(0.05Lo to 0.5Lo) in the definition of GCs (Supplementary
Figs 2,3), our finding of the preponderance of expression level
reversion is minimally impacted by this limitation. Another
concern is that expression levels of many genes strongly correlate
with organismal growth rate and may simply reflect the growth
rate40,41; it is interesting to ask whether removing these genes
would alter our result. Esquerre et al.42 measured the tran-
scriptomes of E. coli grown in a chemostat at four different rates.
Using this data set, we defined a gene to be growth-rate-
independent if its expression level does not monotonically
increase or decrease with the growth rate, resulting in the
assignment of 42% of genes as growth-rate-independent. Focus-
ing on these genes in 30 cases of E. coli experimental evolution,
we observed CRV> CRI in 28 cases (P = 8.7 × 10−7, two-tailed
binomial test), and CRV significantly exceeds CRI in each of these
28 cases (nominal P< 0.05; two-tailed binomial test; Supple-
mentary Fig. 7). Thus, our finding also holds for growth-rate-
independent genes.

In all analyses, we regarded phenotypic reinforcement as evi-
dence for the stepping stone role of plasticity in adaptation and
phenotypic reversion as evidence against this hypothesis15. One
could argue that although reinforcement supports the hypothesis,
reversion is not necessarily against the hypothesis. Specifically, if a
PC moves the organismal phenotype closer to the optimum in the
new environment but overshoots, the GC required to bring the
phenotype to the optimum may be smaller than that in the
absence of plasticity. To investigate this scenario, we considered
all traits with PC and GC both larger than the cutoff as was done
in the definition of reinforcement and reversion. We then
regarded the PC of a trait as facilitating if GC< TC, or hindering
if GC> TC. We respectively computed the fractions of traits with
facilitating (CFAC) and hindering PCs (CHIN) in each adaptation.
In 32 of the 44 cases of experimental evolution, CHIN exceeds
CFAC, demonstrating an overall preponderance of hindering
plasticity (P = 3.7 × 10−3, two-tailed binomial test; Supplementary
Fig. 8a). Furthermore, CHIN/CFAC is likely underestimated in the
above analysis, because the fact that adaptations to new envir-
onments had not ceased by the end of experimental evolution
means that cases currently classified as facilitating can become
hindering. This is because GC will probably rise in further
adaptations while TC will either rise by at most the same amount
as the increase in GC or reduce. For the adaptations of the E. coli
metabolic network from the glucose environment to the 50 new
environments, the above underestimation does not exist, and
CHIN is found to exceed CFAC in every adaptation (P = 1.8 × 10−15,
two-tailed binomial test; Supplementary Fig. 8b). Thus, the
comparison between facilitating and hindering plasticity also
refutes the hypothesis that plasticity is a stepping stone to
adaptation.

It is also possible that the PC of a trait can move its phenotypic
value to the optimal state in the new environment such that no
GC is needed. But, we found that the fraction of traits with an
appreciable PC (PC> 0.2Lo) but no appreciable GC (GC< 0.2Lo)
in the transcriptome analysis of Fig. 1d is on average only 11%,
which is likely an overestimate because the adaptation to the new
environment may not have been completed in experimental
evolution. The corresponding value is only 0.62% in the fluxome
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analysis of Fig. 2a. Hence, even considering these cases does not
alter our conclusion.

We provided evidence that the cause for the preponderance of
phenotypic reversion is that, even with plasticity, organismal
fitness drops precipitously after environmental shifts, but more or
less recovers through subsequent evolution; such fitness trajec-
tories dictate that many fitness-associated traits are drastically
altered at the plastic stage but are then restored via adaptive
evolution. Our model is consistent with the observation that
stress response is frequently associated with growth cessation as
well as reductions in the expression levels of growth-related genes
and concentrations of central metabolites43–45. It is also con-
sistent with the notion that genetic adaptation tends to rebalance
the energy allocation in growth that is broken in stress response
and that the physiological state of organisms after the rebalance
in the new environment is similar to that in the original
environment16,18,44,46,47. Together, these considerations suggest
that plastic phenotypic changes in new environments represent
emergency stress responses that may be important for organismal
survival, but are otherwise not stepping stones for genetic adap-
tations to the new environments. The similar observation in
functional random metabolic networks suggests that our con-
clusion is likely to be general to most functional systems
regardless of the specific evolutionary histories of the systems.

