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Abstract: While growing instruments generate more and more airborne or satellite images, the
bottleneck in remote sensing (RS) scene classification has shifted from data limits toward a lack of
ground truth samples. There are still many challenges when we are facing unknown environments,
especially those with insufficient training data. Few-shot classification offers a different picture under
the umbrella of meta-learning: digging rich knowledge from a few data are possible. In this work,
we propose a method named RS-SSKD for few-shot RS scene classification from a perspective of
generating powerful representation for the downstream meta-learner. Firstly, we propose a novel
two-branch network that takes three pairs of original-transformed images as inputs and incorporates
Class Activation Maps (CAMs) to drive the network mining, the most relevant category-specific
region. This strategy ensures that the network generates discriminative embeddings. Secondly, we
set a round of self-knowledge distillation to prevent overfitting and boost the performance. Our
experiments show that the proposed method surpasses current state-of-the-art approaches on two
challenging RS scene datasets: NWPU-RESISC45 and RSD46-WHU. Finally, we conduct various
ablation experiments to investigate the effect of each component of the proposed method and analyze
the training time of state-of-the-art methods and ours.

Keywords: remote-sensing; scene classification; few-shot learning; meta-learning; self-supervised;
knowledge distillation

1. Introduction

Scene classification is one of the most fundamental tasks in the remote sensing com-
munity, it plays a vital role in semantic understanding of remote sensing (RS) scenes. In
addition, it provides significant support for various important applications and societal
needs, including urban planning [1], land-cover analysis [2], environmental monitoring [3],
deforestation mapping [4], air pollution prediction [5], etc. In computer vision, image-level
classification has been marked by extraordinary progress in the last few years. Much of
this progress has come from deep learning since the emergence of the AlexNet [6] in 2012.
The convolutional neural network (CNN) has continued to dominate in the following
years and has recently achieved human-level performance on certain image classification
benchmarks [7–9]. In the remote sensing community, RS scene classification has been well
studied for the last few decades. The methods using handcrafted features [10–17] have
been the leading approach in earlier years; however, they require hand design features and
lack adaptability. This method family performs poorly for complex scenes or massive data
and has been replaced by deep learning methods.

Now, the state-of-the-art approaches to RS scene classification [18–25] are mainly
CNN based models. These methods aim to automatically learn global features from the

Sensors 2021, 21, 1566. https://doi.org/10.3390/s21051566 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6372-5653
https://doi.org/10.3390/s21051566
https://doi.org/10.3390/s21051566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051566
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1566?type=check_update&version=2


Sensors 2021, 21, 1566 2 of 23

input data using deep convolutional neural networks (e.g., AlexNet [6], VGGNet [7],
GoogLeNet [26], and ResNet [9]), which generates a high-level representation useful to
classify RS scene images.

One approach of the previous work using CNN for RS scene classification takes
the transfer learning strategy: pre-train on other large datasets then fine-tuning on RS
scene datasets. It is the case that Hu et al. [18] proposed two strategies for transferring
features from pre-trained CNNs on ImageNet [8]. The first strategy is directly extracting
features from the FC layers, while the latter encodes multi-scale dense features extracting
from the last convolutional layer into global image features. Their methods have very
much defeated the traditional handcrafted methods [15–17] on the UC Merced Land-Use
(UCM) dataset [16] and WHU-RS [27] dataset. Similarly, three learning strategies (i.e., full
training, fine-tuning, and using pre-trained CNNs as feature extractors) are proposed in
the literature [20]. Six popular CNNs are exploited in their experiments in three remote
sensing datasets, namely the UCM dataset [16], RS19 dataset [27], and the Brazilian Coffee
Scenes dataset [28].

Another stream of approach is devoted to improve the structure of existing CNN
networks or modifying the loss function. Wang et al. [29] presented an improved ori-
ented response network by adding active rotating filters into the architecture. Besides that,
a squeeze layer is injected before the align operation to help extract the orientation descrip-
tors. Cheng et al. [19] proposed a novel metric learning regularization term beyond the
normal cross-entropy loss to address the problem of within-class diversity and between-
class similarity. Considering the importance of feature embedding and metric space,
Kang et al. [25] developed a method to improve RS scene discrimination by combining
two components. First, the author introduced a joint loss function that takes advantage
of both SNCA [30] loss and cross-entropy loss to tackle the within-class diversity and
between-class similarity inherent to RS scenes. Then, a novel optimization mechanism
based on momentum update is utilized for minimizing the joint loss function.

Despite these and other state-of-the-art methods have made significant progress to
date and have even achieved ∼100% accuracy on some datasets (e.g., [24] achieves 99.82%
accuracy on the UC Merced dataset [16,31] achieves 99.46% on the WHU-RS19 dataset [27]),
one may argue, is that machine learning really outperforming human performance, or is
the dataset too simple? For example, the UC Merced dataset holds 21 scene classes with
100 images per class, while the WHU-RS19 dataset contains 19 classes with ∼50 images in
each. Can such a small scale of scene classes represent the scenarios of our real-world? Can
such limited images per class represent the scene variations and diversity? An intuitive way
to address this issue is to extend and enrich these datasets. Many researchers have begun
to collect and label more data; significant efforts have been dedicated to constructing more
massive RS scene datasets, e.g., the AID dataset [32],the NWPU-RESISC45 dataset [22],
the PatternNet dataset [33], and the RSD46-WHU dataset [34]. Publicly available RS scene
datasets are summarized in Table 1.

Table 1. Publicly available RS scene datasets.

Dataset # of Categories Images per Category Total Images Image Sizes Year

UC Merced dataset [16] 21 100 2100 256× 256 2010
WHU-RS19 [27] 19 50 950 600× 600 2010
AID dataset [32] 30 220–420 10,000 600× 600 2016
NWPU-RESISC45 [22] 45 700 31,500 256× 256 2016
RSD46-WHU [34,35] 46 500–3000 117,000 256× 256 2016
PatternNet dataset [33] 38 800 30,400 256× 256 2017

Although the RS scene datasets are expanding in scale, they are still considered small
from the perspective of deep learning, which requires large amounts of training data.
Meanwhile, a different picture has emerged in the machine learning area, highlighting the
significance of digging “rich” knowledge from “a few” data. For example, when dealing
with bio-information or drug discovery [36], collecting supervised information is highly
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time- and cost-intensive. For a robot, it must learn quickly and efficiently in a complex and
ever-changing environment. If it is able to learn from one-shot human demonstration that
would be a massive advance in general intelligence [37]. People can comprehend a novel
scene (e.g., shared-bike parking lot) from just one, or a handful examples, while a neural
network model has to solve the task from scratch. These needs drive us to develop human-
like learning and thinking models. Toward this goal, researchers proposed a challenging
setting: few-shot learning (FSL) [38–40].

