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The development and clinical approval of immunotherapies has revolutionized

cancer therapy. Although the role of adaptive immunity in atherogenesis is now

well-established and several immunomodulatory strategies have proven beneficial in

preclinical studies, anti-atherosclerotic immunotherapies available for clinical application

are not available. Considering that adaptive immune responses are critically involved

in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the

treatment of cancer and atherosclerosis may exert undesirable but also desirable

side effects on the other condition, respectively. For example, the high antineoplastic

efficacy of immune checkpoint inhibitors, which enhance effector immune responses

against tumor cells by blocking co-inhibitory molecules, was recently shown to be

constrained by substantial proatherogenic properties. In this review, we outline the

specific role of immune responses in the development of cancer and atherosclerosis.

Furthermore, we delineate how current cancer immunotherapies affect atherogenesis

and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact

on carcinogenesis.

Keywords: tumor, atherogenesis, cardiovascular disease, immunotherapy, immunity, T cell, checkpoint inhibition,

co-stimulatory molecule

INTRODUCTION

Although prevention strategies and therapeutic opportunities have been significantly improved
during the past decades, atherosclerotic cardiovascular diseases (CVD) and cancer still represent
the two most common causes of death worldwide (1). As already recognized by Rudolph Virchow
in the nineteenth century (2, 3), the critical role of inflammatory processes in atherogenesis and
carcinogenesis is now well-established and has prompted investigation of strategies to combat
these deadly diseases by modulating underlying immune responses (4–10). Several anti-cancer
immunotherapies, such as cytokines, antibodies targeting immune cell receptors, or immune
checkpoints, dendritic cell therapy, and chimeric antigen receptor (CAR) T cell therapy, already
found their way into clinical practice and thereby revolutionized cancer treatment (9, 11). In
stark contrast, clinically approved immunotherapies for CVD are still not available [except
for antibodies targeting proprotein convertase subtilisin/kexin 9 (PCSK9) to lower low-density
lipoprotein (LDL) cholesterol, representing an immunotherapeutic approach in a broader sense
(12, 13)]. In 2017, the CANTOS trial demonstrated that administration of an antibody directed

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.812702
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.812702&domain=pdf&date_stamp=2022-01-13
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:holger.winkels@uk-koeln.de
https://doi.org/10.3389/fcvm.2021.812702
https://www.frontiersin.org/articles/10.3389/fcvm.2021.812702/full


Nettersheim et al. Immunotherapy in Cancer and Atherosclerosis

against the pro-inflammatory cytokine interleukin-1β (IL-1β)
reduced cardiovascular events in patients with coronary artery
disease (CAD), thereby providing first evidence for effectiveness
of an immunotherapy in CVD (14). Yet, this therapy increased
the risk of fatal infections and did not reduce mortality,
which consequently prevented its approval for treatment of
CVD (14). CANTOS illustrated the central dilemma of many
immunomodulatory strategies: Broad interventions in the
immune system can have detrimental side effects. In general,
anti-atherosclerotic strategies are geared toward suppression
of vascular inflammation (5, 8, 15), whereas immune-based
cancer treatments aim at enhancing immune responses against
tumor cells (7, 9). The therapeutic efficacy of several anti-cancer
immunotherapies is constrained by their proimmunogenic (and
thus proatherogenic) properties, increasing the risk to develop
CVD in patients (16). Particularly, immune checkpoint inhibitors
directly aggravate atherosclerotic plaque growth in patients
(17). Whereas, cancer survival has dramatically improved over
the past few decades (18), the exposure of cancer survivors
to therapy-induced cardiovascular risk represents an emerging
problem, which leads to excess cardiovascular mortality and thus
significantly affects long-term prognosis (19–22). This problem
is relevant, as the global cancer burden is expected to increase by
∼47% within the next 20 years and to reach more than 28 million
cases in 2040 (23).

In recent years, vaccination strategies aiming to either induce
immune responses against tumor-specific neoantigens (4) or to
suppress immunity against atherosclerosis-related autoantigens
(6) have emerged. Immunization strategies are promising as
they enable specific immunomodulation without impairing host
defense responses or accelerating progression of atherosclerosis.
Whereas, anti-atherosclerotic vaccination strategies are still in
their infancy (6), therapeutic cancer vaccines are already being
investigated in clinical trials (4).

In this review, we will provide an overview of current
immunomodulatory concepts for treatment of cancer and
atherosclerosis with a focus on their reciprocal interactions
and consequences. Finally, we will highlight the potential
of immunization strategies against cancer and CVD that
enable targeted, antigen-specific immunity without affecting the
immune system.

INFLAMMATION AND ADAPTIVE
IMMUNITY IN ATHEROGENESIS

Atherosclerosis involves formation of lipid-laden plaques in
large and medium-sized arteries (24), which may rupture
or erode and give rise to acute thrombotic vessel occlusion
(25). Plaque formation primarily occurs in regions with
disturbed blood flow and low endothelial shear stress (26).
Such hemodynamic alterations induce a cascade of endothelial
dysfunction, subendothelial accumulation and subsequent
oxidation of lipoproteins, and finally an inflammatory response
that is characterized by monocyte infiltration and foam cell
formation (25, 26). Extensive research during the past decades
has indicated that plaque-related inflammation is not simply a

passive process but is rather orchestrated by an adaptive immune
response involving T cells and humoral immunity (27).

T cells derive from hematopoietic progenitor cells and
undergo a complex maturation and selection process in the
thymus, which is characterized by development of a unique,
antigen-specific T cell receptor (TCR) through random genetic
recombination (28) and elimination of cells that are either non-
functional or bind self-antigens with too high-affinity, which are
potentially dangerous for the host (29). The high prevalence of
autoimmune disorders indicates the insufficiency of this process.
Eventually, the TCR and one of its co-receptors CD4 or CD8
are expressed on the T cell surface, which is released into
the periphery and circulates through the body to encounter
its cognate antigen (30). Activation of a naïve T cell requires
two signals. First, the TCR must be bound by its cognate
antigen: CD4+ T cell activation requires presentation of an
antigenic peptide-sequence, the so-called epitope, on major
histocompatibility complex class II (MHC-II) molecules, which
are exclusively expressed by professional antigen-presenting cells
(APCs), such as dendritic cells, macrophages and B cells. CD8+

T cells recognize antigens presented on MHC-I molecules, which
are expressed by all nucleated cells (31). Second, the T cell
must simultaneously receive a proper co-stimulatory signal, that
is binding of a specific receptor (such as CD28) by its ligand
expressed on the APC (32). Once activated, T cells proliferate
and CD8+ T cells become cytotoxic, whereas CD4+ T cells
can differentiate into a variety of different subtypes, which
are characterized by expression of specific surface markers,
transcription factors (TFs) and cytokines (33). For example,
T helper 1 (TH1) cells, which are characterized by expression
of the TF T-box expressed in T cells (T-bet), exert pro-
inflammatory effects through production of interferon gamma
(IFN-γ) (Figure 1). In contrast, regulatory T cells (Tregs), which
are characterized by expression of the TF forkhead box protein
P3 (FoxP3), produce the anti-inflammatory cytokines IL-10
and transforming growth factor beta (TGF-β) and thus ensure
immune tolerance. For a thorough overview of different T cell
subtypes and their role in atherosclerosis the interested reader is
referred to Saigusa et al. (34).

