

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(*E*)-3-Bromobenzylidene]pyrazine-2carbohydrazide

Mushtaq Ahmad,^{a,b} Shahid Hameed,^a M. Nawaz Tahir,^c* Muhammad Anwar^d and Muhammad Israr^d

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, ^bMedicinal Botanic Centre, PCSIR Laboratories Complex, Peshawar, Pakistan, ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^dDepartment of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 6 October 2013; accepted 6 October 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.075; data-to-parameter ratio = 14.8.

In the title compound, $C_{12}H_9BrN_4O$, the dihedral angle between the aromatic rings is 12.16 (12)°. An intramolecular N-H···N hydrogen bond closes an S(5) ring. In the crystal, C-H···O hydrogen bonds link the molecules into C(6) chains propagating in [010]. Very weak aromatic π - π stacking [centroid-centroid separations = 3.9189 (15) and 3.9357 (15) Å] is also observed.

Related literature

For related structures, see: Hameed *et al.* (2013*a*,*b*).

 $0.34 \times 0.25 \times 0.23 \text{ mm}$

 $\mu = 3.43 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD	9373 measured reflections
diffractometer	2415 independent reflections
Absorption correction: multi-scan	1670 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.029$
$T_{\min} = 0.389, T_{\max} = 0.506$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 163 parameters $wR(F^2) = 0.075$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$ 2415 reflections $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		/		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots N2$ $C6-H6\cdots O1^{i}$	0.86 0.93	2.24 2.26	2.646 (3) 3.150 (3)	109 160

Symmetry code: (i) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors are also thankful to the Higher Education Commission (HEC) of Pakistan for financial support. M. Ahmad is thankful to the Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories of Pakistan for financial support throughout his study leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7147).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Hameed, S., Ahmad, M., Tahir, M. N., Israr, M. & Anwar, M. (2013a). Acta Cryst. E69, o1419.
- Hameed, S., Ahmad, M., Tahir, M. N., Shah, M. A. & Shad, H. A. (2013b). Acta Cryst. E69, o1141.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o1635 [doi:10.1107/S1600536813027426]

N'-[(E)-3-Bromobenzylidene]pyrazine-2-carbohydrazide

Mushtaq Ahmad, Shahid Hameed, M. Nawaz Tahir, Muhammad Anwar and Muhammad Israr

1. Comment

The title compound (I), (Fig. 1) has been prepared in continuation of synthesizing different compounds containing pyrazine-2-carbohydrazide moiety (Hameed *et al.*, 2013*a*, 2013*b*).

In (I) the parts A (C1–C5/N1—N4/O1) and B (C6—C12/Br1) of pyrazine-2-carbohydrazide and 3-bromobenzaldehyde moieties are close to planar with r.m. s. deviations of 0.0259 Å and 0.0149 Å, respectively. The dihedral angle between A/B is 13.950 (54)°. There exist intramolecular H-bondings of N—H····N type (Table 1, Fig. 2) forming S(5) ring motif. Molecules are linked due to H-bonding of C—H····O type (Table 1, Fig. 2) forming C (6) chains. There exist π - π interactions at a distance of 3.9190 Å [Cg1— $Cg2^{i}$ & Cg2— $Cg1^{i}$: i = 1/2 - x, 1/2 - y, -z] and 3.9356 Å [Cg1— $Cg2^{ii}$ & Cg2— $-Cg1^{ii}$: ii = 1 - x, 1 - y, -z], between the centroids of Cg1 (C1/C2/N1/C3/C4/N2) and Cg2 (C7—C12), respectively.

2. Experimental

The title compound was synthesized by the condensation of equimolar ratio of pyrazine-2-carbohydrazide with 3-bromobenzaldehyde, both dissolved in methanol. The resulting reaction mixture was stirred well and then refluxed for 5 h and allowed to cool over night. The precipitated solid was filtered, washed with petroleum ether and recrystallized from chloroform in pet ether and dried under reduced pressure over CaCl₂ giving white crystalline compound. The crystals were re-grown in the same solvent system for crystallographic studies, yielding colourless prisms (m.p. 475–476 K).

3. Refinement

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.2 for all H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing diagram of the title compound, showing that molecules form polymeric chains.

N'-[(E)-3-Bromobenzylidene]pyrazine-2-carbohydrazide

4115 (8) Å
128 (3) Å
5992 (15) Å

 $\beta = 104.379 \ (2)^{\circ}$ $V = 2393.7 \ (2) \text{ Å}^3$ Z = 8 F(000) = 1216 $D_x = 1.693 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.389, T_{max} = 0.506$

Refinement

Refinement on F^2 Secondary atom siteLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.029$ Hydrogen site locat $wR(F^2) = 0.075$ neighbouring sitesS = 1.02H-atom parameters2415 reflections $w = 1/[\sigma^2(F_o^2) + (0.0163)]$ 163 parameterswhere $P = (F_o^2 + 200)$ 0 restraints $(\Delta/\sigma)_{max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{max} = 0.30 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{ Å}^{-3}$