Evolutionary biologists may contend that they are interested
only in traits that differ between organisms living in different
environments, because these traits have most likely experienced
adaptive evolution. We showed that even for such traits (i.e., TC
> 0.2Lo), reinforcement is no more prevalent than reversion (Fig.
5), further refuting the stepping stone hypothesis. It is worth
stressing, however, that a trait with TC< 0.2Lo may have also
experienced adaptive evolution, because it could have a large PC
reversed by a large GC that is beneficial. In other words, traits
with similar values in stages o and a may have had cryptic
adaptations unrevealed due to the lack of information about stage
p. Hence, the observation that a trait looks similar among
organisms living in different environments does not necessarily
mean that it experiences no adaptive changes in organismal
adaptations to their respective environments.

It is important to emphasize that our study focuses exclusively on
adaptations to new environments that have not been experienced at
least in the recent past. For those environments that have been
(repeatedly) experienced by the organisms in the recent past, it is
possible that mutations conferring plastic phenotypic changes that
are beneficial in these environments have been fixed and there is no
controversy that adaptive plasticity can evolve under this scenario.

The importance of plasticity in adaptation has also been dis-
cussed in theories of genetic assimilation48 and accommodation6,
which refer to the evolutionary process by which a phenotype
induced by an environmental stimulus becomes stably expressed
even without the evoking environmental stimulus. Because the
experimental evolution data analyzed do not contain information
on the phenotypic plasticity of the organisms adapted to the new
environment, our study cannot test genetic assimilation or
accommodation. A related hypothesis that we did not test
regarding the role of plasticity in adaptation is that upon an
environmental shift, organisms with a relatively high plasticity
adapt faster or are more likely to adapt than organisms with a
relatively low plasticity. It would be interesting to test this
hypothesis in the future when comparable organisms with con-
trasting levels of plasticity become available for experimental
evolution studies.

Due to the limitation of the available data, our transcriptome
and fluxome analyses focused primarily on unicellular microbes
(with the exception of guppies). Compared with unicellulars,
multicellulars are more complex because of differential gene

expressions among cell types and because the biomass production
rate of a cell type may not correlate well with organismal fitness.
Therefore, it will be important to confirm the generality of our
findings in the future when more data sets from multicellulars
become available.

Methods
Gene expression analysis. Transcriptome data sets from six experimental adap-
tations were acquired from five studies. For each replicate of each adaptation, the
data included gene expression levels of ancestral organisms in the original envir-
onment (stage o), ancestral organisms in the new environment (stage p), and
evolved organisms in the new environment (stage a). For each data set, we removed
genes with any missing expression levels and then normalized gene expression
levels such that the mean expression level of all genes is the same across all data
sets.

The first data set came from the experimental evolution of E. coli K-12 MG1655
in a 42 °C medium with 10 replicates17. The authors performed RNA sequencing
(RNA-seq) using (i) the ancestral line at 37 °C, (ii) ancestral line at 42 °C, and (iii)
10 parallelly evolved lines at 42 °C, and these data were respectively used to
estimate the Lo, Lp, and La of 4341 genes. All expression levels measured in FPKM
were available in their Dataset S3.