Presence of T cells in atherosclerotic plaques was firstly
described by Hansson and colleagues more than 30 years ago
(35). T cells within the plaques were activated (36) and in vitro
work showed lesional CD4+ T cells responding to oxidized low-
density lipoprotein (oxLDL), which established the theory of T
cells contributing to plaque formation (37). By now, CD4+ and
CD8+ T cell responses against plaque-associated autoantigens
have been identified to modulate atherogenesis (34, 38, 39).
Whereas, T cell reactivity against LDL was originally thought to
be induced by oxidation-dependent generation of neoepitopes
representing “altered self ” (37), more recent work has identified
CD4+ T cells responding to peptides of native Apolipoprotein
B (ApoB), the core protein of LDL, chylomicrons, and other
lipoprotein particles. Several unmodified ApoB-peptides have
been found to bind murine and human MHC-II molecules
with high affinity and thereby evoke a CD4+ T cell response
(40–43). Such ApoB-reactive (ApoB+) CD4+ T cells mainly
comprise Tregs, which confer atheroprotective properties in
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FIGURE 1 | The opposing roles of CD4+ T-cells and anti-PD-1/anti CTL4 treatments in the pathogenesis of tumors and atherosclerosis. CD4+ T cell subsets and their

effector cytokines have different roles in tumors and atherosclerosis. Some cytokines such as interferon gamma have pro-atherogenic (red arrow) and

tumor-suppressive effects (blue arrow with blunt end), while Interleukin-10 (IL-10) depending on its cellular source exerts anti-atherogenic and tumor-progressive

functions. Treatment with immune checkpoint inhibitors (anti-PD1 and anti-CTLA-4 antibodies) reduces tumor burden but drives atherosclerosis among others by

enhancing pro-inflammatory T cell effector functions. The figure was created with Biorender.com.

healthy humans, but coexpress TFs typical of proatherogenic
TH1 or TH17 cells in individuals with subclinical atherosclerosis
as determined by carotid ultrasound (42). Preclinical studies
further elucidated that CD4+ Tregs, particularly those reactive
to ApoB, gradually acquire proatherogenic TH1/TH17, TH1/Treg

or T follicular helper (TFH) phenotypes during atherogenesis
(43–45). Whereas, therapeutic interventions that aim to stabilize
and/or expand ApoB+ Tregs hold promise for atherosclerosis
prevention and treatment, immunomodulatory therapies causing
destabilization of Tregs naturally aggravate progression of
atherosclerotic lesions (46).

Besides T cells, humoral immune responses against plaque-
associated autoantigens have been implicated in atherogenesis
(38, 47). Antibodies directed against oxLDL are detectable in
human plaques (48) and in plasma samples of humans with
our without atherosclerotic CVD (49, 50). Accordingly, B cells
can be found in healthy and atherosclerotic vessels, especially in
arterial tertiary lymphoid organs located in the adventitia (51).

Autoantibodies against oxLDL were shown to block uptake of
oxLDL by macrophages (52, 53) and to confer atheroprotection
(54). Genetic B-cell depletion aggravated atherosclerosis in LDL-
receptor-deficient (Ldlr−/−) mice (55). Yet, depletion of mature
B cells through administration of a CD20 monoclonal antibody
was unexpectedly atheroprotective in Apolipoprotein E-deficient
(Apoe−/−) and Ldlr−/− mice (56, 57). This treatment preserved
the production of natural IgM antibodies directed against oxLDL
but reduced anti-oxLDL IgG antibodies (56). Adoptive transfer
of B2 B cells, but not B1 B cells, to lymphocyte or B cell deficient
Apoe−/− mice was proatherogenic (57). B cells mainly consist
of B2 B cells (which are thus termed conventional B cells)
that undergo maturation in the spleen and can produce high-
affinity IgG antibodies after receiving T cell help (58). B1 B
cells represent a specialized B cell subpopulation: They develop
in the fetal and neonatal period, harbor the capability of self-
renewal, mainly reside in body cavities and are characterized
by the production of so called “natural” IgM antibodies (59).
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Taken together, different B cell subsets and antibody subtypes
may exert diametral functions in atherogenesis and therapeutic
modulation of humoral immune responses could represent
an attractive anti-atherosclerotic strategy but also promote
atherosclerosis progression.

INFLAMMATION AND ADAPTIVE
IMMUNITY IN CANCER

In the nineteenth century, the German physicians Rudolph
Virchow, Wilhelm Busch and Friedrich Fehleisen independently
hypothesized that inflammationmay affect carcinogenesis (2, 60).
Whereas, Virchow assumed that leukocyte infiltrates represented
an underlying cause of cancer (2), Busch and Fehleisen
suggested that inflammation may reverse tumorigenesis (60).
After independently observing involution of malignancies in
patients with erysipelas, they demonstrated tumor regression
in cancer patients upon intentional infection with bacteria
isolated from erysipelas (61, 62). Later, the American surgeon
William Coley reported disappearance of tumors in patients
with inoperable sarcoma or other types of cancer after treatment
with heat-inactivated bacteria which was termed “Coley’s Toxin”
(63). In 1909, Paul Ehrlich suggested that cellular immunity may
recognize neoplastic cells and protect from tumor development,
although he was not able to experimentally substantiate this
hypothesis (64). First experimental proof for anti-tumor immune
responses was provided by Gross and Foley around 1950 (65, 66)
and Paul Ehrlich’s concept was adopted by Lewis Thomas and
Sir Frank Macfarlane Burnet who proposed that lymphocytes
recognize and target cancer cells through their expression of
tumor-specific antigens, similar to homograft rejection (known
as immunosurveillance) (7, 67). Yet, this theory was abandoned
after immunologically impaired animals, such as athymic nude
mice, showed similar susceptibility to experimentally induced
tumors (68, 69). Several limitations of these experiments became
evident: Nude mice—despite lack of T and B cells—are not
completely immunocompromised and especially susceptible
to 3-methylcholanthrene, the chemical carcinogen which was
used for tumor induction (due to expression of highly
active enzyme isoforms involved in biotransformation of the
chemical) (68). Novel immunocompromised mouse models
with pure genetic backgrounds demonstrated that lymphocyte
deficiency (70), lack of perforin (an important component of
cytotoxic T lymphocyte granules) (71, 72), and ablation of
proinflammatory cytokine signaling (70–73) increased tumor
susceptibility in mice, which led to the renaissance of the
immunosurveillance theory (68). This preclinical evidence
was supported by studies reporting an increased cancer risk
in immunocompromised patients (74–76) and that tumor
lymphocyte infiltration predicts better outcome (77, 78). Despite
overall proof in support of the immunosurveillance theory was
provided, subsequent work demonstrated that immunity may
also exert tumor-sculpting effects (68): Tumors derived from
immunocompromised mice were rejected more frequently when
transplanted into immunocompetent recipients than tumors
derived from wild-type controls (70, 72, 79, 80). Thus, the

immune system of the wild-type donors must have shaped
tumors to become less immunogenic and more resistant to the
hosts (uncompromised) immune response.

