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Treatment of chondrosarcoma remains a major challenge in orthopaedic oncology. Gene transfer strategies based on recombinant
adenoassociated viral (rAAV) vectors may provide powerful tools to develop new, efficient therapeutic options against these
tumors. In the present study, we tested the hypothesis that rAAV is adapted for a stable and safe delivery of foreign sequences
in human chondrosarcoma tissue by transducing primary human chondrosarcoma cells in vitro and in situ with different reporter
genes (E. coli lacZ, firefly luc, Discosoma sp. RFP). The effects of rAAV administration upon cell survival and metabolic activities
were also evaluated to monitor possibly detrimental effects of the gene transfer method. Remarkably, we provide evidence
that efficient and prolonged expression of transgene sequences via rAAV can be safely achieved in all the systems investigated,
demonstrating the potential of the approach of direct application of therapeutic gene vectors as a means to treat chondrosarcoma.

1. Introduction

Chondrosarcomas are a complex group of primary solid
cartilaginous tumors with variable clinical behavior and
histopathology. They are classified as either central (skele-
tal) chondrosarcomas, including conventional, dedifferen-
tiated, mesenchymal, or of clear cell subtype, or periph-
eral (extraskeletal) chondrosarcomas of myxoid type, from
solitary osteochondromas, or associated with the hered-
itary multiple exostoses syndrome. These differences are
reflected by the diversity of genetic abnormalities observed
(chromosomal translocations, rearrangements, duplications,
deletions) [1–4]. Among them, the conventional subtypes
that are usually assessed according to clinicoradiologic and
histopathological criteria from grade 1 to 3 [5–9] represent
about 90% of skeletal chondrosarcomas. Surgical manage-
ment of these tumors in individuals is currently the only
curative treatment, as chondrosarcomas do not respond well
to radio- and/or chemotherapy, indicating a potential need
for novel therapeutic approaches.

Large efforts have been made to understand the mech-
anisms underlying the pathogenesis of these tumors [1,
4, 10–13]. Indeed, evidence has been provided showing
the alteration of tumor suppressors (p53, retinoblastoma)
and the activation of oncogenes (c-myc), signaling axes
(Bcl-2, Ihh/PTHrP, GH/IGF, FGF-2/FGFR1, survivin), or
angiogenic factors (VEGF, FGF-2). Such findings may allow
to identify new targets for therapy in addition to those
already involved in cell proliferative and cartilage-related
synthetic pathways (overexpression of type-II and type-X
collagen, aggrecan, fibronectin, some matrix metallopro-
teinases MMPs, SOX9, S-100) [5–9, 14–16].

Regarding the development of novel therapeutic ap-
proaches, delivery of candidate genes in chondrosarcoma
tissue might be a powerful tool to generate efficient and
durable treatments against chondrosarcoma in patients [17,
18]. Strategies with potential benefits against the progression
of such tumors might be based on the application of either
directly interfering genetic sequences (antisense/siRNA
strategies, specific antagonists) or of genes coding for
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antitumor, antiangiogenic, proapoptotic, or antidifferentia-
tive agents (herpes simplex thymidine kinase HSV-tk, p53,
chondromodulin I, endostatin, oncostatin M OSM, some
Wnts) [1, 4, 19–46]. So far, few studies have demonstrated
the possibility of delivering genes in human chondrosarcoma
cells and tissue, most of which being based on the use of
nonviral [25, 26, 29, 30, 45–47] and classical viral vectors
(adenoviral, retro-, and lentiviral vectors) [19, 27, 28, 32, 36,
40, 41] that exhibit relatively low gene transfer efficacies (and
thus requiring the need of a complex cell selection prior to
use as platforms for therapy: nonviral and retroviral vectors),
induce immunogenic responses (adenoviral vectors), or
carry the risk of insertional mutagenesis (retro- and lentiviral
vectors). Protocols based on the use of vectors derived
from the adenoassociated virus (AAV) might offer good
alternatives as recombinant AAV (rAAV) are replication-
defective human vectors that carry none of the AAV protein-
coding sequences (making them less immunogenic than
adenoviral vectors) and that are maintained and expressed
as highly stable episomes [48, 49] (lowering the risk of
insertional mutagenesis), making rAAV a currently favored
gene transfer system for human clinical trials [50]. To date,
and to our best knowledge, there is no evidence showing
the possibility of targeting human chondrosarcoma tissue
using rAAV as a gene transfer system. Therefore, in the
present study we tested the ability of rAAV to efficiently and
stably deliver different reporter genes in chondrosarcoma
cells in vitro and most importantly in situ and further
analyzed the potential damaging effects of the gene transfer
procedure upon the activities of these cells in all systems
evaluated.

