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ABSTRACT: Intrinsic molecular brightness (MB) is a number of

Brightness change

emitted photons per second per molecule. When a substrate labeled by Si”ginptm’:’” © ,

a fluorophore and a second unlabeled substrate form a complex in , © ™

solution, the MB of the fluorophore changes. Here we use this change to N 2, %

determine the equilibrium constant (K) for the formation of the complex ‘ £ ZDJ

at pM concentrations. To illustrate this method, we used a reaction of + = — K
DNA hybridization, where only one of the strands was fluorescently ° %, €q
labeled. We determined K at the substrate concentrations from 80 pM to _ © 7

30 nM. We validated this method against Forster resonance energy N;:;E?giltzd S'Zﬂlssltar:ffd S

transfer (FRET). This method is much simpler than FRET as it requires c<0.1nM a8

only one fluorophore in the complex with a very small (a few percent)

change in MB.

B INTRODUCTION

Investigation of noncovalent complex-forming reactions is
essential for understanding and eventually controlling bio-
chemical processes in living systems.'~* Most of the known
pharmaceuticals rely on such complexes with specific
components (e.g, enzymes or receptors).” " The equilibrium
constant (K) of the reactions allows one to predict the stability
of these complexes at various concentrations of substrates.
Among various methods for K determination, only fluorescent-
based methods are sensitive enough to measure K in solutions
of low concentrations (<1 nM) and small volume (<1 uL).””"®
These techniques are fluorescence correlation spectroscopy
(FCS), fluorescence titration (FLT), two-color coincidence
detection (TCCD) and Forster resonance energy transfer
(FRET).'*™* To determine K by FCS, the fluorescent
substrate and formed complex must differ significantly in
diffusion coefficients.”* This requirement can be omitted by
using fluorescence cross-correlation spectroscopy (FCCS),
although it involves multicomponent diffusional analysis and
labeling with more than one fluorophore.”> FLT measures
complex formation by observing changes of absorption and
emission spectra (i.e., shift of maximum, shape, intensity) at
different ratios of substrates. A major problem with TCCD is
that it can be performed only at subnanomolar concentrations
and the ac%uisition time is rather long (i.e., tens of
minutes)”>*>*® The last method used directly in living
cels—FRET—became a general technique in biochemical
measurements as it combines substrate sensitivity at picomolar
concentrations, nanoliter sample volume, and a short time of
data acquisition (in order of seconds).27_30 However, FRET
requires to label two substrates with two different dyes (donor
and acceptor of energy) and confine them in close proximity
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Formed complex

within the complex (<10 nm). These requirements are often
challenging to control due to availability of binding sites for
fluorophore on the biomolecule, size of donor/acceptor probes
and their reactivity.31 Recently, protein induced fluorescence
enhancement (PIFE) has been proposed as a method to study
unlabeled proteins bound to DNA.>*~** In the PIFE method,
fluorescent dye (typically Cy3) is attached to immobilized
double stranded DNA.>** The fluorescent intensity enhance-
ment upon binding of a protein to DNA enables protein
detection and its movement.

We employed molecular brightness (MB) analysis irre-
spective to the direction of change. Our objective was to
quantitatively characterize formation of other type of non-
covalent complexes beyond DNA—protein systems without the
limitation of using specific dye and immobilization methods.
As a model reaction, we chose hybridization of complementary
DNA oligonucleotides where only one strand is labeled. DNA
pairs, although with both labeled strands, were previously used
to evaluate association/dissociation kinetics while demonstrat-
ing the alternating-laser excitation method by Kapanidis et al.*’
This advancement allowed sorting a signal from each
fluorophore and reduce the background-noise level. Taking
advantage of this technical improvements, we develop the
method based on the analysis of changes in MB of a single
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Figure 1. Principle of brightness changes analysis method for the determination of the equilibrium constants. (a) As a model complex-forming

reaction we investigated fluorescently single-labeled complementary

oligonucleotides. (b) With the use of TCSPC, we record a countrate of

photons for substrate alone and after hybridization. (c) FCS measurements were conducted as a supporting technique for background correction
and initial MB estimation. The FCS analysis alone is not sufficient for K determination due to overlapping autocorrelation curves of donor-only and

formed complex with inseparable fluorescent fractions. The ratio between diffusion coefficients of the substrate (155 Lmz) and the complex (144