Cell parameters from 1670 reflections $\theta = 1.5-26.3^{\circ}$ $\mu = 3.43 \text{ mm}^{-1}$ T = 296 KPrism, colorless $0.34 \times 0.25 \times 0.23 \text{ mm}$

9373 measured reflections 2415 independent reflections 1670 reflections with $l > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.3^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -17 \rightarrow 17$ $k = -5 \rightarrow 7$ $l = -34 \rightarrow 34$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0348P)^2 + 1.0725P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic of	or equive	alent isoti	ropic	displa	cement	parameters	$(Å^2$?)
				1						1		~

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.62227 (2)	0.43755 (5)	0.23030 (2)	0.07124 (14)	
01	0.34544 (12)	0.8178 (3)	-0.01354 (6)	0.0572 (5)	
N1	0.15137 (16)	0.8142 (4)	-0.15404 (8)	0.0650 (6)	
N2	0.23320 (14)	0.4402 (3)	-0.10560 (7)	0.0489 (5)	
N3	0.35102 (14)	0.4532 (3)	-0.01526 (7)	0.0501 (5)	
H3A	0.3313	0.3401	-0.0328	0.060*	
N4	0.41296 (14)	0.4300 (3)	0.03159 (7)	0.0470 (5)	
C1	0.25220 (16)	0.6348 (4)	-0.08500 (8)	0.0421 (5)	
C2	0.21160 (18)	0.8185 (5)	-0.10872 (9)	0.0565 (7)	
H2	0.2266	0.9502	-0.0927	0.068*	

C3	0.13278 (19)	0.6199 (5)	-0.17444 (10)	0.0620 (8)	
H3	0.0911	0.6087	-0.2060	0.074*	
C4	0.17254 (18)	0.4358 (5)	-0.15084 (9)	0.0567 (7)	
H4	0.1568	0.3041	-0.1668	0.068*	
C5	0.32089 (16)	0.6472 (4)	-0.03412 (8)	0.0432 (6)	
C6	0.43789 (17)	0.2363 (4)	0.04277 (8)	0.0488 (6)	
H6	0.4144	0.1287	0.0195	0.059*	
C7	0.50180 (16)	0.1759 (4)	0.09064 (8)	0.0429 (5)	
C8	0.52751 (15)	0.3190 (4)	0.13043 (8)	0.0441 (6)	
H8	0.5043	0.4593	0.1274	0.053*	
С9	0.58834 (16)	0.2486 (4)	0.17454 (8)	0.0457 (6)	
C10	0.62372 (18)	0.0415 (4)	0.17990 (10)	0.0557 (7)	
H10	0.6649	-0.0027	0.2098	0.067*	
C11	0.59711 (19)	-0.0986 (4)	0.14028 (11)	0.0599 (7)	
H11	0.6210	-0.2383	0.1434	0.072*	
C12	0.53564 (19)	-0.0348 (4)	0.09608 (10)	0.0538 (6)	
H12	0.5167	-0.1322	0.0699	0.065*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0841 (2)	0.0729 (2)	0.04238 (16)	-0.00330 (16)	-0.01146 (13)	-0.00346 (13)
O1	0.0665 (11)	0.0511 (11)	0.0501 (10)	-0.0134 (9)	0.0073 (8)	-0.0144 (8)
N1	0.0630 (15)	0.0746 (17)	0.0523 (13)	0.0077 (13)	0.0045 (11)	0.0107 (12)
N2	0.0511 (11)	0.0532 (13)	0.0392 (10)	-0.0028 (11)	0.0048 (9)	-0.0096 (10)
N3	0.0553 (12)	0.0501 (13)	0.0367 (10)	-0.0022 (11)	-0.0042 (9)	-0.0109 (9)
N4	0.0491 (11)	0.0522 (13)	0.0345 (9)	-0.0025 (10)	0.0004 (8)	-0.0063 (9)
C1	0.0402 (13)	0.0502 (15)	0.0365 (11)	-0.0016 (11)	0.0110 (10)	-0.0043 (10)
C2	0.0604 (16)	0.0557 (17)	0.0519 (14)	0.0006 (14)	0.0110 (12)	-0.0003 (13)
C3	0.0508 (16)	0.089 (2)	0.0411 (13)	-0.0007 (15)	0.0011 (12)	0.0039 (14)
C4	0.0538 (15)	0.0694 (19)	0.0416 (13)	-0.0048 (14)	0.0018 (11)	-0.0103 (13)
C5	0.0432 (13)	0.0496 (15)	0.0375 (12)	-0.0041 (12)	0.0113 (10)	-0.0053 (11)
C6	0.0544 (15)	0.0505 (16)	0.0385 (12)	-0.0080 (13)	0.0058 (10)	-0.0083 (11)
C7	0.0425 (13)	0.0453 (15)	0.0408 (12)	-0.0035 (11)	0.0102 (10)	-0.0001 (10)
C8	0.0458 (13)	0.0422 (14)	0.0412 (12)	-0.0002 (11)	0.0048 (10)	0.0016 (11)
C9	0.0432 (13)	0.0499 (15)	0.0418 (12)	-0.0046 (12)	0.0064 (10)	0.0019 (11)
C10	0.0482 (14)	0.0611 (18)	0.0537 (15)	0.0025 (13)	0.0049 (11)	0.0138 (13)
C11	0.0620 (17)	0.0510 (17)	0.0680 (17)	0.0106 (13)	0.0183 (14)	0.0095 (13)
C12	0.0620 (16)	0.0472 (15)	0.0547 (15)	0.0002 (13)	0.0195 (13)	-0.0038 (12)