2. Materials and Methods

2.1. Reagents. All reagents were from Sigma (Munich,
Germany) except for the collagenase type I (232 U/mg)
(Biochrom, Berlin, Germany). The anti-β-gal (GAL-13) and
anti-type-X collagen (COL-10) antibodies were from Sigma
(Munich, Germany), the anti-type-II collagen (AF-5710)
and anti-type-I collagen (AF-5610) antibodies from Acris
Antibodies GmbH (Herford, Germany), the anti-Ki-67 (PP-
67) and anti-SOX9 (C-20) antibodies from Santa Cruz
Biotechnology (Heidelberg, Germany), and the anti-S-100
(Z0311) antibody from Dako Deutschland GmbH (Ham-
burg, Germany). Luciferase activity was determined with
the Luciferase Assay System (Promega GmbH, Mannheim,
Germany) and normalized to total cellular proteins using
the BCA protein assay kit (Pierce Thermo Scientific, Fisher
Scientific GmbH, Schwerte, Germany). The cell proliferation
reagent WST-1 and the Cytotoxicity Detection Kit (LDH)
were from Roche Applied Science (Mannheim, Germany).
Apoptosis was determined using the ApopTag Plus Peroxi-
dase In Situ Apoptosis Detection Kit (Chemicon-Millipore
GmbH, Schwalbach, Germany).

2.2. Tissue and Cells. Human chondrosarcoma tissue was
obtained from patients undergoing tumor surgery (n = 6)
(all chondrosarcoma graded 1 by an experienced pathologist
of the Saarland University Medical Center on part of

histological sections) [5–9]. All patients provided informed
consent prior to inclusion in the study. For cell isolation,
explants were washed, digested in collagenase [51], and
resuspended in DMEM with 100 U/mL penicillin G
and 100 μl/mL streptomycin (basal medium). The cells
were filtered through a 125 μm mesh to remove the
undigested matrix, and the cell numbers were determined
by hemocytometry. Viability, as determined by trypan blue
exclusion, exceeded 90% in all experiments. Cells were
further maintained in basal medium containing 10% FBS
(growth medium) at 37◦C in a humidified atmosphere
with 5% CO2. All experiments were performed with cells
at not more than passage 1-2. For the experiments in situ,
some explants were kept in growth medium at 37◦C in
a humidified atmosphere with 5% CO2. The 293 line, an
adenovirus-transformed human embryonic kidney cell
line, was maintained in Eagle’s minimal essential medium
containing 10% FBS and antibiotics.

2.3. Plasmids and rAAV Vectors. The constructs used in
this study were derived from a parental AAV-2 genomic
clone, pSSV9 [52, 53]. pAd8 contains the AAV-2 repli-
cation and encapsidation functions [53]. rAAV-lacZ is
an AAV-2-based vector plasmid carrying the lacZ gene
encoding β-galactosidase (β-gal) under the control of the
cytomegalovirus immediate-early (CMV-IE) promoter [54–
61]. rAAV-RFP carries a 776 bp Discosoma sp. red fluorescent
protein (RFP) cDNA fragment and rAAV-luc carries the Fire-
fly luciferase (luc) cDNA (1.7 kb) from pSPluc+ (Promega
GmbH) that were cloned in rAAV-lacZ instead of the lacZ
sequence [54, 56, 57, 61]. rAAV vectors were packaged
as conventional (not self-complementary) elements using
adenovirus 5 to provide helper functions in combination
with pAd8, and the vector preparations were purified by
dialysis and titered by real-time PCR [54–61], averaging 1010

units/mL (ratio of virus particles to functional vectors =
500/1) [56].