2
#7Y is much lower than 1.6. Thus, it does not meet the requirement for fraction separation.>” (d) Illustrative representation of fluorescence
N

titration experiment with a fixed concentration of one substrate. (e) Changes of photon countrate upon complex formation.

fluorophore, and it still retains all the advantages of FRET. The
changes in local environment can quench or enhance
fluorophore MB due to effects such as noncovalent interactions
between the substrates, charge transfer, steric shielding,
changes in dissipation of energy in different solvents,
photoisomerization rate, changing HOMO—LUMO gap due
to the change of temperature, or even a combination of those
effects.’®™* This fact was used to develop viscosity sensors
and ion concentration indicators, as well as to study
complicated processes such as protein activation and tRNA
translocation.”*™*’ In our approach to measure K, instead of
collecting emission spectra, we record changes of the number
of emitted photons per second upon complex formation; see
Figure 1. We performed a series of titration experiments
resulting in the changes of MB. We applied the method for
concentration of DNA strands down to 80 pM. We estimated
K even for a pair where changes in MB were as small as 5%
difference in the intrinsic MB of fluorophore. By using FRET
as a benchmark, we confirmed the reliability of the brightness-
based method for determination of K.

B MATERIALS AND METHODS

Brightness Method for Equilibrium Constant Deter-
mination. Figure 1 schematically illustrates the brightness
method for K determination. The total number of emitted
photons is proportional to the time of signal acquisition t and
the concentration C, of the fluorophore excited inside the focal
volume V;. The average number of photons emitted per unit
time defines the countrate, y,:

Nhotans
Vya-Cy = — =
CrME T A (1)

As a model reaction we consider a formation of complex AB
according to A + B = AB, where A is the labeled
oligonucleoide strand and B is the nonfluorescent comple-
mentary strand. In this reaction, the only fluorescent
components in a solution are A and AB. Therefore, eq 1
takes the form:

Vo (a-Cil + 7-Cih) = 4 ®)

When complex AB is formed, the intrinsic brightness of
fluorophore, a, changes to 7. In eq 2, C{ and Cj; are
equilibrium concentrations of reagents in the mixture, related

eq
by the equation K = % Because C, = C{ + Cil and Cy =
‘A~B

C¥ + Ci; we get the relation:

cyl
K= AR
(G — Cib)-(Cy — Ci ©)

Equation 3 is analytically solved to determine the
equilibrium concentration of complex Cjy. Cif is the function
of three experimentally known variables, Cif; = f(C,,CpK) =

1 1 1)2
E(CA +Cyt + - \/(—CA — G- %) - 4CA-CB].

Finally, the eq 2 is rewritten as
Voa:[Cy = f(Cy, Cp, K)]-

[1 + g-K-(CB - f(Cy, Gy, K))]

=4 (4)

Equation 4 depends on parameters which we obtain
experimentally: (1) the confocal volume Vj is defined during
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Figure 2. Example of FRET efficiency analysis of the sample where concentration of donor strand C, = 2 nM: (a) histograms for series of samples

Cp

in different ratio -2 binned with 100 ms interval for double labeled oligonucleotide pairs on the same sides (3'488/647N, top panel) and on the

G

opposite sides (488/647N, bottom panel); (b) determination of equilibrium constant for a given pair. The analysis is described in detail in the

Supporting Information.

calibration of setup under chosen detection conditions; (2)
both a and initial concentration C, of fluorescent substrate are
determined in one FCS experiment according to eq 1; (3) the
last y brightness is evaluated in experiment where the second
substrate B is in excess compared to concentration C, or vice
versa. As the ratio %

A

function of Cy begins to resemble a binding isotherm, Figure
le. The workflowchart of brightness analysis method and
details of FCS measurements are presented in the Supporting
Information.

Oligonucleotide Pairs. Oligonucleotide strands were
purchased from IBA GmbH, Germany and used without
further purification. The custom-synthesized 13-mer strands
were labeled with ATTO dyes at either 5’ or 3’ ends and
named as indicated in Figure 3. The designed sequence
prevents hairpin formation or secondary binding. Purification
of oligonucleotides was performed by the manufacturer using
the IBA Premium PAGE method. The strands were bought
lyophilized. We resuspended them in Tris EDTA (TE) buffer
to obtain a stock concentration of 100 uM, aliquoted and
stored at —20 °C. Experimental concentrations of oligonucleo-
tides were obtained by diluting stock solutions in 20 mM
phosphate buffer (PB), pH = 7.4. Mixtures of complementary
strands were incubated at 25 °C. The time of incubation
depends on the sample concentrations—the lower the
concentration, the longer the incubation time. The details
are described elsewhere.”’