To account for the dual role of the immune system in
tumor development, G.P Dunn and R.D. Schreiber proposed
the groundbreaking “immunoediting” or “three E’s” theory in
2002 (68), which is the current explanation of tumor-related
immune responses (81). The theory involves three processes:
(1) In the elimination phase, which conforms to the original
immunosurveillance theory, tumor cells are targeted by innate
and, subsequently, adaptive immune cells including tumor
antigen-specific CD4+ and CD8+ T cells. If the immune
system is successful in destroying all tumor cells, progression to
subsequent phases is prevented. (2) In the equilibrium phase,
that may last for years, tumor cells that have survived the initial
elimination process and the ongoing immune response are in
balance. Although tumor growth is still under immunological
control, the immune system fails in eliminating all tumor cells,
and thus causes selection pressure on the surviving variants.
(3) In the escape phase, tumor cells that have undergone
extensive immunoediting, evade immunological control, and
expand rapidly, resulting in development of clinically apparent
disease (68).

More recently, immunological processes underlying the three
phases of immunoediting have been characterized in greater
detail, which has led to development of immunotherapies
that efficiently enhance anti-tumor immune responses (82, 83).
Modern technologies have enabled identification of tumor-
specific, MHC-I and -II restricted neoantigens and detection
of CD8+ and CD4+ T cells responding to such neoantigens
(82, 83). These technologies include deep-sequencing approaches
to determine the “mutanome,” that is the entirety of tumor-
specific mutations, followed by in-silico prediction algorithms to
identify mutation-specific epitopes capable of binding to MHC-
I or -II molecules (84–88). In a second step, immunogenicity
of identified epitopes is verified through T cell restimulation
assays of peripheral blood mononuclear cells from the sequenced
patient (84, 86–89) or MHC-I (85, 90) and -II (91, 92)
tetramers or multimers detecting tumor-neoantigen-specific
CD8+ and CD4+ T cells, respectively. Finally, multimer-selected
neoepitope-specific CD8+ and CD4+ T cells can be phenotyped
by flow-cytometry or (single-cell) RNA-sequencing approaches
(90–92). Whereas, initial studies were focused on the role of
CD8+ T cells in mediating anti-tumor immunity (85, 87, 93),
subsequent work established that the immunogenic mutanome—
against former expectations- predominantly induced a CD4+

T cell response in mice and humans (86, 89–91, 94). Tumor
neoepitope-reactive CD4+ T cells were crucially involved in
generation of potent anti-tumor CD8+ T cell responses (92,
95). This T cell help is mainly mediated by interactions of
CD40 ligand (CD40L), which is expressed on the surface of
activated CD4+ T cells, and CD40 on the surface of APCs
(96). Additionally, CD4+ T cells may exert direct anti-neoplastic
activity through production of pro-inflammatory cytokines or
execution of cytotoxic signals on tumor cells and aid in B
cell mediated humoral anti-tumor responses through CD40L
signaling (97).
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Neoepitope-specific CD4+ T cells of the TH1 subtype are
involved in anti-tumor responses (92). Adoptive transfer of
neoepitope-specific CD4+ TH1 cells led to tumor regression
in a patient with metastatic cholangiocarcinoma (98). In line
with this, high levels of circulating tumor-antigen-specific TH1
CD4+ T cells and low levels of CD4+ cells co-expressing the
immune-checkpoints programmed cell death protein 1 (PD-
1) and T cell immunoglobulin and mucin-domain containing-
3 (Tim-3) predict better survival in lung cancer patients (99).
In contrast, high levels of tumor-infiltrating Tregs, which can
be found in various cancer types, are associated with poor
prognosis (100, 101). Animal studies identified tumor-induced
conversion of CD4+ non-Tregs into Tregs as an important
mechanism of immune escape (102) and, accordingly, circulating
tumor-antigen-specific Tregs can be detected in cancer patients
but not in healthy individuals (103). Other T helper cell
subsets, such as TH2 and TH17 cells, can also be found
in the tumor microenvironment, but their specific role in
tumor immunity and prognostic importance are still under
debate (104, 105).

In conclusion, CD4+ T cells responding to tumor-
specific neoepitopes play an important role in mediating
anti-tumor immune responses. Yet, tumor cells may engage
various escape mechanisms to acquire resistance to this
response, which include induction of CD4+ T cell phenotype
switching from proinflammatory anti-neoplastic TH1 cells
into immunosuppressive and thus tumor growth-promoting
Tregs (105).

EFFECTS OF CLINICALLY APPROVED
CANCER IMMUNOTHERAPIES ON
ATHEROGENESIS

Several immunotherapeutic strategies aim at preserving or
restoring anti-tumor immune responses. Yet, the opposing roles
of adaptive immunity in atherosclerosis and cancer development
(Figure 1) implicate that such therapeutic approaches might
involve proatherogenic side effects (17), especially if they are
not antigen-specific but affect the immune system as a whole.
In contrast, B cell depleting antibodies and antibodies targeting
growth factor receptors overexpressed by tumor cells may confer
atheroprotection. In the following section we will discuss effects
of clinically approved cancer immunotherapies on atherogenesis
and delineate theirmechanistic background (an overview of these
effects is given in Table 1).

Immune Checkpoint Inhibitors (ICIs)
Immune checkpoints refer to a variety of regulatory pathways
that exert inhibitory actions on adaptive immune cells and
beyond and are thus critical for preservation self-tolerance and
prevention of exaggerated immune responses (130). The Nobel
prize winning discoveries of James P. Allison and Tasuku Honjo,
who unraveled that tumor cells may engage immune-checkpoint
pathways to escape from anti-tumor immune responses, have
paved the way for the development of monoclonal antibodies
against these molecules—immune checkpoint inhibitors (ICIs)

(131, 132). Ipilimumab inhibits the cytotoxic T lymphocyte
antigen 4 (CTLA-4) and was shown to improve overall survival
in patients with metastatic melanoma (133), which made it the
first ICI approved by the Food and Drug Administration (FDA)
in 2011 (134). Subsequently, four antibodies (pembrolizumab,
nivolumab, cemiplimab, and dostarlimab) targeting the co-
inhibitory programmed cell death protein 1 (PD-1) and
three antibodies (atezolizumab, durvalumab, and avelumab)
directed against the programmed cell death ligand 1 (PD-
L1) were demonstrated to effectively improve survival in
several malignancies (134, 135) which led to the FDA-approval
for treatment of 19 different cancer types and two tissue-
agnostic conditions [that is a tumor with a specific genetic
alteration regardless of the cancer type and location (136)].
ICIs have become a cornerstone of modern cancer therapy and
nowadays more than 40% of cancer patients are eligible for ICI
treatment (137).