2.4. rAAV Transduction. Monolayer cultures of human
chondrosarcoma cells (2 × 104 cells) were transduced
with rAAV (20 or 40 μL each vector; MOI = 20–40) as
previously described [54–61] and kept in culture for up
to 20 days. In situ, the vectors (40 μL each) were directly
and homogeneously applied to various zones of the primary
human chondrosarcoma explants that were also maintained
in culture for up to 20 days.

2.5. Vector Copy Number Determination and Integration Site
Analysis. Monolayer cultures of human chondrosarcoma
cells (2 × 105) were transduced with rAAV (200 μl; MOI =
20) as described above or let untreated and kept in culture
for up to 15 days. To determine the vector copy numbers,
cells were processed using the QIAprep Spin Miniprep
Kit (Qiagen GmbH, Hilden, Germany) to separate trans-
genic from genomic DNA according to the manufacturer’s
instructions. Vector copies were determined by real-time
PCR using 500 ng DNA and the Brilliant SYBR Green
QPCR Master Mix (Stratagene, Agilent Technologies GmbH,
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Waldbronn, Germany) on an Mx3000P QPCR operator
system (Stratagene) to detect a region in the simian virus
40 small t antigen intron/polyadenylation signal present
in the rAAV vectors and with a standard curve made of
serially diluted plasmid containing the vector sequence at
known concentrations, as previously described [54, 56, 62].
To determine potential AAV integration into chromosome
19, cells were processed using the QIAamp DNA Mini
Kit (Qiagen) to isolate genomic DNA according to the
manufacturer’s instructions. Integration was detected by
nested PCR using 100 ng DNA and primers flanking the
AAV-chromosome 19 junction as previously described [63,
64].

2.6. Gene Transfer Analyses. Expression of the transgenes was
determined by X-gal staining, live fluorescence, detection of
luciferase activity normalized to total cellular proteins, and
immunohistochemistry using specific primary antibodies
and biotinylated secondary antibodies (Vector Laboratories,
Alexis Deutschland GmbH, Grünberg, Germany) using the
ABC method (Vector Laboratories) with diaminobenzidine
(DAB) as the chromogen [54–61]. To control for secondary
immunoglobulins, samples were processed with omission of
the primary antibody. Samples were examined directly by
light microscopy (Olympus BX 45; Hamburg, Germany) or
by fluorescent microscopy using an Olympus microscope
with a 568 nm filter (CKX41). Transduction efficiencies were
calculated as previously described [54–61].

2.7. Histological and Immunohistochemical Analyses. Ex-
plants were histologically processed as previously described
[57–59, 61]. Paraffin-embedded sections (5 μm) were stained
with hematoxylin and eosin (H&E) to detect cells or with
safranin O to detect proteoglycans according to routine
protocols [54, 55, 57–59, 61]. Fast green was used as a
counterstain. Expression of Ki-67, type-II, type-I, and type-
X collagen, SOX9, and S-100 was detected by immunohisto-
chemistry using specific antibodies as previously described
[5–8, 14–16, 55, 57–59].

2.8. Cell Survival, Death, and Cytotoxicity. The cell numbers
and viability in vitro were determined by trypan blue
exclusion over the course of the evaluation as previously
described [54, 55, 57–59], and proliferation was assessed
using the cell proliferation reagent WST-1 [54], with OD
proportional to the cell numbers. Cell death by apoptosis
in vitro was examined using the terminal deoxynucleotidyl
transferase-mediated dUTP nick end labeling (TUNEL)
method using the ApopTag Plus Peroxidase In Situ Apoptosis
Detection Kit [36, 65]. Cytotoxicity in vitro was monitored
using the Cytotoxicity Detection Kit (LDH) by measuring
the release of lactate dehydrogenase (LDH) activity from
damaged cells, with data given as percents of cytotoxicity
vis-à-vis untransduced cells. In situ, cell proliferation was
analyzed by immunodetection of the Ki-67 proliferation
antigen [8] while cell death by apoptosis was assessed by
TUNEL method (ApopTag Plus Peroxidase In Situ Apoptosis
Detection Kit) [58].