The second data set came from the experimental evolution of E. coli B REL1206
in a 42 °C medium18. The authors performed RNA-seq using (i) the ancestral line
at 37 °C, (ii) ancestral line at 42 °C, (iii) two evolved lines at 42 °C, and (iv) four
lines each carrying a distinct adaptive mutation at 42 °C. We respectively used (i) to
estimate Lo, (ii) to estimate Lp, and both (iii) and (iv) to estimate La of 4202 genes.
All expression levels measured by DESeq were provided by the authors.

The third and fourth data sets came from the experimental evolution of E. coli
K-12 MG1655 in glycerol and lactate medium, respectively16. The authors used
Affymetrix E. coli Antisense Genome Arrays to profile the transcriptome of (i) the
ancestral line in glucose, (ii) ancestral line in glycerol, (iii) ancestral line in lactate,
(iv) seven parallelly evolved lines in glycerol on day 21, (v) seven parallelly evolved
lines in glycerol on day 44, (vi) seven parallelly evolved lines in lactate on day 20,
and (vii) seven parallelly evolved lines in lactate on day 60. Each line has three
replicates, except that profile (iii) has six replicates. We averaged gene expression
levels across replicates for each line. For the adaptation to the glycerol medium, we
respectively used (i) to estimate Lo, (ii) to estimate Lp, and (v) to estimate La. For
the adaptation to the lactate medium, we respectively used (i) to estimate Lo, (iii) to
estimate Lp, and (vii) to estimate La. Transcriptomes of (ii)–(vii) were downloaded
from Gene Expression Omnibus (GEO) with the accession number GSE33147,
whereas that of (i) was provided by the authors. In total, 3745 genes were
considered.

The fifth data set came from the experimental evolution of 12 different strains
of S. cerevisiae in a xylulose medium19. The authors performed RNA-seq using (i)
12 ancestral lines in a glucose medium, (ii) 12 ancestral lines in the xylulose
medium, and (iii) 12 evolved lines in the xylulose medium. Each line has two
replicates, and the averaged expression levels of the two replicates were used. We
respectively used (i) to estimate Lo, (ii) to estimate Lp, and (iii) to estimate La of
2235 genes. All expression levels in terms of UMI scoring normalized counts were
downloaded from GEO with the accession number GSE76077.

The sixth data set came from the experimental evolution of P. reticulata guppies
originating from streams with high numbers of cichlid predators (high predation
(HP) environment) in cichlid-free streams (low predation (LP) environment)15.
The authors performed RNA-seq of brain tissues from (i) guppies caught in HP,
(ii) guppies caught in HP but reared in LP, and (iii) two populations of guppies in
LP after experimental evolution. We respectively used (i) to estimate Lo, (ii) to
estimate Lp, and (iii) to estimate La of 37,493 genes. All expression levels in terms of
TMM-normalized counts measured by edgeR were provided by the authors.

Metabolic network analysis. The SMBL file of the E. coli metabolic network
model iAF126023 was downloaded from BiGG49 and parsed by COBRA50. All
linear and quadratic programming problems in this study were solved by the
barrier method using Gurobi optimizer with MATLAB (method = 2). Numerical
differences smaller than 10−4 were ignored in the analysis. The codes are available
upon request.

We used FBA to estimate the fluxes of the E. coli network when it is fully
adapted to an environment. FBA assumes a metabolic steady state and maximizes
the rate of biomass production20. Mathematically, FBA is a linear programming
question in the following form

maximize cTv; subject to Sv¼ 0;

andα � v � β;

where v is a vector of reaction fluxes that need to be optimized, cT is a transposed
vector describing the relative contributions of various metabolites to the cellular
biomass, S is a matrix describing the stoichiometric relationships among
metabolites in each reaction, α is a vector describing the lower bound of each flux,
and β is a vector describing the upper bound of each flux.
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The model iAF1260 includes 258 exchange reactions, each of which allows the
uptake of one carbon source. In the estimation of the fully adapted flux distribution
in one environment, the uptake rate of the focal carbon source was set at 10
mmol g DW−1 h−1, which follows the setting in a previous study for a glucose-
limited medium23, while the uptake rates of other carbon sources were set at zero.
The uptake rates of non-carbon sources such as water, oxygen, carbon dioxide, and
ammonium were set as in the previous study23. Note that some reactions are
simple diffusions between different cellular compartments. Because these reactions
do not have dedicated enzymes and are not “mutable”, we excluded them from the
list of phenotypic traits considered. In total, 1811 reactions were considered.