Time-Correlated Single-Photon Counting Setup. All
FCS, FRET and brightness measurements were performed
using an inverted confocal microscope Nikon EZ-C1 setup
equipped with a water immersion Nikon PlanApo 60x
objective (NA = 1.2). The Nikon confocal unit was equipped
with PicoQuant LSM upgrade system including PicoHarp 300
TCSPC module combined with two single-photon avalanche
photodiodes (SPAD), by PerkinElmer Optoelectronics and
Micro Photon Devices (Milan, Italy). Wavelength filters and
dichroic mirrors placed in front of the detector were
manufactured by Chroma (USA). We used two pulsed diode
lasers 485 and 636 nm (PicoQuant GmbH, Germany). Lasers
excitations pulses were controlled by the Sepia II laser
controller (PicoQuant GmbH) together with the SymPho-
Time 64 software. System details including filters and
excitation pulse scheme are described in Figure S1.

of reagents increases, function y as a

1943

Photodamaging of dyes was prevented by two factors (see
Supporting Information section S1): first, no single dye was
directly irradiated for prolonged periods of time (as it is a case
in most imaging-based experiments), due to the fast diffusion

of the probes (D = 155 ”—mz), second, the dyes on average were

illuminated by 55 #W (laser power measured before entering
the objective) over time t;, = 64 us, the time of diffusion across
a focal volume. Before each experimental session the laser
power was measured by a PM100 power meter (Thorlabs,
USA) and set at a constant value for whole measurements.
Lab-Tek 8-Chambered cover-glass (Thermo Fisher Scientific,
USA) was used as sample container. Focal volume was set at
distance of 10 pm from the edge of the cover-glass. The
temperature was maintained at 25 + 0.5 °C within an isolating
box enclosure with the temperature controller (OkoLab, Italy).
Both FCS and TCSPC measurements were performed using
the same confocal system.

FRET Analysis. We performed control FRET experiments
(see Figure 2) to determine hybridization equilibrium
constants K on oligonucleotide pairs with donor and acceptor
dyes either on the same end (3'488/647N) of the formed
complex or on the opposite sides (488/647N), Figure 3. We

@ ATTO488

@ ATTO647N Double labeled pairs

(FRET benchmark)

A A b

3'488 / NN

Single labeled pairs
(No FRET)

w
w

IH4>OOO>—HO—HOOA>
WH>HOOOEHA>O>00>—HY

3'488 / 647N 488 / 647N NN /647N

Figure 3. Schematic representation of the studied pairs. Comple-
mentary strands are labeled with ATTO488 (donor) and ATTO647N
(acceptor) dyes.

determined the average equilibrium constant for the broad
range of concentrations. We found K equal to (3.5 + 1.9) X
10° M~ ' and (1.1 % 0.5) X 10° M™" for 3'488/647N and 488/
647N pairs at 25 °C, 20 mM PB (pH = 7.4) buffer,
respectively. This value is in a good agreement with the results
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of our previous work for the similar pair reaction at different
ionic strength.”’

B RESULTS AND DISCUSSION

Equilibrium Constant Determination Performed on
Double Labeled Oligonucleotide Pairs. To test the MB
method, we analyzed data obtained during FRET experiments
on double labeled DNA pairs. We analyzed photons recorded
upon blue excitation pulse for both red and blue channels. We
performed an FCS analysis to determine the brightness of each
component of the reaction after background correction. From
brightness analysis, we observed increasing intensity in the red
channel and a decrease in blue one, which was in good
agreement with the energy transfer mechanism. Our analytical
approach is presented in Figure 4.

a) Blue Channel, exc. 485 nm b) Red Channel, exc. 485 nm
Donor-only In complex Donor-only In Complex

P Py P

7R\ / \, 7 A\ 4 \
/ \ / \ / \
/ \ ./ \ \ / \
. | \ | S I !

| | | |

i% I L8/

i i ] i f!