FSL intends to learn a model that can quickly generalize to new tasks from very few
training examples. This is at odds with previous studies in the machine learning field:
from the statistical machine learning standpoint, enough training examples are necessary
to reveal the data distribution, ensuring that the model is learnable and generalizable.
One might wonder how humans have the impressive ability to generalize or infer from
only a few or even one image? Strong prior knowledge and experience must be a critical
discrepancy between human and Artificial Intelligence (AI). For example, ask a young
child to classify new scenes like chaparral or terrace that he/she has never seen before,
with just one instance per class for a glance. In addition, there is a high probability that the
child will be able to give the correct answer. It is a case showing that humans can rapidly
adapt to a new task based on their previous knowledge learned from related tasks, shown
as Figure 1.

lake snowberg chaparral terrace storage_tank ? ?

Figure 1. The One-shot Challenge: few-shot learning from one example. A single example of a new
visual scene can be enough information for a child to classify new examples.

Few-shot learning suggests that a human-like learning paradigm where a model
gains common knowledge across a set of tasks often derives from the same distribution of
related tasks and employs this knowledge to enhance its future learning performance [38].
Concretely, few-shot classification is one of the most well-studied test-bed for FSL, which
aims to learn a model on SEEN categories and perform classification on new categories
(UNSEEN) with only a limited amount of labeled training examples. To this end, prior
work has suggested acquiring cross-task knowledge (meta-knowledge) and rapid learning
ability through the manner of meta-learning [41]. Learning to learn [42–44] and learning to
compare [38,40,45,46] can all be regarded as meta-learning. We will introduce the related
work in Section 2.

Thus far, only a few efforts in remote sensing have focused on the few-shot classi-
fication topic. A well-known algorithm, Model-agnostic meta-learning (MAML) [42], is
evaluated for few-shot problems in land cover classification [47]. The work [48] brings
few-shot learning into the RS scene classification by combining pre-trained CNN and Pro-
toNet. Li et al. [49] introduce an approach based on Protypical Networks (ProtoNet) [40]
to explore RS scene few-shot classification. The authors of [50] provide a testbed for few-
shot classification of RS scene and re-implemented several well-known few-shot learning
approaches with a deeper backbone Resnet-12 for a fair comparison. While many existing
FSL models [45,51,52] focus on devising different architectures, we argue that feature
embedding are overlooked. Well-learned representations may be more potent for few-shot
classification than the prevailing complicated meta-learning algorithms. In this paper, our
vision is to learn a powerful embedding, without any additional annotation effort that
offers more efficient and effective representations to downstream meta-learner. To this
end, we propose a method named RS-SSKD to solve the few-shot RS scene classification
problem in the real world. In summary, our key contributions are:
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• We propose a novel method, RS-SSKD, which provides powerful embeddings for
the downstream meta-learning module. To achieve that, we design a Self-supervised
Knowledge Distillation (SSKD) module that incorporates two different components:
(1) a self-supervised network improves feature embedding, and (2) a knowledge
distillation procedure boosts performance.

• We propose a self-supervised network with two identical branches that takes three
pairs of original-transformed images as inputs. It enables the network to locate the
category-specific relevant regions in the image and reduce the distraction caused by
irrelevant parts, which guarantees the network generates discriminative embeddings.

• Building upon the self-supervised network, we utilize self-knowledge distillation to
retrain the predictions of the trained model as new target values, which further boost
the model’s performance.

• We evaluate the proposed method on two challenging RS scene datasets, where it
achieves state-of-the-art (SOTA) performances compared with previous few-shot
learning approaches. We also conduct various ablation experiments to verify the
effectiveness of each component of the SSKD module.

The rest of this paper is organized as follows. We start with a brief review of the
few-shot learning (FSL) literature in Section 2, and then we introduce the background and
notations of the FSL problem in Section 3. The proposed method is stated in Section 4.
In Section 5, we carry out extensive experiments on two RS scene datasets. Finally, Section 6
concludes this work and points out interesting further research.

2. Related Work

Human learners can learn a new concept from just one example; rather than learning
from scratch, they are armed with previous knowledge [53]. Transfer learning is once a
successful story by adopting an intuitive idea that fine-tunes a pre-trained model to utilize
prior experience. However, its performance is poor when fine-tuning with only one or a
few examples. A more challenging setting is proposed, i.e., few-shot learning (FSL) [38–40],
which aims to learn a model from the SEEN categories in the base-set that can be quickly
generalized to the UNSEEN categories in the novel-set under a limited data budget, usually
1 or 5 support samples. The literature on few-shot classification is vast; we summarized
here briefly by two main streams: learning to learn and learning to compare.

Learning to learn. This family of approaches is often viewed as the most typical
meta-learning, which refers to learn a general-purpose model that can be improved over
multiple learning tasks. Each new task is expected to be learned better than the last, such
that the model can generalize quickly to a new task. The most well-known of this group is
perhaps MAML [42], which aims to learn a proper initialization of the model parameters.
The intuition is to find certain model parameters that are more sensitive to changes in the
task, so that small changes to these parameters will yield massive improvements on the
loss function. Many variants of MAML follows this idea. Reptile [43] simplifies the meta
parameters updating procedure by randomly sampling a task and performing K steps of
SGD on it. LEO [44] introduces a task-dependent latent embedding space, in which the
parameters of each task are initialized conditioning on the input data; such a strategy leads
to more effective adaptation.

Learning to compare. The core idea of learning to compare is mapping the input to
a feature space suitable for comparison and learning a task-dependent metric. It is also
known as a metric-based approach. Matching Networks [38] learns different embedding
functions for support and query examples and adopts an attention kernel to predict the
query sample label. Prototypical networks (ProtoNet) [40] is based on a simple idea of
comparing query instances with category prototypes. A prototype is defined as the mean
embedding of the support examples. Much of the subsequent work [45,46] has been
inspired by ProtoNet, which employ different metrics to classify query samples by the
distance to prototype representations. TADAM [51] boosts the performance of ProtoNets
by metric scaling, task-conditioning, and auxiliary task co-training. MetaOptNet [52] and
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FEAT [54] follow the same spirit of learning task-specific embeddings to ensure the features
are more discriminative for a given task.

Recently, another line of work has begun to focus on learning richer representations.
Zhao et al. [55] proposed a multitask learning framework that combines self-supervised
learning and scene classification via a mixup loss strategy that enforces the network to
learn more discriminative features without increasing the parameters. Benefiting from the
preprocessing of the differential morphological profiles, the work [56] reduces the com-
putation when using differential morphological profiles for classification, which requires
relatively few features while achieving the same accuracy. A classification method [57]
based on multi-structure deep features fusion (MSDFF) provides another perspective in
which the complementarity of features extracted by different CNNs can capture deep
features from the image. As pointed out in [58], it remains a discussion of whether rapid
learning or feature reuse will lead to state-of-the-art performance. The authors of [58]
analyzed MAML [42] and found that feature reuse is the dominant component in MAML’s
effectiveness. Inspired by this suggestion, we propose a self-supervised knowledge dis-
tillation (SSKD) module that strives to learn a powerful embedding for the downstream
meta learner.