Geometric parameters (Å, °)

Br1—C9	1.901 (2)	С3—Н3	0.9300	
O1—C5	1.213 (3)	C4—H4	0.9300	
N1—C3	1.331 (4)	C6—C7	1.459 (3)	
N1-C2	1.334 (3)	С6—Н6	0.9300	
N2—C4	1.335 (3)	C7—C8	1.390 (3)	
N2—C1	1.335 (3)	C7—C12	1.392 (4)	
N3—C5	1.341 (3)	C8—C9	1.383 (3)	
N3—N4	1.384 (2)	C8—H8	0.9300	

N3—H3A	0.8600	C9—C10	1.378 (4)
N4—C6	1.272 (3)	C10—C11	1.376 (4)
C1—C2	1.372 (3)	C10—H10	0.9300
C1—C5	1.506 (3)	C11—C12	1.376 (4)
С2—Н2	0.9300	C11—H11	0.9300
C3—C4	1.369 (4)	C12—H12	0.9300
C3—N1—C2	115.5 (2)	N4—C6—C7	122.6 (2)
C4—N2—C1	115.7 (2)	N4—C6—H6	118.7
C5—N3—N4	121.85 (19)	С7—С6—Н6	118.7
C5—N3—H3A	119.1	C8—C7—C12	119.9 (2)
N4—N3—H3A	119.1	C8—C7—C6	122.4 (2)
C6—N4—N3	113.77 (18)	C12—C7—C6	117.7 (2)
N2—C1—C2	122.1 (2)	C9—C8—C7	118.7 (2)
N2—C1—C5	117.5 (2)	С9—С8—Н8	120.7
C2—C1—C5	120.4 (2)	С7—С8—Н8	120.7
N1—C2—C1	122.1 (3)	C10—C9—C8	121.8 (2)
N1—C2—H2	118.9	C10C9Br1	118.40 (18)
C1—C2—H2	118.9	C8—C9—Br1	119.78 (19)
N1—C3—C4	122.7 (2)	C11—C10—C9	118.9 (2)
N1—C3—H3	118.7	C11—C10—H10	120.6
С4—С3—Н3	118.7	C9—C10—H10	120.6
N2—C4—C3	121.8 (3)	C10-C11-C12	120.9 (2)
N2—C4—H4	119.1	C10-C11-H11	119.6
C3—C4—H4	119.1	C12—C11—H11	119.6
O1—C5—N3	125.1 (2)	C11—C12—C7	119.9 (2)
O1—C5—C1	121.9 (2)	C11—C12—H12	120.1
N3—C5—C1	113.0 (2)	C7—C12—H12	120.1
C5—N3—N4—C6	-176.9 (2)	C2-C1-C5-N3	177.4 (2)
C4—N2—C1—C2	0.3 (4)	N3—N4—C6—C7	-179.2 (2)
C4—N2—C1—C5	-179.6 (2)	N4—C6—C7—C8	10.8 (4)
C3—N1—C2—C1	0.5 (4)	N4—C6—C7—C12	-170.6 (2)
N2-C1-C2-N1	-0.7 (4)	C12—C7—C8—C9	1.3 (3)
C5—C1—C2—N1	179.2 (2)	C6—C7—C8—C9	179.9 (2)
C2—N1—C3—C4	-0.1 (4)	C7—C8—C9—C10	0.0 (4)
C1—N2—C4—C3	0.1 (4)	C7—C8—C9—Br1	-178.32 (17)
N1—C3—C4—N2	-0.3 (4)	C8—C9—C10—C11	-0.4 (4)
N4—N3—C5—O1	1.9 (4)	Br1-C9-C10-C11	177.9 (2)
N4—N3—C5—C1	-178.7 (2)	C9-C10-C11-C12	-0.5 (4)
N2-C1-C5-01	176.8 (2)	C10—C11—C12—C7	1.8 (4)
C2-C1-C5-O1	-3.1 (4)	C8—C7—C12—C11	-2.3 (4)
N2-C1-C5-N3	-2.7 (3)	C6-C7-C12-C11	179.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>A</i> …N2	0.86	2.24	2.646 (3)	109

			supplementar			
C6—H6…O1 ⁱ	0.93	2.26	3.150 (3)	160		
Symmetry code: (i) $x, y=1, z$.						