Given that immune checkpoints represent important
regulators of physiological immune responses, ICI therapy can
naturally involve inflammatory side effects, which are referred to
as immune-related adverse events (IRAEs) (138). Although the
precise pathomechanisms of such IRAEs are not yet fully clear,
unconstrained activation of autoreactive T cells is suggested to
play a dominant role (138). CTLA-4 and PD-1 are co-inhibitory
molecules expressed on the cell surface of CD4+ and CD8+ T
cells (139, 140). When bound by their ligands—CD80/CD86
and PD-L1/PD-L2—CTLA-4- and PD-1 suppress activation of
T cells (140). As mentioned above, T cell activation requires
simultaneous engagement of the TCR by its cognate antigen
and proper costimulatory signals (32). Activation of CD28,
the prototype co-stimulatory molecule, by its ligands CD80 or
CD86 induces high T cell surface expression of the co-inhibitory
molecule CTLA-4 (141). CTLA-4 binds CD80/CD86 with much
higher affinity than CD28. However, in contrast to CD28,
CTLA-4 does not exert stimulatory but inhibitory signals and
thus attenuates T cell activation (141). Given that CD80/CD86
are expressed on the surface of APCs, CTLA-4 inhibits T
cell activation mainly in the priming phase. Prolonged TCR
stimulation during an ongoing immune response induces PD-1
expression on the cell surface of T cells (141). When bound
by its ligands PD-L1 or PD-L2, which can be expressed by
tumor cells, PD-1 attenuates TCR-signaling and thus reduces
T cell proliferation and cytokine production. Thus, PD-1
mediates T cell inhibition in the effector phase and is used as
a marker of T cell exhaustion (141). Consequently, antibody-
mediated inhibition of CTLA-4, PD-1 and PD-L1 enhances T
cell activation. IRAEs can affect almost every organ and mostly
occur within 2–16 weeks after treatment initiation (138, 142).
According to a recent meta-analysis including 36 phase II and
III randomized controlled trials (RCTs), the pooled incidence
of all IRAEs ranges between 54 and 76% (143). Whereas, the
incidences of specific IRAEs depend on the ICI used and several
other factors, the integumentary, gastrointestinal, endocrine,
hepatic, and pulmonary systems are overall most commonly
affected (143, 144). In a meta-analysis of 112 trials including
19,217 patients, IRAE-associated fatality rates ranged between
0.36% for anti-PD-1 mono-therapy and 1.23% for PD1/PD-L1
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TABLE 1 | Pro-atherogenic and athero-protective effects of current cancer immunotherapies.

Type of

immunotherapy

Specific

approach/substance

Compounds Effect on

atherosclerosis in

clinical trials

Effect on

atherosclerosis in

animal studies

Potential mechanisms

Immune

checkpoint

inhibitors

Anti-CTLA4-Abs Ipilimumab ↑ (17, 106) ↑ (107–111) - Increased plaque-infiltration by CD4+ and

CD8+ T cells

- Higher expression of proinflammatory

cytokines (IFN-γ and TNF-α) by T cells

- Enhanced T cell activation

Anti-PD1-Abs Pembrolizumab,

Nivolumab,

Cemiplimab,

Dostarlimab

Anti-PD-L1-Abs Atezolizumab,

Durvalumab, Avelumab

Monoclonal

antibodies

Anti-CD20-Abs Rituximab,

Obinutuzumab,

Ofatumumab

↓ (112–114) ↓ (56, 57) - Depletion of mature B cells and reduction of

anti-oxLDL IgG antibodies

VEGF inhibitors Bevacizumab,

Ramucirumab

↑ (115–117) ↑ (118) - Induction of an inflammatory endothelial

cell phenotype and impairment of

endothelial function

- Reduction and functional impairment of Tregs
and induction of proinflammatory TH1 cells

EGFR targeting Abs Cetuximab,

Necitumumab,

Panitumumab

– ↓ (119–121) - Reduced accumulation of macrophages

in plaques

- Reduced lipid uptake by macrophages and

reduced foam cell formation

- Reduced CD4+ T cell activation, proliferation

and plaque infiltration

- Reduced pro-inflammatory

cytokine production Reduced

SMC proliferation

Cytokines IFN-α Interferon alfa ↑ (122, 123)* ↑ (124) - Increased plasma cholesterol and

triglyceride levels

- Induction of lipid uptake by macrophages and

increased foam cell formation

- Inhibition of Treg activation and proliferation

- Direct stimulation of cytotoxic CD4+ T

cell function

- Sensitization of antigen-presenting cells

toward pathogen-derived TLR4 ligands

IL-2 Aldesleukin High-dose:

↑ (125) Low-dose:

?**

High-dose:

↑ (126)

Low-dose***:

↓ (127)

- High-dose: unspecific expansion of T cells

- Low-dose: selective expansion of

functional Tregs

Antifolate DHFR inhibition Methotrexate - (128) ↓ (129)**** - Attenuation of monocyte maturation

and recruitment

- Modulation of lipoprotein

transcellular transport

- Reduction of pro-inflammatory

cytokine production

↑ = proatherogenic effect. ↓ = atheroprotective effect. *These studies demonstrated an association between plasma IFN-α levels and atherosclerosis. A direct effect of IFN-α

administration on atherosclerosis has not yet been shown in clinical trials. **Currently investigated in the “Low-dose interleukin-2 in patients with stable ischemic heart disease and

acute coronary syndromes (LILACS)” trial. ***and complexed with a specific anti-IL2-mAB (JES6-1A12).****delivered via nanoparticles.

Abs, monoclonal antibodies; CTLA4, cytotoxic T lymphocyte antigen 4; DHFR, dihydrofolate reductase; EGFR, epidermal growth factor receptor; IFN-α, interferon alpha; IFN-γ, interferon

gamma; IL2, interleukin 2; mAB, monoclonal antibody; oxLDL, oxidized low density lipoprotein; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; SMC,

smooth muscle cell; TLR4, toll-like-receptor 4; TNF-α, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.

plus CTLA-4 combinational therapy and were most commonly
caused by colitis, pneumonitis, hepatitis, myocarditis and
neurotoxic effects (145). Cardiovascular IRAEs, which include
myocarditis, pericardial diseases, heart failure, dyslipidemia,

myocardial infarction, and cerebral arterial ischemia, are, overall,
relatively rare with an incidence ranging between ∼3 and 20
per 1,000 patients (146). Yet, cardiovascular toxicities are severe
in over 80% of cases (147) and myocarditis, which carries the
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highest fatality risk of all IRAEs (40–50%), is of particular
prognostic relevance (145, 147).