2.9. Histomorphometric Analyses. The transduction efficien-
cies, the cell densities (H&E staining), the intensities of
safranin O staining and those of type-II and type-I collagen
immunostaining, the percents of cells positive for the expres-
sion of Ki-67, type-X collagen, SOX9, and S-100, and the
percents of apoptotic cells were measured at 3 standardized
sites using triplicate cultures or 10 serial sections per condi-
tion and time point using SIS AnalySIS (Olympus), Adobe
Photoshop (Adobe Systems, Unterschleissheim, Germany),
and Scion Image (Scion Corporation, Frederick, MD, USA)
[54, 55, 57–59]. The percents of safranin O staining intensity
were calculated as being the ratio of positively stained tissue
surface to the total surface of the site evaluated. The type-
II and type-I collagen immunostaining intensities were in
pixels per standardized area.

2.10. Statistical Analysis. Data are expressed as mean ±
standard deviation (SD) of separate experiments. Each
condition was performed in triplicate in three independent
experiments with monolayer and explant cultures. Data were
obtained by two individuals that were blinded with respect
to the treatment groups. The t-test and the Mann-Whitney
rank sum test were employed where appropriate. Any P value
of less than 0.05 was considered statistically significant.

3. Results

3.1. Efficient and Sustained rAAV-Mediated Gene Transfer
in Primary Human Chondrosarcoma Cells In Vitro. Primary
human chondrosarcoma cells were first transduced in mono-
layer culture using various reporter, control vectors (rAAV-
RFP or rAAV-lacZ) to test the potentiality of rAAV to
promote stable transgene expression in these cells in vitro.
While a dose-dependent, prolonged (at least 20 days) fluo-
rescent signal was noted only in cells transduced with rAAV-
RFP (Figure 1(a)), X-gal staining was restricted to those
where rAAV-lacZ was applied (Figure 1(b)). Remarkably,
transduction efficiencies reached up to 82–90% at the highest
vector dose applied (MOI = 40). In addition, administration
of rAAV-luc to the cells at a higher vector dose also revealed
continuously significant and sustained activities that were
up to 25.6-fold higher compared with the control treatment
(always P ≤ 0.001) (Table 1). When the cells were let
untreated, no signal specific of any of the transgenes tested
could be detected (data not shown). An analysis of the vector
copy numbers in all cells transduced with rAAV (MOI = 20)
revealed stable values ranging between 3 and 5 copies per cell
from days 5 to 15, respectively, versus untreated cells. Also
interestingly, no events of vector integration were detectable
in all cultures tested at any time point of the analysis (data
not shown).

3.2. Efficient and Sustained rAAV-Mediated Gene Transfer in
Primary Human Chondrosarcoma Cells In Situ. The rAAV
vectors were next provided to primary human chondrosar-
coma tissue explants to further examine the ability of this
class of vector to mediate transgene expression in cells in
situ. In good agreement with the findings in vitro, X-gal
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rAAV-lacZ (40 µL) rAAV-RFP (20 µL) rAAV-RFP (40 µL)

(a)

rAAV-lacZ (20 µL) rAAV-lacZ (40 µL)rAAV-RFP (20 µL)

(b)

Figure 1: rAAV-mediated gene transfer in primary human chondrosarcoma cells in vitro. Cells in monolayer culture were transduced with
rAAV-RFP or rAAV-lacZ (20 or 40 μL) and processed to monitor transgene expression 20 days after vector application by analyzing live
fluorescence ((a) magnification ×40; insets: same fields under transmitted light) and by X-gal staining ((b) magnification ×20).

Table 1: Luciferase activity in transduced human chondrosarcoma
cells in vitro.