\ ] \ b g / \ /
\ /‘/ \'1,3 // - // \'i)’?
\ s \. \. . \

.

/

/

Vorar-Ca Vo (a1 Cif+y1-Cag) Voraz:Ca Vo (a2 C3%+v2-Cag)
Figure 4. Labeled oligonucleotides before and after hybridization,
excited in blue laser focal volume. The fluorescence photons emitted
by the complex are visible in blue and red channels. (a) In the blue
channel, the sample with donor only has the background-corrected
countrate proportional to brightness and initial concentration of
oligonucleotides. After the addition of acceptor-labeled strand, sample
begins to reach the equilibrium. A complex possesses lower brightness
due to energy transfer between strands, therefore overall countrate is
decreased. (b) In the red channel analysis, due to the spectral
properties of donor-strand, brightness is close to the background
signal. After hybridization, transferred energy can be emitted as
photons by acceptor molecule and hence complex brightness is
increased. The scheme is not drawn to scale.

Recorded data points of countrate in a function of
concentration follow the binding isotherm behavior as shown
in Figure S. To obtain K these data points were fitted with eq 4
for both red and blue channels. We performed analysis even at
a concentration of around 100 pM, Figure Sa. The
concentration-averaged values of K are shown in Table 1.
The average equilibrium constants obtained by MB-based
method from all experimental series for 3'488/647N and 488/
647N labeling pairs are (3.4 + 1.1) X 10° and (1.2 + 0.8) X
10° M™'. These values are in good agreement with K
determined by FRET analysis.

Determination of DNA Hybridization Equilibrium
Constants Using Only One Labeled Oligonculeotide
Strand. Once the brightness methodology was verified, we
moved from conventional donor—acceptor pair by replacing
one of the complementary ATTO-dye labeled strand with a
nonlabeled one, as shown in Figure 3. This implicates that,
upon excitation, the energy can no longer be transferred, as
stated in the FRET theorem. We performed measurements on
a similar range of concentrations as in previous experiments.
Results for both pairs are presented in Figure 6. Through the
countrate analysis, we observed that ATTO488 (blue) labeled
pair upon complex formation increases its MB by 22%. The

1944

a)

S

Ca= 0.1 [nM], Pair: 3'Atto488 / Atto647N

350 1
v o
E 300 A 1 2
S | Tlw5
9 o9 o 3
45250
© ] | | J
2 | | ) 150 £
S 2004 S 5
SR | 5
o
< 1501 ?(‘) L 100 =
c I /1 2
c @ c
@© g )4
21007 ¢f 2
o I lso ©
)

S 50 9
m o
0l . . ‘ . —Lo
0.0 0.2 0.4 0.6 0.8 1.0
CB [nM]

S

oA 1SS

Ca= 0.25 [nM], Pair: Atto488 / Atto647N

620 — 350
v ‘ =
£ 2
JLE) 600 ‘ o 0 3002
= /J O
@ 580 I ¢ S b0 Q
© L~ ©
b= (c} b=}
S 560 1 o ‘ [200
o | /f' o
© 540 (‘3/ 1509
> % <
= (L 100 £
G 5201 % 5
< /1 €] <
b T’o Lso ©
@ 5001

E (? 9
[aa] L o

0
480 L T T T T T T
0.0 0.5 1.0 15 2.0 2.5
Cg [nM]

Figure 5. Double labeled oligonucleotide pairs analyzed by changes of
molecular brightness. The molecular brightness is measured as a
function of countrate. It is observed either by an increase in the
recorded number of photons in the red channel or a decrease in the
blue one.

Table 1. Equilibrium Constants K Determined by FRET and
BRIGHTNESS method for Double Labeled Pairs of
Oligonucleotides

K x 10° M!