Besides acutely occurring cardiovascular IRAEs, recent
evidence has suggested that ICI therapy may promote
atherogenesis (148, 149). In a retrospective analysis of 1,215
patients treated with ICIs, atherosclerotic cardiovascular events
(CVE) occurred in 1% within a follow-up period of 6 months
(150). In three meta-analyses, the ICI-related incidence of
myocardial infarction and stroke ranged from 0.4 to 1.0% and 1.1
to 2.0%, respectively (149). Yet, the majority of studies included
in these meta-analyses were not specifically designed to assess
CVE and may thus underestimate incidences (149). To evaluate
the ICI-related risk of atherosclerotic CVE (defined as the
composite of myocardial infarction, coronary revascularization,
and ischemic stroke), Drobni et al. analyzed event-rates in
2,842 patients treated with ICIs and matched controls (17).
Additionally, a case-crossover analysis was performed, in which
event rates within the 2 years before (control period) and the
2 years after (at-risk period) initiation of ICI therapy were
compared. ICI therapy was associated with a 3-fold and almost
5-fold higher risk of atherosclerotic CVE in the matched-control
study and case-crossover analysis, respectively (17). In a nested
imaging substudy including 40 patients, a 3-fold increase in aortic
atherosclerotic plaque volume progression from 2.1%/year before
to 6.7%/year after ICI initiation could be detected (17). Another
recent study retrospectively analyzed 2-[18F]fluorodeoxyglucose
(FDG) positron emission tomography/computed tomography
scans, which had been performed in 20 melanoma patients
before and during ICI treatment (mean time interval: 4.4
months) (106). A significantly increased FDG uptake in large
arteries after ICI treatment initiation could be detected, pointing
toward an ICI-related induction of arterial inflammation (106).
In accordance to these clinical findings, a series of animal
studies reported enhanced plaque inflammation and accelerated
atherogenesis in LDLr−/− mice genetically deficient for or
treated with inhibitory antibodies against PD-1, PD-L1 and
CTLA-4 (148, 149). This was accompanied by an increased
number of plaque-infiltrating CD4+ and CD8+ T cells (107–
111), higher expression of proinflammatory cytokines [IFN-γ
and tumor necrosis factor alpha (TNF-α)] by T cells (107, 111),
and enhanced T cell activation (108, 110, 111).

Collectively these data emphasize that ICI therapy
promotes atherogenesis and substantially increases the risk of
atherosclerotic CVE. Presumably, ICIs exert their proatherogenic
effects—at least in part—through disinhibition of T cells
responding to plaque-associated autoantigens. Atherosclerosis
is a slowly progressing disease and all above-mentioned clinical
studies were limited by relatively short follow-up periods.
As indications for ICI therapy are rapidly expanding and
cancer-survival has dramatically improved in recent years, the
detrimental impact of ICIs on atherogenesis will, therefore, likely
become a more relevant health issue in the future.

Antibody Therapy
Since the FDA approval of muromonab-CD3, a monoclonal
antibody targeting the T cell co-receptor CD3, for the prevention
of transplant rejection in 1986, more than 100 therapeutic

antibodies have been included in clinical practice (135).
Rituximab, a monoclonal antibody targeting the B cell receptor
CD20, was approved for treatment of follicular lymphoma
in 1997, which opened the door for the use of antibodies
in cancer therapy (151). Cancer has emerged as the most
common condition for antibody therapy with currently over
40 FDA-approved antibodies (including ICIs) for treatment of
several cancer types (135). Antibodies can target cancer through
several mechanisms, including direct tumor cell killing, immune-
mediated tumor cell-killing, and inhibition of neovascularization
or stroma cells (152, 153). Direct tumor cell killing can
be achieved through eliciting agonistic activity to apoptosis-
promoting receptors, inhibiting growth factor receptor signaling,
neutralizing key enzymes, or delivering cytotoxic agents into
the cell (152, 153). Mechanisms of immune-mediated tumor
cell killing include induction of phagocytosis, complement-
activation and cellular toxicity (152, 153). Besides ICIs, the use
of several other monoclonal antibodies in cancer therapy is
constrained by their cardiovascular side effects, which include
myocarditis, heart failure, arrhythmia, orthostatic dysregulation
and atherosclerotic cardiovascular events (16). Fortunately, the
latter complication is rare and some antibodies can even confer
atheroprotective effects.

Antibody-Mediated B Cell Depletion
During the past two decades, B cell depleting strategies have been
used for treatment of B cell lymphoma and several autoimmune
diseases, including rheumatoid arthritis, systemic lupus
erythematosus (SLE) and multiple sclerosis (MS) (151, 154).
In addition to rituximab and other antibodies targeting CD20
(e.g., obinutuzumab and ofatumumab), antibodies directed
against the B cell surface proteins CD19 (blinatumomab), CD22
(inotuzumab ozogamicin and moxetumomab pasudotox), CD38
(daratumumab and isatuximab) and CD319 (elotuzumab) have
been approved to treat these conditions (153).

As mentioned above, depletion of B cells through
administration of a CD20-specific antibody ameliorated
atherogenesis in Apoe−/− and Ldlr−/− mice (56, 57). In line with
this, treatment of Apoe−/− mice with a monoclonal antibody
targeting B cell activating factor-receptor (BAFFR) to selectively
deplete mature B2 cells while sparing B1 cells conferred
atheroprotection (155). Similarly, antibody-mediated inhibition
of the cytokine B cell–activating factor (BAFF) reduced
atherosclerosis in Apoe−/− and Ldlr−/− mice (156). These
findings were recently confirmed in a clinical study: Patients
who received rituximab therapy after kidney transplantation
had a significantly lower rate of atherosclerotic CVE during 8
years of follow-up as compared to propensity-matched controls
(112). Accordingly, rituximab therapy was shown to reduce
carotid intima media thickness (113) and to improve flow
mediated dilation of the brachial artery, a non-invasive marker of
endothelial function (114). The effect of other B-cell–depleting
antibodies (including those targeting receptors predominantly
expressed on antibody-secreting plasma cells, such as CD39 and
CD319) on atherosclerosis has not yet been investigated and
the role of plasma cells in atherogenesis is not yet clear (157).
Depletion of IgG-producing plasma cells reduced atherosclerotic
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plaque development inApoe−/− and Ldlr−/− mice (158, 159) but
associated with plaque instability, which may have deleterious
consequences in patients with preexisting atherosclerosis
(158). Evidence from preclinical and clinical studies indicate
that antibodies targeting CD20 may confer atheroprotection,
but these early findings will have to be confirmed in larger
clinical trials.