Vector (40 μL) Day 5 Day 10 Day 20

rAAV-lacZ 6.8 (0.1) 5.4 (0.1) 3.5 (0.2)

rAAV-luc 24.7 (1.3)a 13.8 (0.5)a 89.7 (3.4)a

Activity is given in RLU/μg total proteins. Values are given as mean of
all cultures (SD). aStatistically significant vis-à-vis control (rAAV-lacZ)
treatment.

staining and β-gal immunoreactivity were restricted to the
rAAV-lacZ-transduced explants compared with the control
treatment (Figures 2(a) and 2(b), resp.), noted for at least
20 days, the longest time point examined, demonstrating
transduction efficiencies of about 72–83% (Figure 2(b)).

3.3. Effects of the Gene Transfer via rAAV upon the Activities
of Primary Human Chondrosarcoma Cells In Vitro. Primary
human chondrosarcoma cells were then transduced with the
rAAV vectors in monolayer culture over time to monitor
possible deleterious effects of the gene transfer procedure
upon the activities of the cells in vitro. There was no
difference between the cultures transduced with rAAV and
those let untreated at any time point of the analysis for the
viable cell numbers (Figure 3(a)) and percents of viability
(Figure 3(b)) (P ≥ 0.187). Notably, the viable cell numbers
significantly increased over time in both types of cultures
(always P ≤ 0.001) [66], with stable levels of viability (always

P ≤ 0.003). Consistent with this, there was also no difference
between the rAAV-treated and untreated cells at any time
point for the active rates of proliferation (WST-1 assay)
(Figure 3(c)) (P ≥ 0.438) that also significantly increased
over time (always P ≤ 0.005) [31]. Finally, there was no
difference between the two types of cultures for the levels
of apoptosis (TUNEL assay) (Figure 3(d)) (P ≥ 0.667) that
remained expectedly low through the course of the analysis
(P ≥ 0.347) [36, 65]. Most importantly, application of rAAV
did not induce significant cytotoxic responses in transduced
cells compared with the condition where the vector was not
provided (Cytotoxicity Detection Kit LDH) at any time point
of the analysis (Figure 3(e)) (P ≥ 0.150).

3.4. Effects of the Gene Transfer via rAAV upon the Activi-
ties of Primary Human Chondrosarcoma Cells In Situ. The
vectors were next applied for 20 days to primary human
chondrosarcoma tissue explants to further evidence possible
undesirable effects of the gene transfer method upon the
activities of the cells in situ. In good agreement with the
findings in vitro, there was no difference between the explants
transduced with rAAV and those let untreated for the cell
densities (H&E staining) (Figure 4(a) and Table 2) (P =
0.872) or for the relatively active levels of cell proliferation
(Ki-67 immunodetection) (Figure 4(b) and Table 2) (P =
0.545) [8, 9]. There was also no difference between these
explants for the levels of apoptotic cells (TUNEL assay)
(Figure 4(c) and Table 2) (P = 0.667) that remained low
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rAAV-lacZ (20 µL) rAAV-lacZ (40 µL)rAAV-RFP (40 µL)
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Figure 2: rAAV-mediated gene transfer in primary human chondrosarcoma in situ. Human chondrosarcoma explant cultures were
transduced with rAAV-RFP or rAAV-lacZ (20 or 40 μL) and processed to monitor transgene expression 20 days after vector application
by X-Gal staining (a) and for immunodetection of β-gal activity ((b) magnification ×20).