brightness method

FRET blue channel red channel
3'488/647N 35+ 19 29 + 09 39+ 1.1
488/647N 1.1 £ 0.5 0.9 + 0.7 14 £+ 09

change in fluorophore brightness enables us to fit eq 4 even at
the picomolar regime (79 pM estimated by fitting). On the
other hand, the ATTOG647N (red) brightness was less
influenced by the hybridization of DNA strands, which
resulted in a decrease of only 5% regardless of the initial
value. Due to such spectral behavior and limited detectors
sensitivity, the equilibrium constant can be estimated for
concentrations of ATTO647N labeled strand bigger than 10
nM. During the fitting we estimated average equilibrium
constants for both pairs equals to (1.11 + 0.9) X 10° and (0.9
+ 04) X 10° M~} for 3’488/NN and NN/647N pairs,

https://dx.doi.org/10.1021/acs.jpcb.0c00770
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Figure 6. Exemplary results of the brightness analysis method for
single labeled oligonucleotide pairs. By fixing the concentration of the
labeled strand, we were able to observe equilibrium states at each Cp
just by a local change of an environment around each dye. (a) The
ATTO488-labeled strand upon complex formation increased
molecular brightness by 22%. (b) As a second case where
ATTOG647N was used as labeling fluorophore, its molecular
brightness decreased by only 5%.

respectively. The MB changes showed that single labeled pairs
have the same values of K as 488/647N pair (two labels at the
opposite sides of the complex). The comparison of equilibrium
constants obtained for four differently labeled pairs of
oligonucleotides are shown in Figure 8. Having proofed the

Equilibrium constants, oligo 13 BP, PB 20 [mM], RT
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o
S
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Figure 8. Comparison of equilibrium constants obtained from
brightness method for all experimental oligonucleotide pairs. Box-
whisker plots represent the distributions of equilibrium constants for
double labeled and single labeled pairs. The boxes show the first (Q1)
and third quartiles (Q3) whereas the whiskers show the minimum
and maximal values (excluding outliers). The medians and averages
are shown according to the figure legend.

brightness approach to determine the equilibrium constant
when unlabeled oligonucleotides are used, we also anticipate
that this method could be used to study reactions in living
cells. It can be especially useful, where other techniques like
FCS® or FRET®" cannot be used due to several reasons: not
significant differences in diffusion coeflicients or low FRET
efficiency upon complex formation as well as difficulties in
attaching fluorophores to biomolecules of interest. In contrast
to FRET, TCCD, and FCCS, in our approach, only one of the
substrates needs to be fluorescent. This can simplify measure-
ments in living cells by introducing a fluorescent substrate
(e.g, GFP labeled protein) via genetic modifications and
controlling a ratio of second substrate by cell medium
composition, microinjections, physical triggers, or vice versa.
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Figure 7. 6(K) estimation based on randomly generated experimental errors by Monte Carlo simulations.
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Experimental Errors. Molecular brightness analysis is
based on recording the changes of the single photon emission

at different concentration ratio, % We wanted to estimate how
A

experimental errors (especially during preparation of samples)
may affect the determination of K. Therefore, the Equation 4
should be transformed from y(C,, Cz K) to K(C,, Cg, x).
Then, the error of K determination, 6(K), is calculated through
the total differential approximation to estimate the total/
maximum experimental error; see eq S.

0K

0K

oy

_|x

o(K) 1lo(C)I + lo(Cp)l + lo(y)l

()

However, eq 4 contains the implicit function, f(C,,CyK)
which makes impossible to analytically solve 6(K). To estimate
the error of K we performed Monte Carlo simulations. We set
the program to use one of previously measured and fitted data
series for pair 3'488/NN. The molecular brightness o and y
were estimated in separate sets of measurements with the error
of around 1%; therefore, we use them as a constant values. The

A B

molecular brightness ratio was set to r-1.23. Through the
o

analysis of a data series for a given C, concentration, we
estimated average error for substrate concentration o(Cg) and
countrate o(y) as 15% and 5% respectively.

In order to determine the error of 6(K), we draw the error
values from the normal distribution of ¢(Cg) and o(y). We
applied them for the entire data series, see Figure 7a. We solve
eq 4 ten thousand times (N = 10000) for each generated series.
All of the obtained C, and K fitted values were averaged with
calculated error through standard deviation.

The fitting values for nonmodified data series were C, = 6.31
+ 0.01 nM and K = (1.06 + 0.71) X 10° M™". Through the
simulations we obtained K value equal to (1.15 + 0.67) X 10’
see Figure 7b. These results are in good agreement with the
averaged errors obtained experimentally (1.11 + 0.9) X 10°.
The o6(y) is related to the instrumental characteristics of the
detector, ie, noise level, dead time, sensitivity at given
wavelength of collected photon, and proper filtration of the
background. The lower the concentration the higher the o(y)

is. By increasing the number of data points for given % the
A

impact of experimental and instrumental error can be reduced.
However, after our analysis we would like to underline that the
critical attention should be paid toward correct preparation of
solutions C, and Cj.