Antibodies Targeting Vascular Endothelial Growth

Factor
Bevacizumab was the first clinically approved monoclonal
antibody targeting vascular endothelial growth factor (VEGF)
(160). Originally thought to exert antineoplastic actions
exclusively via inhibition of tumor angiogenesis, VEGF-targeted
therapies have been demonstrated to arrest tumor growth
through a variety of mechanisms, which are not yet fully
understood (160). In addition to bevacizumab, an antibody
targeting VEGF receptor 2 (ramucirumab) and small-molecules
inhibiting VEGF receptor tyrosine kinases (sorafenib and
sunitinib) have been FDA-approved (153). A major drawback of
VEGF inhibitors is their tendency to induce atherosclerotic CVE.
Recent meta-analyses including up to 22 studies reported a ≈

1.4- to 2.5-fold higher risk of arterial ischemia in patients treated
with bevacizumab (115–117). High-dose bevacizumab therapy
was even associated with a 4.4- and 6.7-fold higher risk of cardiac
and cerebral ischemia, respectively (115). A preclinical study
confirmed and mechanistically substantiated these findings by
demonstrating that administration of a VEGF-targeting antibody
impaired endothelial function and increased atherosclerotic
lesions by 33% in Apoe−/− mice (118). Accordingly, VEGF
inhibitors were shown to induce an inflammatory phenotype in
cultured human coronary artery endothelial cells (161). Besides
affecting endothelial function, VEGF inhibitors may decrease
the number of Tregs and impair their suppressive capacity,
reduce expression of co-inhibitory T cell molecules, and
thus induce proinflammatory TH1 responses (162). Although
experimental proof is missing, these immunological effects might
contribute to the proatherogenic properties of VEGF-inhibiting
antibodies (162).

Antibodies Directed Against Epidermal Growth

Factor Receptors
Receptors of the epidermal growth factor receptor family, such as
epidermal growth factor receptor (EGFR) or human epidermal
growth factor receptor 2 (HER2/neu), may be overexpressed by
tumor cells of several cancer types which can thus acquire the
capability of autonomous and uncontrolled proliferation (163,
164). Overexpression of EGFR or HER2/neu is a strong predictor
of a negative prognosis in a variety of malignancies (165,
166) and the development of monoclonal antibodies targeting
such receptors has advanced cancer treatment. Early clinical
studies and large-scale phase 3 trials showed improved outcome
in patients with metastatic breast cancer and gastric cancer
treated with trastuzumab (targetingHER2/neu) and patients with
metastatic colorectal cancer and head and neck cancer treated
with cetuximab (directed against EGFR) (167–170). Further
HER2/neu and EGFR targeting antibodies have been clinically

approved (153). A major drawback of growth factor receptor
targeting antibodies (especially trastuzumab) is their potential to
induce heart failure, which occurs in up to 20% of all cases (167,
171) and is 1.7 to 4 times more frequently compared to standard
chemotherapy (172–174). Accordingly, mice lacking Her2/neu
were demonstrated to develop dilated cardiomyopathy (175).

Direct effects of antibodies targeting growth factor receptors
on atherogenesis have not yet been reported in clinical
trials. Nevertheless, EGFR was detected in human atherosclerotic
plaques (176) and increased HER2/neu plasma levels were shown
to be associated with a higher risk of CAD (177). In line with
this, evidence from preclinical studies indicated that inhibition
of growth factor signaling may confer atheroprotection
(119–121). In two elegant studies, Zeboudj, Ait-Oufella
and colleagues demonstrated that cell-specific depletion of
EGFR either in myeloid cells (119) or in CD4+ T cells (120)
protected Ldlr−/− mice from atherosclerosis. EGFR deficiency
in myeloid cells limited macrophage accumulation within
plaques and lipid uptake by macrophages, whereas CD4+ T
cell-specific depletion of EGFR reduced CD4+ T cell activation,
proliferation and infiltration in atherosclerotic lesions. Both
cell-specific EGFR deletions were accompanied by reduced
pro-inflammatory cytokine production (119, 120). Despite
these promising findings, some uncertainties regarding the
mechanistic implication of EGFR and its ligands in atherogenesis
remain (178), beyond EGFR’s profound immunomodulatory
role systems-wide must be taken into account (179). Whether
atheroprotective effects of growth factor receptor targeting
antibodies also apply to humans is still unclear.

Cytokine Therapy
A variety of cytokines may exert significant anti-neoplastic effects
either by directly inhibiting proliferation and inducing apoptosis
of tumor cells or by stimulating anti-tumor immune responses
(180, 181). Despite promising findings in early preclinical
studies, utilization of cytokines as cancer therapeutics was later
demonstrated to involve several limitations which hindered
broad translation of this treatment approach into clinical practice
(180, 181). Nevertheless, IFN-α and IL-2 were clinically approved
for the treatment of different malignancies such as hairy cell
leukemia, follicular non-Hodgkin lymphoma, melanoma, and
Kaposi’s sarcoma (IFN-α) or renal cell carcinoma and melanoma
(IL-2) (180, 181).

Interferon Alpha (IFN-α)
Clinical application of IFN-α is particularly limited by its
proatherogenic properties (182, 183). Ldlr−/− mice treated
with IFN-α had accelerated atherosclerosis and increased
plasma cholesterol and triglyceride levels (124). Several other
proatherogenic effects of IFN-α have been reported, such
as induction of lipid uptake by macrophages and foam
cell formation (184, 185), inhibition of Treg activation and
proliferation (186, 187), direct stimulation of cytotoxic CD4+

T cell function (188), and sensitization of antigen-presenting
cells toward pathogen-derived toll-like receptor 4 (TLR4) ligands
(189). Clinical studies demonstrated that plasma type I IFN (IFN-
α and -β) levels are associated with atherosclerosis development
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in patients with SLE (122) and human immunodeficiency virus-
1 (HIV-1) infection (123). Experimental evidence suggested that
IFN-α directly promotes atherogenesis by impairing vascular
repair (190, 191) or inducing endothelial dysfunction (192) and
may thus causally contribute to the highly increased risk of
atherosclerotic CVE in SLE patients, which is not adequately
explained by traditional risk factors (193). For a thorough review
on the impact of IFN-α on different atherosclerosis-associated
cell types and clinical implications the interested reader is
referred to Chen et al. (182).

Interleukin 2 (IL-2)
IL-2 was originally termed T cell growth factor as it was first
identified as a component of T cell culture fluids that induced
proliferation of antigen-activated T cells (194, 195). It was
thought to act as a crucial mediator in T cell immune responses
and to play an important role in host response and tumor control,
which led to test high-dose IL-2 as a novel cancer treatment
in the mid 1980s (196). Although limited by toxicities such as
capillary leak syndrome, fever, chills, malaise and arthralgias, this
approach facilitated significant tumor regression and emerged as
the first effective immunotherapy for human cancer (196). Yet,
IL-2 deficient mice developed severe lymphoproliferation and
autoimmunity which pointed toward an additional important
role of the cytokine in maintaining self-tolerance (197, 198).
Subsequent studies revealed that Treg generation is dependent
on IL-2 (195). Tregs express increased levels of the high-
affinity IL-2 receptor alpha chain (IL-2Rα, also known as
CD25) compared to effector T cells (Teff cells) and are thus
more sensitive for IL-2 (199). Accordingly, daily low-dose IL-
2 therapy stimulated selective expansion of functional Tregs

through increased proliferation, thymic export and resistance to
apoptosis (while only minimally affecting conventional CD4+

T cells) and thus led to a substantial clinical improvement in
patients with active chronic graft-vs.-host disease (200, 201).