3. Preliminary

Before presenting the main flow of our method in detail, we first introduce the defini-
tion and key notations of the Few-Shot Learning (FSL) setting, as the background of FSL
might be new to some readers. The comparison between standard supervised classification
and the few-shot learning paradigm is shown in Figure 2.

fϕ

fθ

training set   

test set   

!1

!2

Meta-training 
(SEEN Categories)

support (training) set  query (test) set   

support (training) set  query (test) set   

query (test) set   support (training) set  

Meta-test 
(UNSEEN Categories)

Few-shot Classification

Large Data

test set   training set   

Standard Supervised Classification

Figure 2. Comparison between the standard supervised classification and few-shot classification.
The top represents the standard supervised classification mechanism in which a model is trained
on a large dataset. The bottom shows a task/episode paradigm in FSL where we are dealing with the
1-shot, 5-way classification task.
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In a standard supervised learning setting, we are interested in a dataset D = {Dtrain, Dtest}.
A model is trained on the Dtrain with enough labeled data and is evaluated on the test set
Dtest. In few-shot learning (FSL) setting, we are given a meta dataset D, divided into Dbase,
Dval , and Dnovel by categories. Let C denote the category, Cbase, Cval , and Cnovel are chosen
to be mutually disjoint. The goal is to learn a model on Dbase with SEEN categories, which
can generalize quickly on the UNSEEN categories inDnovel when providing limited labeled
examples. Note that an extra dataset-splitDval is held out for selecting the hyper-parameter
and choosing the best model.

Unlike standard machine learning trains over the instance level, Vinyals et al. [38]
suggest a task/episode strategy to learn a meta-learner across training tasks in few-shot
learning. It is often assumed that tasks, also called episodes, are sampled from the same
distribution p(T ). Each task Ti ∼ p(T ) has both training and test data, denoted as
Ti =

{
Dsupport

i ,Dquery
i

}
. Often, the training and test datasets in each task Ti are also called

support and query sets, as shown in Figure 2 (bottom). The intuition behind the episodic
strategy is that, although training data in each task is limited, the parameters of meta-
learner are shared among many tasks. In effect, from a meta-learning perspective, such
a strategy could alleviate the sample burden in a single task as if the number of tasks is
large enough.

4. Methodology
4.1. The Overall Framework

As depicted in Figure 3, our model consists of two modules: a self-supervised knowl-
edge distillation (SSKD) embedding module and a meta-learning module. Instead of
exploring complex meta-learning structures, we suggest that a good embedding represen-
tation might be a powerful boost for achieving or even outperforming SOTA performance
on few-shot classification tasks.

Knowledge distill  module ̂yM-way classification

Base dataset

Self-supervised module

SSKD embedding  module

fϕ

fϕ

fϕ

support set  
query set   

task "i

sampled tasks

Category

representation

fϕ (x*)

Similarity

metric ̂y*

μ

Meta-learning  module

Figure 3. Overall framework of the proposed method. It contains two modules: the SSKD module
aims at learning a powerful embedding, without any additional annotation effort that offers more
discriminative representations to the downstream meta-learner. The meta-learning module is based
on ProtoNets with an additional parameter γ to scale cosine similarity.

SSKD embedding module We train the embedding model SSKD on SEEN cate-
gories in Dbase to generate a powerful embedding for the downstream meta learnerM(·).
The self-supervised learning network and Knowledge distillation procedure are elaborate
in Sections 4.2 and 4.3 and illustrated in Figures 6 and 7. Given a base dataset Dbase with
M (SEEN) categories, we train an M-way classifier on all categories to get the embedding
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encoder fφ that mapping the inputs into an embedding space. The embedding encoder fφ

parameterized by φ can be optimized by minimizing a loss function Lbase, which will be
described in Equation (4), Section 4.2.3.

Meta-learning module In this stage, we utilize the downstream meta learnerM(·)
to optimize the embedding fφ directly without introducing any extra parameters. To this
end, we follow the episodic training manner proposed in [38], which is the most popular
meta-learning routine [38–40,42,45]. The meta learner is built upon prototypical networks
(ProtoNets) [40]. The whole flow of the meta-learning stage is elaborated in Section 4.4.

4.2. Learning a Self-Supervised Embedding

In this section, we start by introducing two important components of the proposed
self-supervised (SS) network: the backbone ResNet-12 and class activation mapping (CAM).
Then, we present the framework of the proposed SS network in detail.

4.2.1. Backbone

Most of the early FSL methods [38,40,42,45] utilized a four-layer convolutional net-
work (Conv-4) as the embedding backbone, while more recent models found that such a
shallow embedding network might lead to underfitting. In this work, we take ResNet-12,
the most popular backbone in current FSL literature [51,52,59], as our embedding network.
As illustrated in Figure 4, the ResNet-12 is a smaller version of the ResNet [9], containing
four residual blocks and generates 512-dimensional embeddings after a global average
pooling (GAP).

Input

Output

BN, Leaky ReLU
3 × 3 conv, N filters, /1

BN, Leaky ReLU
3 × 3 conv, N filters, /1

BN, Leaky ReLU
3 × 3 conv, N filters, /1

BN
1 × 1 conv, N filters, /1

2 × 2 max-pool, N filters, /2
Leaky ReLU

Residual Block, N filters 
Input

5 × 5 × 512
ResNet Block-4, N=512

10 × 10 × 256
ResNet Block-3, N=256

20 × 20 × 128
ResNet Block-4, N=128

40 × 40 × 64
ResNet Block-4, N=64

5 × 5 global average pooling

Output

80 × 80 × 3resize

Backbone, ResNet-12

Figure 4. Illustration of the backbone architecture. The left plot shows that ResNet-12 contains four
residual blocks, followed by a global average pooling (GAP) layer. Each residual block is a sequential
concatenation of three {3× 3 convolution with N filters, batch normalization (BN), Leaky ReLU (0.1)},
then a 2× 2 max-pooling layer is applied with stride 2, shown in the right plot. The number of filters
in each residual block are 64, 128, 256, and 512, respectively.