Explanation of the Differences in K Values for Single
and Double Labeled Pairs. The observed change of the MB
of a single fluorophore upon complex formation can be
attributed to the known effect of DNA—DNA noncovalent
n—n stacking.”> Upon hybridization, parallelly arranged base
pairs interfere with the HOMO—-LUMO gap of dyes by
changing local electron density, which cause either lowering or
increasing the gap distance. The common sensitive part
responsible for changes of MB upon fluctuation of local
environment are delocalized electrons in chromophore
aromatic structure. Such effects are observed in many examples
of commercially available dyes, i.e.,, SYBR, DAPI, YOYO, or
even the anticancer drug doxorubicin.”"**** The comparison
of differences in K values among all four oligonucleotide pairs
(two double and two single labeled) shows that there is an
additional attraction between dyes themselves in the case of
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the 3'488/647N pair. The pair 3'488/647N showed three
times higher K than other pairs. This effect is most probably
related to the 7—rn stacking of ATTO dyes aromatic groups
located at the same end of the formed complex. The binding
energy calculated as the difference in Gibbs free energy is
about AG = —2.75 kJ-M™". This value is bigger than energy of
thermal fluctuations in the system kT = 12.48] kJ]-M™" at 25
°C. The obtained AG value is in good agreement with stacking
energy between polyaromatic groups.™

The results from single labeled pairs experiments are used
here to discuss the complexity of energy transfer in double
labeled pairs with ATTO488 and ATTO647N dyes. Three
competing effects overlaps in the double labeled system. First
is energy transfer according to the FRET theorem. In the close
distance (<10 nm) two fluorophores of specific spectral
properties exchange the energy depending on the separating
distance between them. From the FRET analysis the pair 488/
647N (opposite ends) has 34% of energy transfer upon
complex formation. It means that, out of 100 photons
absorbed by donor 34 are transferred and observed in red
channel. Figure Sb shows inequality of photons transfer (60
photons decrease in blue, and 290 increase in red channel).
Second, upon the hybridization of DNA duplex ATTO488
increases MB by 22% (extra 130 according to initial 580).
Those values sum up to 190 and after correction by factor y are
equal to 263 photons. Lastly, a 5% decrease of MB by
ATTO647N upon hybridization might facilitate energy
transfer, which should fills the missing 30 photons. This
suggests that additional MB changes by each fluorophore in
any double labeled system for the FRET measurements may
affect estimated FRET,x."""" Such effects need to be
considered during the design and analysis of experiments
where FRET is used.

B CONCLUSIONS

In summary, we present the applicability of molecular
brightness analysis for determination of the equilibrium
constants K in noncovalent complex-forming reactions (A +
B = AB), down to picomolar concentrations. To estimate K,
we record the changes of MB upon the complex formation
where only one substrate is fluorescently labeled. We apply this
analysis providing that the fluorophore changes its MB upon
complex formation irrespective to the direction of change
(increase or decrease of MB). The K can be estimated in
reactions where complexation changes MB by as low as 5%
with respect to the initial MB of a substrate.

We demonstrated that commercially available ATTO488
and ATTOG647N dyes change brightness upon DNA
hybrydization sufficiently to determine K. We assume that
also increase of MB of a cyanine dye (e.g, Cy3), as upon
protein binding, could be employed for brightness analysis of
reactions where a substrate binds in the vicinity of the
fluorophore.®® It was demonstrated for several fluorophores
that their inherent fluorescence changes by order of
magnitudes when a DNA is attached (e.g, YOYO, SYBR).
This effect may allow K determination at picomolar
concentration regimes. At this stage, it is difficult to judge
how other dyes will be useful in brightness analyses. We expect
that our method can be enhanced by synthesizing novel
fluorophores with higher sensitivity. The values of K estimated
on the same pairs obtained by FRET and our method, show no
significant differences. This method can be applied not only for
oligonucleotide-based technologies like PCR, fluorescence in-
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situ hybridization (FISH), and gene editing but also for
determining the interactions of chemical compounds charac-
terized by low internal brightness. We expect that this method
is adaptable to any microscope system including super
resolution techniques, i.e., TIRF and STED.
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