The specific role of IL-2 in atherogenesis has not yet been
fully clarified. Increased IL-2 serum levels were shown to be
associated with carotid artery intima-media thickness (202), a
sonographic marker of atherosclerosis, and CAD (203). An early
clinical study reported atherosclerotic CVE in 3.8% (angina
or ischemic changes in 2.6% and myocardial infarction in
1.2%) of patients who received IL-2 for cancer therapy (125).
Accordingly, IL-2 administration (2 × 104 units twice weekly
for a period of 6 weeks) accelerated atherogenesis in Apoe−/−

mice, whereas administration of an antibody targeting IL-2 was
atheroprotective (126). Treatment of Ldlr−/− (204) and Apoe−/−

mice (127) with low-dose IL-2 complexed with a specific
IL-2 monoclonal antibody (JES6-1A12) conferred significant
atheroprotection by inducing a substantial expansion of Tregs

in atherosclerotic lesions and several other tissues. Neither IL-2
nor the anti-IL2 antibody alone affected atherogenesis (127) and
the observed anti-atherogenic efficacy depended on the antibody
clone used. Administration of IL-2 complexed with another IL-
2 antibody clone (SAB6) induced expansion of natural killer
(NK) and CD8+ T cells (205). A subsequent study unraveled
the mechanism by which the two different antibody complexes
selectively induce expansion of Tregs or Teff cells: (1) JES6-1

sterically blocks the interaction of IL-2 with IL-2Rβ and IL-
2Rγ and allosterically disrupts binding of IL2 to IL-2Rα, thereby
favoring activation of Tregs with high IL-2Rα expression; (2)
S4B6 sterically hinders IL-2/IL-2Rα interaction and enhances
IL-2/IL-2Rβ interaction, thus stimulating all IL-2-responsive T
cells (206). More recently, a human anti-IL2-antibody (F5111.2)
was developed that selectively promotes Treg expansion when
complexed with human IL-2 by inducing similar conformational
changes (207). Administration of IL2-F5111.2 complexes yielded
substantial therapeutic efficacy in humanized animal models
of different autoimmune diseases, such as type 1 diabetes,
autoimmune encephalomyelitis or xenogeneic graft-vs.-host
disease (207). Whether such approach might be translatable into
clinical practice has not yet been determined. The randomized,
double-blind, placebo-controlled LILACS trial (NCT03113773)
examined whether solely administering low-dose IL-2 is safe and
effective in patients with stable ischemic heart disease and acute
coronary syndrome (208). The study has been completed and its
results are awaited for publication.

In conclusion, current evidence suggests that high-dose IL-
2 therapy promotes atherogenesis through induction of pro-
inflammatory Teff cell responses, whereas administration of
low-dose IL-2 might confer atheroprotection by selectively
stimulating expansion of Tregs. Complexing IL-2 with specific
anti-IL-2 antibodies might even enhance the latter effect through
augmenting the selectivity to IL-2Rα, which is highly expressed
on Tregs.

Methotrexate
Methotrexate (MTX) is a structural analog of folic acid (Vitamin
B9) that inhibits enzymes involved in folate metabolism, such
as dihydrofolate reductase (DHFR), and thus limits cellular
division (209). DHFR catalyzes conversion of dihydrofolate
to tetrahydrofolate, which acts as an important coenzyme in
synthesis of pyrimidine and purine. In 1948 Farber et al. firstly
reported that treatment with the folate analog aminopterin
enabled temporary remission in childhood leukemia (210).
Subsequently, MTX (initially termed amethopterin) was found
to have better pharmacological properties than aminopterin
(211) and thus emerged as one of the most extensively used
chemotherapy agents for a variety of cancer types (209, 212).
Besides anti-neoplastic properties, MTX exerts potent anti-
inflammatory actions (213). Several studies reported efficacy
of low-dose MTX in the treatment of rheumatoid arthritis
(RA) (214, 215). The compound has become a mainstay in
therapy of RA and other autoimmune diseases, although its
immunosuppressive mechanisms of action have not yet been
fully clarified (213). Observational data revealed that low-
dose MTX therapy associated with a lower risk for CVD
and cardiovascular mortality (216, 217). The Cardiovascular
Inflammation Reduction Trial (CIRT) included 4,786 patients
with CAD and additional metabolic risk factors (type 2 diabetes
or metabolic syndrome) randomly assigned to receive low-
dose MTX or placebo (128). After a median follow-up of 2.3
years, MTX neither reduced pro-inflammatory biomarkers [IL-
1β, IL-6, and C-reactive protein (CRP)] nor CVE. MTX was
associated with modest elevations in liver enzymes, reductions
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in leukocyte counts and hematocrit levels, and an increased
incidence of non-basal-cell skin cancers. Although the study had
some methodical limitations (e.g., patients were not screened for
an increased inflammatory risk), the data overall discouraged
further investigations on MTX therapy for CVD prevention.
In a recent murine study, nanoparticle-formulated MTX
conferred substantial atheroprotection through modulating
lipoprotein transcellular transport, reducing expression of pro-
inflammatory cytokines and attenuating monocyte maturation
and recruitment (129).

Although several immunotherapeutic approaches have
yielded promising results in preclinical CVD models, only few
of these strategies have proven beneficial in clinical studies
(8, 218). Canakinumab (14), a monoclonal antibody targeting
IL-1β, and colchicine (219, 220), an ancient drug traditionally
used for gout therapy which exerts anti-inflammatory effects
(among other potential mechanisms) through inhibition of the
NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome in leukocytes (221), were demonstrated to reduce
cardiovascular events in large-scale clinical trials. Although
not targeting inflammatory pathways, monoclonal antibodies
[evolocumab (13) and alirocumab (12)] or a siRNA-based
compound [inclisiran (222, 223)] targeting PCSK9 to lower LDL
cholesterol levels have proven clinically beneficial.

Considering that a pro-inflammatory immune response is
critically involved in early elimination of mutated cells (68),
immunotherapies exerting systemic anti-inflammatory effects
may mitigate anti-tumor immunity and thus increase the risk of
cancer development. In the following section we discuss recent
evidence on the impact of above-mentioned immunotherapeutic
strategies for CVD on cancer incidence (an overview is given in
Table 2).