4.2.2. Class Activation Mapping

Instead of learning from scratch, we note that Zhang et al. [50] utilize a pre-train
stage to classify all SEEN categories with the cross-entropy loss (e.g., 25 categories in the
NWPU-RESISC45 Dataset). The feature maps generated by the last residual block are
fed to the GAP layer, whose weights are then used as initialization in the meta-training
stage. However, we argue that a mixed global representation might lose useful features
as the dominant objects can locate anywhere on the image. A technique named Class
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Activation Mapping (CAM) [60] is proposed to tackle this problem; it enables the network
to locate the most relevant regions in the image and reduce the distraction caused by
irrelevant parts. Consider the ResNet-12 (as well as other typical CNN networks) as the
backbone; CAM is depicted in Figure 5. Given an image x, the feature maps generated
from the last convolutional layer is denoted as F ∈ RC×H×W , where C, H, and W are
the number of channels, height, and width of the feature maps, respectively. Let fk(x, y)
denote the activation of k-th feature map at spatial location (x, y), where k ∈ {1, . . . , C}. We
perform GAP on the feature maps F, and the pooled features become in size of C× 1× 1.
Then, for fk, the corresponding pooled feature is denoted as Fk. Assume we do an L-way
classification here; for a given category c, we define wc

k as the weight of Fk for category c.
Letting Mc be the class activation map for class c, we need to only compute the sum

Mc(x, y) =
C

∑
k=1

wc
k fk(x, y). (1)

That is, Mc(x, y) represents the activation map at spatial grid (x, y) for category c.
Note that the size of activation map in Equation (1) is H×W, which needs to be upsampled
to match the input image size.

GAP Airplane

the last 

convolutional layer

H × W × C

wn *w2 *w1 * + + … + =

f1 f2 fn
Class Activation

Map
(Airplane)

Class Activation Mapping

C

O

N

V

C

O

N

V

C

O

N

V

Figure 5. Class Activation Mapping: the predicted classification weight is mapped back to the feature maps generated from
the last convolutional layer to compute the class activation maps (CAMs). The CAM highlights the discriminative regions
of the corresponding category.

4.2.3. Self-Supervised Network

Most of the prior works [61,62] in computer vision weave self-supervision into few-
shot learning by adding pretext tasks loss. Predicting the index of jigsaw puzzles and the
angle of rotations are among the most effective pretext task choices. The most important
FSL benchmark in computer vision is miniImageNet [38], whereas RS scene datasets have
their characteristics. For example, for an image of a dog, the most discriminative part of
the image changes when flipping or rotating it. However, RS scene images may lack this
crucial discriminative information because many natural objects (e.g., forest, desert, ocean,
and so forth) have fractal properties [63]. Taking this in mind, we propose a novel two-
branch network that takes pairs of original-transformed images as inputs and incorporates
CAM [60] to force the network to mine the most relevant category-specific region, shown
in Figure 6.

Given an original image x, we apply a transformation function T(·) to generate its auxiliary
copies of x. Let T denote the set of transformations, and any suitable transformation can be em-
bedded in the proposed self-supervised network. In this work, we consider three transformed
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copies, applying {vertical f lipping}, {scaling} and {vertical f lipping + scaling} to x, we
create

{
Tf (x), Ts(x), Tf s(x)

}
∈ T to enhance the feature discriminability for classification.

As shown in Figure 6, we take ResNet-12 as the feature extractor, identical in both
branches, and sharing the parameters. The image pairs are fed into backbones, each
containing four residual blocks following by a GAP layer and end with an FC (fully
connected) layer. The feature maps F are generated from the last residual block and
flattened by a GAP player into features with a dimension of 1× 1× C. For an original-
transformed image pair x and T(x), the corresponding feature maps are F ∈ RH×W×C and
F ′ ∈ RH′×W ′×C, respectively. Now, the CAMs of input x can be computed by Equation (1).
We use M = g(x) to indicate the corresponding CAMs of image x, where g(·) is the
procedure of generating CAMs with Class Activation Mapping. Similarly, the resulting
CAMs of the transformation T(x) are denoted as M ′ = g(T(x)).

ℒss ℒss

ℒce…

…

ℒss

ℒce

Backbone CAM

CAM

GAP

GAP

shared weights
shared FC

x

T(x)

x

f lipping

T(x) T(x)

scaling f lipping + scaling

g(x) T(g(x))

g(T(x))

Figure 6. The proposed self-supervised network. We take the original-transformed image pairs as
inputs and compute the Class Activation Maps (CAMs) for each input image. Then, we define a
new self-supervised loss as a distance between the transformed CAMs of the original image and the
CAMs of the transformed image.

Inspired by the study of [64], we transform the CAMs g(x) of the original image
into T(g(x)) to enforce visual attention consistency. For example, suppose the inputs
are {x, T(x)}, where T(x) denotes the original image’s vertical flipping transformation.
In that case, we flip the CAMs g(x) of the original image vertically to obtain T(g(x)),
and let MT = T(M) = T(g(x)). Then, we design a self-supervised loss as the mean square
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difference between the transformed CAMs MT of the original image and the CAMs M ′ of
the transformed image, which formalized as

Lss =
1

NLHW

N

∑
i=1

L

∑
j=1

∥∥∥MT
ij −M ′ij

∥∥∥
2
, (2)

where Mij represents the CAMs for image i and label j, and L is the total number of labels.
Note that only the flipping copy of x is considered in Equation (2); other transformations
such as rotation and scaling can also be embedded in the proposed network. Here, we
consider linearly combine three transformed copies,

{
Tf (x), Ts(x), andTf s(x)

}
∈ T, to

enforce the attention consistency under certain transformed pairs, which leads the network
digging to be the most relevant category-specific region and benefit the classification
performance. Thus, our final self-supervised loss can be combined as

Lss,total = Lss,Tf + Lss,Ts + Lss,Tf s (3)

Let Lce be the cross entropy loss between the predictions and the true labels; our final
loss function is then

Lbase = Lce + Lss,total . (4)

We now use the combined loss Lbase to train the network, and the whole procedure of
training the model can be cast as the following optimization problem:

φ = argmin
φ
Lbase(Dbase; φ). (5)

The above objective ensures that the embedding fφ, parameterized by φ, is representa-
tive enough to capture the category-specific region information of the input x.

4.3. Self-Distillation

Knowledge distillation (KD) [65] is an approach that "knowledge" is transferred from
one model (teacher) to another (student). In particular, it is called self-distillation if the
teacher and student share identical architecture [66]. The idea of self-distillation is to retrain
the predictions of the trained model as new target values and empirically iterate the loop
one or several times. The authors of [66] theoretically analyzed that a few self-distillation
generations can reduce over-fitting, while further generations may lead to under-fitting
and trending worse performance. Inspired by this, we leverage a round of self-distillation
to boost the performance of the proposed model. Here, we empirically take only one
generation, as we are dealing in the low data regime. We start by constructing two clones of
the self-supervised network trained in Section 4.2.3, which, as shown in Figure 7: one serves
as a teacher model and another as a student model.

Teacher Student

!!
!"SoftmaxSoftmax

!# $#

ℒKD ℒce

Figure 7. Illustrative diagram of our self-distillation procedure, which boost the performance of the self-supervised module.