during the time of evaluation [67]. When the presence of
major extracellular matrix components was estimated by
histological, immunohistochemical, and histomorphometric
analyses, again no difference could be evidenced between
rAAV-treated and untreated explants for the strong inten-
sities of safranin O staining (Figure 5(a) and Table 2) (P =
0.545) and of type II collagen immunostaining (a marker of
differentiated chondrocytes) (Figure 5(b) and Table 2) (P =
0.659) [5–9, 14]. Application of rAAV also did not modify the
relatively low levels of type I collagen expression compared
with the controls (Figure 5(c) and Table 2) (P = 0.290) [6–
8]. There was also no difference between the explants for the
percents of cells that deposited type X collagen (a marker of
hypertrophic chondrocytes) (Figure 5(d) and Table 2) (P =
0.684) or stained positive for SOX9 (master chondrogenic
transcription factor) (Figure 5(e) and Table 2) (P = 0.784)
[5, 7, 8, 14–16]. Finally, an evaluation of S-100 expression
revealed that application of rAAV did not influence the high
expression levels of this chondrocytic differentiation marker
(Figure 5(f) and Table 2) (P = 0.108) [5–7, 16].

4. Discussion

Approaches based on the direct application of candidate
gene sequences might provide strong tools for an effective,
durable treatment of chondrosarcoma as the conventional
options used currently do not allow for simple and functional
therapies that block the progression of the tumor in patients.
To achieve this goal, classical gene vehicles such as nonvi-
ral, adenoviral, retroviral and lentiviral vectors have been
employed with relatively moderate success so far due to low-
gene transfer efficiencies, immunogenicity and toxicity, and
the risk of insertional mutagenesis [19, 25–30, 32, 36, 40, 41,
45, 46]. In marked contrast, the use of vectors based on the
replication-defective human adenoassociated virus (AAV)
might be better suited as recombinant AAV (rAAV) has
been shown to transduce most of the cells of human origin
very efficiently in vitro, in situ, but most remarkably directly
in vivo over extended periods of time (as a result of the
maintenance of the transgenes under stable episomal forms),
without activating significant host-immune responses (due
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Figure 3: Effects of rAAV-mediated gene transfer on the survival of transduced primary human chondrosarcoma cells in vitro. Cells in
monolayer culture were transduced as described in Figure 1 or let untreated for up to 20 days to monitor the viable cell numbers (a), cell
viability (b), the rates of proliferation (WST-1 assay) (c), the levels of apoptosis (TUNEL assay) (d), and potential cytotoxic responses to the
treatment by rAAV (Cytotoxicity Detection Assay LDH) (e).
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rAAV-lacZ (40 µL)No vector

H & E

(a)

rAAV-lacZ (40 µL)No vector

Anti-Ki-67

(b)

rAAV-lacZ (40 µL)No vector

TUNEL
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Figure 4: Effects of rAAV-mediated gene transfer on the survival of transduced primary human chondrosarcoma in situ. Human
chondrosarcoma explant cultures were transduced with rAAV-lacZ (40 μL) or let untreated and processed after 20 days for H&E staining
(a), immunodetection of Ki-67 (b), and TUNEL assay (c). All at magnification ×20 except for H&E staining (magnification ×10).

to the removal of viral gene sequences in the recombinant
genome) [48–50]. Yet, to our best knowledge this class of
vectors has not yet been tested for its ability to target directly
human chondrosarcoma in a safe and effective manner.

In the present study, we therefore administered various
marker gene constructs to examine the permissivity of
primary human chondrosarcoma cells and tissue to direct
application of rAAV vectors and evaluated the safety of the
approach in vitro and in situ by different evaluation methods.

We show that our various vectors can mediate elevated and
prolonged levels of transgene expression in these cells in
both systems tested (primary monolayer and tissue explant
cultures), probably due to the ability of these small vectors
to penetrate the extracellular matrix in situ [58, 59, 61].
Specifically, the data indicate that continuous, efficient, and
sustained expression of the transgenes was noted for at least
20 days following vector application both in vitro and in situ
with transduction efficiencies reaching 72–90%, consistent
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Figure 5: Effects of rAAV-mediated gene transfer on matrix accumulation and chondrogenic cell differentiation marker expression in
transduced primary human chondrosarcoma in situ. Human chondrosarcoma explant cultures were transduced as described in Figure 4
and processed after 20 days for safranin O staining (a) and for immunodetection of type II collagen (b), type I collagen (c), type X collagen
(d), SOX9 (e), and S-100 (f). All at magnification ×20 except for safranin O staining (magnification ×10).