We used MOMA to estimate plastic flux changes when E. coli is shifted from
one environment to another21. The mathematical form of MOMA is

minimize v � v0ð Þ2; subject to Sv¼ 0 and α � v � β;

where v is the vector of all reaction fluxes upon the environmental shift and is the
variable to optimize, v0 is the vector of all reaction fluxes in the original
environment and are predetermined using FBA. S, α, and β are the same as
described for FBA.

While MOMA was originally developed to predict metabolic fluxes upon gene
deletions, MOMA developers discussed its potential applicability in predicting
fluxes upon environmental shifts21. MOMA assumes that cells attempt to maintain
the metabolic homeostasis as much as possible in the face of an unexperienced
situation, may it be the loss of a reaction (due to gene deletion) or a change in the
environment. In theory, an environmental change can be very similar to a gene
deletion. For example, moving cells from the glucose medium to an unexperienced
medium containing a different carbon source is equivalent to deleting genes for
glucose transportation. Indeed, metabolic fluxes of E. coli respectively
experimentally measured in lactate51 and in galactose52 correlate well with the
fluxes predicted using MOMA (Supplementary Fig. 9). Therefore, MOMA is
suitable for predicting plastic flux changes.

In the above investigation of MOMA performance, metabolic fluxes
experimentally determined in the lactate medium were from Fig. 2a in Hua et al.51.
The mapping from gene names to reaction names was based on the annotation in
iAF1260. In total, nine genes (excluding lldD) were used. The relative flux of each
of the nine reactions was calculated by the value underneath each box in Fig. 2a of
Hua et al. divided by the lactate uptake rate in the lldD box. Metabolic fluxes
experimentally determined in the galactose medium were from Fig. 1b and
Supplementary Table 3 in Haverkorn van Rijsewijk et al.52. The mapping from
gene names to reaction names was also based on the annotation in iAF1260. Note
that we considered the flux measured for mae (MAL> PYR) as the combination of
reactions ME1 and ME2 in iAF1260. In total, 26 measurements were used, and
their relative fluxes were calculated by their values divided by the galactose uptake
rate (2.17). For the relative fluxes predicted by MOMA, normalization was
performed by using the estimated uptake rate of the corresponding carbon source
in MOMA solutions.

To ensure that our results are not artifacts of different optimization accuracies
of FBA and MOMA, we designed MOMA-b and used it to predict the fluxes in
organisms adapted to new environments. In addition to having the same objective
function and constraints as in MOMA, MOMA-b has a biomass constraint.
Specifically, we set the biomass production rate in MOMA-b to be the same as what
FBA predicts for organisms adapted to the new environment. The mathematical
form of this new optimization question is

minimize v � v0ð Þ2; subject to Sv¼ 0; α � v � β; and cTv¼b;

where the variables v and parameters v0, S, α, and β are the same as described for
MOMA, and b is the FBA-predicted biomass production rate in the new
environment. This optimization problem is still a quadratic programming problem
and its solution can differ from that of FBA.

In addition to using single-carbon source environments, we followed a previous
study53 to generate 100 environments with multiple carbon sources. In each
environment, we generated a random number g from an exponential distribution
with a mean of 0.1 for each of the 258 carbon sources. Here g is the probability that
the carbon source is available. The actual presence or absence of the carbon source
is then determined stochastically using g. These random environments have a mean
of 28 and a median of 21 carbon sources per environment.

Data availability. All relevant data are available from the corresponding author
upon request.
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