Let pt and ps denote the logits that input x pass through the teacher and the student
networks, respectively. We freeze the teacher network’s weights and train the student
one by minimizing the combination of two loss function terms. Define Lce as the cross-
entropy loss between the student predictions and ground-truth labels, and LKD as the
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Kullback–Leibler divergence (KL) loss between the teacher and the student predictions.
Then, the combined loss function is:

φ′ = argmin
φ′

(
Lce
(
Dbase ; φ′

))
+ KL

(
f
(
Dbase ; φ′

)
, f (Dbase ; φ)

)
, (6)

where φ and φ′ represent the parameters of the teacher and the student network, respec-
tively. We use the distilled network fφ as the final embedding model to extract features
for meta-training.

4.4. Meta-Learning Module

In the standard few-shot learning field, models are often training and evaluated in
N-way K-shot tasks. As defined in the literature [38], an N-way K-shot task in the meta-
learning stage is constructed as follows. N different categories are randomly sampled from
the set of SEEN categories for each task, then K support examples in each of the N categories
are selected for training. Simultaneously, Q query instances are randomly selected from the
remaining of that category to be classified. A set of tasks {Ti} drawn from SEEN categories
Cbase is referred to as a meta-training set T train. In the same manner, we can form a meta-
validation set T val from Cval and a meta-test set T test from Cnovel . Given the training data
T train, we adopt a meta-learning routine similar to Prototypical Networks (ProtoNet) [40],
and the embedding model fφ is optimized by minimizing the generalization error across
tasks. The learning objective can be formalized as:

φ = argmin
φ

ET train [Lmeta (Dquery ; φ)]. (7)

For an N-way K-shot task, Ti with the support set Dsupport
i = {xk, yk}NK

k=1, where
yk ∈ {1, . . . , N}; each training sample xk is mapping to fφ(xk). ProtoNet computes the
mean feature of K support samples belonging to category c as its "prototype":

pc =
1
K ∑

yk=c
fφ(xk), ∀c = 1, . . . , N (8)

To classify a test sample xq in the query set, we build a cosine similarity based classifier.
The probability of using the softmax function to predict the query xq as class c is

p
(
yq = c | xq

)
=

exp
(
γ · cos

(
fφ

(
xq
)
, pc
))

∑N
c′=1 exp

(
γ · cos

(
fφ

(
xq
)
, pc′

)) , (9)

where γ is a temperature parameter [51] over the similarity score. We observed that the
cosine similarity metric works well with a large temperature value; γ is empirically set to 10.
Note that, once the meta-learning phase is done, the embedding model fφ parameterized
by φ, is fixed; we do not fine-tune in the meta-test stage.

5. Experiment and Results

We first describe the datasets in Section 5.1. The implementation details used in
our experiments are presented in Section 5.2. In Section 5.3, we proceed to compare the
proposed RS-SSKD method with the state-of-the-art FSL methods on two challenging RS
datasets: NWPU-RESISC45 [22] and RSD46-WHU [34]. Finally, in Section 5.4, we conduct
an ablation study to investigate the effect of each component in SSKD module.

5.1. Datasets

In the NWPU-RESISC45 dataset, there are 45 categories, each of which has 700 images
with a size of 256× 256 pixels. This dataset was proposed in 2017 by Cheng et al. [22]; the
RS scene images in it are extracted from Google Earth by experienced experts. The spatial
resolution of most scene categories ranges from about 30 to 0.2 m per pixel, except for some
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categories that have lower spatial resolutions, e.g., island, lake, mountain, and snow-berg.
Following the split setting proposed by Ravi et al. [39], we take 25 of 45 categories for meta-
training, 8 for validation, and 12 for meta-test, as detailed in Figure 8. Namely, a model
is trained on many N-way K-shot tasks sampled from the 25 SEEN categories during
the meta-training stage. The best model is chosen based on the few-shot classification
performance over eight HELD-OUT categories of Meta-val. This best model is our final
model, which is tested on the UNSEEN set Meta-test.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12) (13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24) (25)

(1) (2) (3) (4) (5) (6) (7) (8)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12)

Meta-training 
(SEEN)

Meta-test 
(UNSEEN)

Meta-val 
(HELD-OUT)

Figure 8. NWPU-RESISC45 Dataset split. Meta-training (SEEN): (1) airplane, (2) airport, (3) baseball diamond, (4) basketball
court, (5) beach, (6) bridge, (7) chaparral, (8) church, (9) circular farmland, (10) cloud, (11) commercial area, (12) dense
residential, (13) desert, (14) forest, (15) freeway, (16) golf course, (17) ground track field, (18) harbor, (19) industrial area,
(20) intersection, (21) island, (22) lake, (23) meadow, (24) medium residential, (25) mobile home park; Meta-validation
(HELD-OUT): (1) mountain, (2) overpass, (3) palace, (4) parking lot, (5) railway, (6) railway station, (7) rectangular farmland,
(8) river; Meta-test (UNSEEN): (1) roundabout, (2) runway, (3) sea ice, (4) ship, (5) snowberg, (6) sparse residential, (7)
stadium, (8) storage tank, (9) tennis court, (10) terrace, (11) thermal power station, (12) wetland.

The RSD46-WHU dataset contains 117,000 images of RS scenes over 46 categories,
with around 500–3000 images in each. These images are gathered from Google Earth and
Tianditu by hand, and the ground resolution is 0.5 m for most categories while about 2 m
for others. Similar to the configuration of the NWPU-RESISC45 dataset, we divide it into 26,
8, and 12 categories for meta training, validation, and test, respectively. The dataset-split is
shown in Figure 9.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12) (13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24) (25) (26)

(1) (2) (3) (4) (5) (6) (7) (8)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(10) (11) (12)

Meta-training 
(SEEN)

Meta-test 
(UNSEEN)

Meta-val 
(HELD-OUT)

Figure 9. RSD46-WHU Dataset split. Meta-training (SEEN): (1) Airplane, (2) Airport, (3) Artificial dense forest land, (4) Arti-
ficial sparse forest land, (5) Bare land, (6) Basketball court, (7) Blue structured factory building, (8) Building, (9) Construction
site, (10) Cross river bridge, (11) Crossroads, (12) Dense tall building, (13) Dock, (14) Fish pond, (15) Footbridge, (16) Graff,
(17) Grassland, (18) Low scattered building, (19) Lrregular farmland, (20) Medium density scattered building, (21) Medium
density structured building, (22) Natural dense forest land, (23) Natural sparse forest land, (24) Oiltank, (25) Overpass,
(26) Parking lot; Meta-validation (HELD-OUT): (1) Plasticgreenhouse, (2) Playground, (3) Railway, (4) Red structured factory
building, (5) Refinery, (6) Regular farmland, (7) Scattered blue roof factory building, (8) Scattered red roof factory building;
Meta-test (UNSEEN): (1) Sewage plant-type-one, (2) Sewage plant-type-two, (3) Ship, (4) Solar power station, (5) Sparse
residential area, (6) Square, (7) Steelsmelter, (8) Storage land, (9) Tennis court, (10) Thermal power plant, (11) Vegetable plot,
(12) Water.