Table 2: Histomorphometric analyses in transduced human chon-
drosarcoma cells in situ (day 20).

Assay No vector rAAV-lacZ

Cell densities (cells/mm2) 394 (6) 401 (8)

Ki-67 staining (%) 52 (3) 54 (4)

TUNEL staining (%) 2 (1) 1 (1)

Matrix staining (%) 85 (2) 83 (3)

Type II collagen staining (pixels) 79 (3) 80 (4)

Type I collagen staining (pixels) 8 (2) 10 (3)

Type X collagen staining (%) 79 (3) 77 (4)

SOX9 staining (%) 84 (2) 83 (3)

S-100 staining (%) 82 (3) 81 (2)

Values are given as mean of all cultures (SD).

with findings where rAAV was used to target various other
cells of the musculoskeletal system (articular chondrocytes,
meniscal fibrochondrocytes, mesenchymal stem cells) [54,
60, 61], probably due to the well-maintained numbers of

vector copies present in transduced cells (3–5 copies per cell
over time). Absolute transduction of cells was not achieved,
here, but it is important to note that we used relatively low
MOIs (20–40) compared with other experimental settings
[68, 69], and 100% efficacy may have been attained at
higher vector doses. This is in marked contrast with previous
reports demonstrating lower efficacy and shorter periods of
transgene expression (between some hours and some days)
using nonviral, adenoviral, retroviral, or lentiviral vectors
[26–30, 32, 33, 40, 41, 47] unless the genetically modified
cells are selected for extended evaluation setups (nonviral
and retroviral vectors) [25, 29, 36, 41, 45, 46].

Most importantly, and in view of a safe use of rAAV in
future experimental or clinical settings in vivo, we provide
evidence that administration of this class of vector has
no undesirable effects on the activities of primary human
chondrosarcoma cells both in vitro and in situ by assessing
the rates of cell viability and proliferation (expectedly high
but not increased following transduction), the occurrence
of apoptotic events (always low to absent), and the levels
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of metabolic processes (significant but unaffected by rAAV),
as well as the potential cytotoxic responses to the gene
transfer method (undetectable). Furthermore, no events of
recombinant viral genome integration could be demon-
strated in cultures over the time of evaluation. The next
reasonable step of the current approach will be to select
a strong therapeutic candidate for cloning in our vectors,
evaluate its efficacy and duration of gene expression in
human chondrosarcoma cells (primary and tissue cultures)
but also in a relevant animal model in vivo [19, 41], and
subsequently investigate the potency of the vector against
cell expansion, differentiation, and transformation, as well as
tumor progression and invasiveness [19, 25–30, 32, 40, 41,
45, 46]. Among the different factors tested so far in the form
of a genetic sequence, agents like the HSV-tk or OSM have
been reported for their antitumor, proapoptotic properties
in vitro and in vivo [19, 28, 41]. Still, only partial and/or
transient effects were noted with these components [19,
41], although this might have resulted from the moderate
efficiency of the gene vehicles themselves (adenoviral and
retroviral vectors there) vis-à-vis rAAV. Also noteworthiy,
excessive candidate (OSM) gene activity occurred in some
cases, leading to the death of several OSM-treated animals
whereas control animals survived [19]. Other agents with
possibly less aggressive properties may be further considered,
as various studies reported the protective effects of p53
and targeted siRNAs among others, against chondrosarcoma
cell death, growth inhibition, and invasiveness in vitro
[25–27, 29, 30, 32, 36, 40, 45, 46]. Interestingly, such
sequences may be provided simultaneously as separate
rAAV can be conveniently applied at the same time to
their targets with effective expression of the cotransgenes
[58, 70].

In summary, the results of this study indicate that
direct application of rAAV vectors can promote long-term,
efficient, and safe transgene expression in primary human
chondrosarcoma cells both in vitro and most notably in
situ, providing further motivation to develop rAAV-based
therapeutic gene treatments to be tested over extended
periods of time for the treatment of human chondrosarcoma.
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