5.2. Implementation Details

Backbone. Following recent works [50–52,59], we use Resnet-12 [9] as the backbone
in both the SSKD module and the meta-learning module. A GAP layer is added to the
last ResNet Block, which outputs 512-dimensional embeddings; the details are introduced
in Section 4.2.1. All inputs are resized to 80× 80× 3, except the scaling transformations
in the self-supervised network, resize to 96× 96× 3. Here, we interpolate the resized
80× 80 images to 96× 96 instead of resizing directly with the original 256× 256 images,
as most of the FSL literature takes images of size 80× 80 or 84× 84 as inputs. For this case,
we apply a 6× 6 GAP, which generates 512-dimensional embeddings, likewise.

Optimization. For the SSKD module, we adopt SGD with a momentum of 0.9 and
weight decay of 0.0005. The learning rate is set to 0.1 at the beginning and decays at epoch
90, and the decay factor is 0.1. We train 110 epochs with batch size 64 on both datasets.
For the meta-learning module, SGD is used with a fixed learning rate of 0.001, weight
decay of 0.0005. We set four tasks in a batch to compute the average loss; namely, the batch
size is 4. An epoch contains 200 batches, that is, 800 tasks. We empirically meta-train
the model for 90 epochs. In our case, the best model often occurs in the first 60 epochs.
Note that, in conventional machine learning, one epoch refers to pass all the training data
forward and backward through the network once. In few-shot learning, tasks are randomly
sampled from the dataset. Though the support (training) data in each task are limited,
we can assume that the entire dataset has probably been traversed when an epoch holds
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enough tasks. Pytorch is applied to implement all our experiments on four NVIDIA RTX
3090 GPUs.

5.3. Main Results

We verify the effectiveness of the proposed RS-SSKD method on two datasets, NWPU-
RESISC45 [22] and RSD46-WHU [34]. The same evaluation protocol is used over all the
experiments. Following the prior work [38–40], the tasks between meta-training, meta-
validation, and meta-test should be in the same configuration. For example, in the 5-way
1-shot scenario, a task includes five categories (way), each category with only one support
samples (training data), along with 15 query samples to be classified (test data). We keep
sampling the 5-way 1-shot tasks from SEEN categories during meta-training. The tasks
drawn from the meta-val categories (HELD-OUT) are used for selecting the best model.
The model generalization accuracy in the meta-learning stage is shown in Figure 10, where
the best model may appear at the epoch corresponding to the peak of the green line. Once
the meta learning stage is done, the best model is applied to those tasks sampled from
meta-test (UNSEEN) categories for evaluation. The same protocol is used for the 5-way
5-shot case. Note that, in the standard FSL setting, the meta-test tasks arrive one at a time,
not simultaneously. In other words, we record the accuracy when every task comes and
compute the mean accuracy over many tasks, with a 95% confidence interval.
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Figure 10. Generalization curves of the proposed method on meta-train and meta-val sets with
respect to the number of training epochs. The 5-way classification accuracy with 1-shot and 5-shot at
each epoch is reported.

Tables 2 and 3 show the results of several FSL approaches on the NWPU-RESISC45
dataset, where both 5-way 1-shot and 5-way 5-shot classification performance are reported.
The main results of comparison approaches are cited from a recent study [50] on few-
shot classification of RS scenes. The methods marked with an asterisk indicate that the
backbone of the original method is replaced with Resnet-12. Most of the comparison
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methods evaluate the models on 600 tasks sampled from the UNSEEN categories, which
leads to high variance. We follow the more reliable evaluation setting suggested by
Zhang et al. [50], evaluating our method on 8000 sampled tasks. The mean accuracy (in %)
with 95% confidence interval is reported for comparison. On both datasets, our RS-SSKD
approach outperforms the previous results.

Table 2. Comparison to prior works on NWPU-RESISC45. Average 5-way accuracy (%) is reported
with a 95% confidence interval. * represents the backbone of the original method is replaced with
Resnet-12. Values in bold indicate the ones with the highest classification accuracy.

Method Backbone 1-Shot 5-Shot

ProtoNet [40] Conv4 51.17 ± 0.79 74.58 ± 0.56
ProtoNet * ResNet12 62.78 ± 0.85 80.19 ± 0.52

MAML [42] Conv4 53.52 ± 0.83 71.69 ± 0.63
MAML * ResNet12 56.01 ± 0.87 72.94 ± 0.63

RelationNet [45] Conv4 57.10 ± 0.89 73.55 ± 0.56
RelationNet * ResNet12 55.84 ± 0.88 75.78 ± 0.57
TADAM [51] ResNet12 62.25 ± 0.79 82.36 ± 0.54
MetaOpt [52] ResNet12 62.72 ± 0.64 80.41 ± 0.41
DSN-MR [59] ResNet12 66.93 ± 0.51 81.67 ± 0.49

Zhang et al. [50] ResNet12 69.46 ± 0.22 84.66 ± 0.12
RS-SSKD (ours) ResNet12 70.64 ± 0.22 86.26 ± 0.12

Table 3. Comparison to prior works on RSD46-WHU. Average 5-way accuracy (%) is reported with
95% confidence interval. * represents the backbone of the original method is replaced with Resnet-12.
Values in bold indicate the ones with the highest classification accuracy.

Method Backbone 1-Shot 5-Shot

ProtoNet [40] Conv4 52.57 ± 0.89 71.95 ± 0.71
ProtoNet * ResNet12 60.53 ± 0.99 77.53 ± 0.73

MAML [42] Conv4 52.73 ± 0.91 69.18 ± 0.73
MAML * ResNet12 54.36 ± 1.04 69.28 ± 0.81

RelationNet [45] Conv4 55.18 ± 0.90 68.86 ± 0.71
RelationNet * ResNet12 53.73 ± 0.95 69.98 ± 0.74
TADAM [51] ResNet12 65.84 ± 0.67 82.79 ± 0.58
MetaOpt [52] ResNet12 62.05 ± 0.76 82.60 ± 0.46
DSN-MR [59] ResNet12 66.53 ± 0.70 82.74 ± 0.54

Zhang et al. [50] ResNet12 69.08 ± 0.25 84.10 ± 0.15
RS-SSKD (ours) ResNet12 71.73 ± 0.25 85.90 ± 0.15

To more clearly observing whether the backbone impacts the performance, we plot
bar charts in Figures 11 and 12, and the striped bars indicate the re-implementation of
approaches with the Resnet-12 backbone. It is surprising that the re-implementation of
MAML [42] only gets minor improvements with Resnet-12 over Conv4 while Relation-
Net [45] even drops in the 5-way 1-shot scenario for both datasets. This phenomenon
might occur due to the complex comparison module of RalationNet leads overfitting when
leveraging deeper networks. In contrast, ProtoNet [40] gets significant improvements when
replacing the backbone with Resnet-12. The re-implemented ProtoNet achieves comparable
performance to the recent leading approach MetaOpt [52] on the NWPU dataset, known as
a powerful approach. DSN-MR [59] is based on ProtoNet by mapping the mean category
feature and query samples into a subspace, and performing a distance metric comparison
in the subspace. It achieves good few-shot classification performance while consumes a lot
of computational resources, e.g., at least four GPUs with ∼10GB/GPU are required to train
the model. TADAM [51] proposed a dynamic feature extractor that can be optimized in a
task-conditioned manner, yet extra parameters and additional complexity are carried to the
network. They solve this issue by utilizing an additional logit head (i.e., the normal M-way
classification, where M is the category number in the base set) for co-training. The authors
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claim that such a strategy on miniImageNet [38] is better than simple pre-training; how-
ever, we observe the opposite result in both RS scene datasets, NWPU-RESISC45 [22] and
RSD46-WHU [34].
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Figure 11. The few-shot classification performance (with 95% confidence intervals) for the NWPU-RESISC45 dataset,
the striped bars indicate the re-implementation of approaches with a Resnet-12 backbone.
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Figure 12. The few-shot classification performance (with 95% confidence intervals) on the RSD46-WHU dataset, the striped
bars indicate the re-implementation of approaches with a Resnet-12 backbone.

The leading method [50] employs a plain pre-training head over the SEEN categories,
based on which the model is further optimized in the meta-training stage. The major
difference between method [50] and ours is that the former trains the backbone network to
classify all SEEN categories with the cross-entropy loss (e.g., 25 categories in the NWPU-
RESISC45), and adds a global average pooling layer to reduce the dimension of the em-
bedding. However, we argue that some useful features might be lost by the mixed global
representation as the dominant objects could locate anywhere on the image. This point is
especially challenging in RS scenes as the within-class diversity and between-class simi-
larity are still two big problems. For example, given a freeway image, does the network
focus on the freeway or the forest on the sides of the freeway? Intuitively, we expect the
network to dig the most discriminative and transferable features that might be important
cues for image classification, especially in a low-data regime. Our SSKD module addresses
this problem by incorporating the CAMs into the proposed two-branch self-supervised
network, enabling the network to discover the most relevant regions in the image and
reduce the distraction caused by irrelevant parts. This idea is inspired by human attention
behavior. If the network is able to highlight the regions that are semantically relevant to
the correspondence labels, one can expect better classification performance. As illustrated
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in Figure 13, we can observe that the proposed network captures the most relevant regions
to the corresponding categories. The results in Tables 2 and 3 suggest that our method
consistently surpasses the work [50] (similar to our meta-learning stage) on both datasets.
This verifies that our SSKD module learns a discriminative embedding, thus improving the
representation capabilities of our model.

training iteration increased

Figure 13. The class activation maps (CAMs) of images training by our self-supervised network, where the corresponding
labels are: airplane, baseball diamond, freeway, basketball court, dense residential, and harbor. The training iteration
increased from left to right.

5.4. Ablation Studies and Discussion

In this section, we give a visualization analysis of the proposed self-supervised net-
work at first. Then, SSKD-module and its ablated variants are analyzed on the NWPU-
RESISC45 and RSD46-WHU datasets with ResNet12 backbone. Finally, we analyze the
training time of state-of-the-art methods and ours.

5.4.1. Visualization Analysis

To verify that our proposed self-supervised network refines the class activation
maps (CAMs), we compare the visualization results generated from the original, flipped,
and scaled inputs for the same label using the baseline model (Resnet-12) and the pro-
posed network. Using the proposed self-supervised network that enforces the attention
consistency (AC) [64] under the three image transformed pairs, we get the trained models:
Res12+f (flipping), Res12+s (scaling), and Res12+fs (flipping and scaling), respectively.
Figure 14 shows four examples of CAMs for the labels (a) freeway; (b) baseball diamond;
(c) harbor; and (d) dense residential. The CAMs from the baseline model Resnet-12 are
either inconsistent or contain non-target parts, e.g., it covers a lot of the forests on both
sides of the freeway under both the vertical flipping and scaling transformations. Our
Res12+f model generates highly consistent attention regions under image flipping but
failed under image scaling and flippling+scaling. The Res12+s model produces highly
inconsistent CAMs under image flipping and scaling+flilping, especially in the cases (b)
baseball diamond and (d) dense residential. Considering attention consistency under
both flipping and scaling, the model Res12+fs outputs highly consistent CAMs under
all cases except slightly inconsistent under image scaling and flipping in (d), but still
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better than others. These qualitative results illustrate that the proposed network can gener-
ate the most relevant category-specific regions by enforcing attention consistency under
original-transformed pairs.
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Figure 14. Class activation maps (Cams) visualization according to the labels: (a) freeway; (b) baseball
diamond; (c) harbor; and (d) dense residential using different models.

5.4.2. The Effect of Auxiliary Loss Functions

Here, we empirically show the contributions of each auxiliary loss by progressively
incorporating them into the proposed SSKD module. To this end, we start with plain cross-
entropy as our baseline, denoted as Lce. Here, we use the abbreviated Lss to indicate the
final combined self-supervised loss in Equation (3). From the results in Table 4, we observe
that the classification performance slightly increased when performing the knowledge
distillation (KD) loss on models trained on Lce. Then, if we train the model with the
proposed self-supervised network, the model performance improves to 69.72% and 84.87%
on the NWPU-RESISC45 dataset, for 5-way 1-shot and 5-way 5-shot, respectively. On the
RSD46-WHU dataset, the self-supervised loss gives an absolute gain of 1.61% and 1.48% to
the classification performance of 1-shot and 5-shot, respectively. The last row of Table 4
indicates the model trained with the whole SSKD module. We can see that, compared with
the model trained with plain Lce, LKD loss provides more benefits to the model trained
with the self-supervised network. These empirical evaluations clearly demonstrate the
individual importance of different components in the proposed module.
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Table 4. Few-shot classification results on NWPU-RESISC45 and RSD46-WHU, with different auxil-
iary loss functions.

Loss Function
NWPU-RESISC45, 5-Way RSD46-WHU, 5-Way

1-Shot 5-Shot 1-Shot 5-Shot

Lce 69.46 ± 0.22 84.66 ± 0.12 69.08 ± 0.25 84.10 ± 0.15
Lce → LKD 69.72 ± 0.22 84.87 ± 0.12 69.39 ± 0.25 84.31 ± 0.15
Lce + Lss 69.91 ± 0.22 85.39 ± 0.13 70.69 ± 0.25 85.58 ± 0.15

Lce + Lss → LKD 70.64 ± 0.22 86.26 ± 0.12 71.73 ± 0.25 85.90 ± 0.15

5.4.3. Training Time Analysis

We report the meta-training runtime of state-of-the-art methods and ours on both
datasets, NWPU-RESISC45 [22] and RSD46-WHU [34], in Table 5. The Conv-4 architectures
of ProtoNet [40], MAML [42], and RelationNet [45] are 64-64-64-64, 32-32-32-32 64-96-128-
256, respectively; the number indicates the filters per layer, as in the original literature.
We use the Adam optimizer with an initial learning rate of 0.001 for Conv-4, as suggested
in [67]. The ResNet-12 backbone for ProtoNet, MAML, and RelationNet are the same as
ours, see Section 4.2.1. MAML states that using 64 filters or a deeper backbone may cause
overfitting; to avoid this, we apply standard data augmentation, including random crop,
left-right flip, and color jitter, to our implementation of MAML with ResNet-12 backbone.
The same data augmentation is applied to ProtoNet and RelationNet to ensure a fair
comparison. The hyperparameters of all the methods are following their original settings,
e.g., TADAM [51] suggests 30,000 tasks/episodes for meta-training while DSN-MR [59] sets
80,000. The number of tasks in each epoch of these methods is varied, e.g., the early FSL
methods like ProtoNet and RelationNet set each epoch with 100 tasks and meta-train for
600 epochs. The more recent work like MetaOpt [52] and DSN-MR [59] were meta-trained
for 60 and 80 epochs, respectively, with each epoch consisting of 1000 tasks. Table 5 shows
the running time over total meta-training tasks; all models are evaluated on a single GPU
RTX 3090, except DSN-MR, which needs at least two RTX 3090 GPUs, due to the high GPU
memory consumption of the SVD step.

Table 5. Meta-training runtime comparison of methods on NWPU-RESISC45 and RSD46-WHU datasets, under 5-way
1-shot and 5-way 5-shot classification scenarios. * represents the backbone of the original method is replaced with Resnet-12.

Method Backbone Meta Training Tasks
NWPU-RESISC45 RSD46-WHU

1-Shot Runtime 5-Shot Runtime 1-Shot Runtime 5-Shot Runtime

ProtoNet [40] Conv4 60,000 1.2 h 1.4 h 1.2 h 1.4 h
ProtoNet * ResNet12 60,000 1.8 h 1.9 h 1.8 h 1.9 h

MAML [42] Conv4 60,000 7.7 h 8.3 h 7.8 h 8.3 h
MAML * ResNet12 60,000 18.2 h 19.5 h 18 h 19.5 h

RelationNet [45] Conv4 60,000 1.4 h 1.8 h 1.4 h 1.7 h
RelationNet * ResNet12 60,000 2.2 h 2.5 h 2.2 h 2.3 h
TADAM [51] ResNet12 30,000 5.9 h 7.5 h 7.4 h 9.5 h
MetaOpt [52] ResNet12 60,000 6.4 h 10.2 h 6.3 h 10.1 h
DSN-MR [59] ResNet12 80,000 33.2 h 70.3 h 32.9 h 70.5 h

Zhang et al. [50] ResNet12 48,000 2.3 h 2.9 h 2.3 h 2.9 h
SSKD (ours) ResNet12 48,000 2.3 h 2.9 h 2.3 h 3.0 h

As shown in Table 5, we observe that the training time for both ProtoNet and Rela-
tionNet increases slightly for the ResNet-12 version compared to Conv-4. In comparison,
the runtime of MAML with Resnet-12 backbone takes more than two times longer to train
than Conv-4. While nearest-neighbor classifier and its variants [40,45,50] are popular in
FSL as the classification rule is simple, MetaOpt [52] argues that discriminatively trained
linear classifiers often perform better than nearest neighbor classifiers in low data scenarios
as they can learn better category boundaries. By incorporating a differentiable quadratic
programming (QP) solver [68], MetaOpt proposed an end-to-end model that learns the
embedding with various linear classifiers for few-shot classification. It achieves a good
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performance on both datasets with a significant increase in training time. The runtime of
DSN-MR [59] is very slow due to the computational cost in the SVD step; adopting a fast
approximate SVD algorithm such as [69] might reduce the training time.

In addition to the training time of the meta-training stage, like Zhang et al. [50], our
method has an additional training time for the pre-training stage, which is the runtime
of our SSKD module. The pre-training runtime of [50] is 1.6 h on NWPU-RESISC45 and
2.2 h on RSD46-WHU. The training time of our SSKD module is including two parts,
the runtime for the self-supervised network and the KD procedure. It cost 3.9 h and 6.3 h
to train the proposed self-supervised network on NWPU-RESISC45 and RSD46-WHU,
while the KD procedure takes 2.5 h on NWPU-RESISC45 and 2.8 h on RSD46-WHU,
respectively. That is, the training time of our SSKD module is 6.4 h and 9.1 h in total
on NWPU-RESISC45 and RSD46-WHU, respectively. The same as in work [50], we do
not introduce any extra parameters but optimize the embedding directly by the cosine
classifiers over the N-way K-shot tasks in the meta-learning stage. Our meta-training
runtime is nearly the same as work [50], slightly more than ProtoNet and RelationNet with
a ResNet-12 backbone. Counting in the training time of the SSKD module, our approach
achieves the best performance at a modest increase in total training time. Note that our
SSKD module only needs to train once on a dataset to provide a powerful embedding for
downstream meta-learners under arbitrary N-way K-shot setting.

An interesting phenomenon we observed is that, for almost all methods, the meta-
training runtime is virtually the same on both datasets. The reason is that, for most
methods, the training time for the meta-learning stage depends on the total number of
training tasks/episodes, and this number is the same for both datasets. In our experiments,
the only exception is TADAM [51], which incorporates a co-training strategy in the meta-
learning stage. This strategy introduces additional complexity to the model by adopting an
additional logit head (i.e., the normal M-way classification, where M is the number of all
SEEN categories) for auxiliary co-training. The co-training burden consumes more training
time since the RSD46-WHU dataset is larger than the NWPU-RESISC4 dataset.

6. Conclusions

While there is no doubt that the meta-learning procedure plays a significant role in
generalization when facing a scarce data regime, from the learning to learn perspective, it
makes no sense to meta-learn from scratch. To this end, we proposed a SSKD module: one
aims to learn a powerful embedding, without any additional annotation effort that offers
more efficient and effective representations to downstream meta-learners. Firstly, a two-
branch self-supervised network is designed to catch the most relevant category-specific
region of inputs, which forces the network to output more discriminative embeddings.
Secondly, we adopt a self-distillation procedure to prevent overfitting and improve the
classification performance. Extensive experiments are conducted on two RS scene datasets,
and the results verified the effectiveness of the proposed method by achieving the SOTA
performances. While our experiment results are very encouraging, they are not enough
from a practical standpoint. Much can be done toward the goal of human-level performance.
Our future work may include improving the meta-learning process by learning to learn the
network backbones and investigate more real applications.
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