Canakinumab
Although canakinumab reduced CVE in patients with CAD,
several limitations, such as a significant impairment of host
defense and high costs, prevented its clinical approval for
secondary prevention of CVD (14). Recent evidence suggests
that IL-1β has a dual role in cancer development: On the
one hand, it initiated pro-inflammatory anti-tumor immune
responses by activating tumor antigen-specific TH1 and TH17
cells and facilitated tumor regression (233). On the other
hand, IL-1β can promote carcinogenesis by inducing chronic
inflammation, endothelial cell activation, angiogenesis, or
development of immunosuppressive cells, such as tumor-
associated macrophages and myeloid-derived suppressor cells
(233). In contrast to anti-tumor immunity, which is critically
involved in cancer elimination, chronic inflammation may
drive tumorigenesis through several mechanisms including
inhibition of antineoplastic immune responses, modulation
of the tumor microenvironment to become more tumor-
permissive, and direct tumor-promoting actions on epithelial
and cancer cells (234). In line with this, IL-1β-deficient
mice transplanted with melanoma cells were protected
from development of local tumor and metastases (225) and
canakinumab significantly reduced incidence of fatal cancer in
the CANTOS trial (14). An exploratory analysis further revealed

that canakinumab treatment especially reduced the incidence
of lung cancer and lung cancer mortality (224). These findings
motivated the initiation of three randomized phase III trials,
CANOPY-A (NCT03447769), CANOPY-1 (NCT03631199),
and CANOPY-2 (NCT03626545) (235), and a phase II trial,
CANOPY-N (NCT03968419) (236) to investigate the potential
of canakinumab in the treatment of non-small cell lung cancer
(NSCLC). Although most trials are still ongoing, the CANOPY-2
study, which evaluated canakinumab in a second- or third-line
treatment setting (that is in patients with locally advanced
or metastatic NSCLC and tumor progression after or during
platinum-based chemotherapy and PD-(L)1 inhibitor therapy)
failed to meet the primary endpoint of overall survival (237).

Colchicine
Colchicine is derived from the autumn crocus, which has been
used for gout therapy since ancient times (238). Until today,
colchicine represents a first-line drug for gout treatment (239).
More recently, the compound has emerged as a promising
candidate for secondary prevention of CVD. In two large-
scale RCTs, the COLCOT (219) and LoDoCo 2 (220) trials,
collectively enrolling more than 10,000 patients with recent
myocardial infarction or chronic coronary syndrome, low-
dose colchicine therapy significantly reduced the incidence of
CVE. In contrast to canakinumab, colchicine did not increase
the risk of fatal infections, although in COLCOT non-fatal
pneumonia occurred more often in colchicine-treated patients.
Nevertheless, colchicine therapy did not significantly reduce
cardiovascular mortality in these trials and was associated with
an almost significant increase in non-cardiovascular mortality
in LoDoCo2 (220). A smaller RCT, enrolling 795 patients,
reported a significantly higher rate of all-cause mortality
(mainly due to non-cardiovascular deaths) in patients with acute
coronary syndrome when colchicine was added to standard
therapy (240). Recent meta-analyses confirmed that low-dose
colchicine therapy in patients with CAD was associated with
a significantly reduced risk of CVE (myocardial infarction,
stroke, and the need for coronary revascularization) and
a non-significant reduction of cardiovascular deaths, which
was counterbalanced by a non-significant increase in non-
cardiovascular deaths (241, 242). Considering the robust
reduction of CVE observed in these studies as well as the low
price and wide availability of the compound, low-dose colchicine
might become an option for secondary prevention in high-risk
CVD patients, but the increased non-cardiovascular death rates
need further investigation.

Despite the increase in non-cardiovascular mortality,
colchicine was not associated with higher rates of cancer in
any of the above-mentioned studies (219, 220, 240). Preclinical
evidence showed that colchicine may reduce tumor growth of
several cancer types, such as prostate (229), hypopharyngeal
(230) and liver cancer (231) as well as tumor implantation of
pressure-activated colon carcinoma cells (232). The incidence
of all-cause cancers was significantly reduced in 13,679 male
gout patients (at least temporarily) treated with colchicine
compared with 10,371 control gout patients (228). Besides
reducing tumor cell proliferation and inducing apoptosis (243),
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TABLE 2 | Effects of anti-atherosclerotic immunotherapies (with clinically proven efficacy) on cancer.

Type of

immunotherapy

Target Compounds Effect on cancer

in clinical trials

Effect on cancer

in animal studies

Potential mechanisms

Monoclonal

antibodies

IL-1β Canakinumab ↓ (224) ↓ (225)* - Reduction of tumor-promoting chronic

inflammation

PCSK9 Alirocumab – ↓ (226) - Increased MHC I expression on tumor

cell surface and enhanced tumor

infiltration by cytotoxic T cells

Evolocumab

CD3 Teplizumab – ↓ (227) - Induction of leukemic cell apoptosis

Foralumab

Natural anti-tubulin

agent

NLRP3

inflammasome**

Colchicine ↓ (228) ↓ (229–232) - Direct antiproliferative effects on tumor

cells and induction of apoptosis

- Enhancement of CD4+ and CD8+

T-cell-mediated anti-tumor immunity

↑ = pro-carcinogenic effect. ↓ = anti-carcinogenic effect. * In this study IL-1β knockout mice were shown to be protected from tumor development, but antibody-mediated IL-1β

depletion was not investigated. **besides other anti-inflammatory mechanisms.

IL-1β, interleukin 1 beta; NLRP3, NOD-, LRR-, and pyrin domain-containing protein 3; PCSK9, proprotein convertase subtilisin/kexin 9.

colchicine enhances CD4+ and CD8+ T-cell-mediated anti-
tumor immunity by promoting dendritic cell maturation and
antigen presentation (244). Colchicine toxicity at high doses
prevents its application as anti-tumor drug (243). Whether
low-dose colchicine might confer clinically relevant anti-cancer
effects has yet to be determined.

PCSK9 Inhibitors
PCSK9, a protein which is primarily expressed in the
liver, counteracts clearance of LDL cholesterol by inducing
degradation of internalized LDL receptor in hepatocytes leading
to increased plasma LDL cholesterol levels (245). Inhibition of
PCSK9 has emerged as a highly effective second-line cholesterol
lowering strategy, which has received class I recommendations
by current guidelines (246). Two monoclonal antibodies
targeting PCSK9, evolocumab (13) and alirocumab (12), and a
siRNA-based compound, inclisiran (222, 223), are approved for
clinical use in selected high-risk patients.

Cholesterol is a driving force in atherogenesis, yet its role in
cancer is less clear: Both positive and negative correlations as
well as absence of any associations between cholesterol levels and
cancer development have been reported by clinical studies (247).
Likewise, several meta-analyses concluded that statin therapy
reduces cancer incidence or improves prognosis (248–250),
whereas others found no such correlations (251, 252). PCSK9
inhibitors have not been reported to affect cancer incidence
in clinical trials (12, 13). However, in a recent study PCSK9
inhibition could potentiate anti-tumor immune responses and
thus substantially reduced tumor growth in murine cancer
models (226), which was independent of cholesterol-lowering.
PCSK9 induced lysosomal degradation of MHC-I and disrupted
its recycling to the cell surface. PCSK9 inhibition, either
through genetic deletion or administration of monoclonal
antibodies, increased MHC-I expression on the tumor cell
surface and thus enhanced tumor infiltration by cytotoxic
T cells. Besides limiting tumor growth when administered
alone, anti-PCSK9 antibodies significantly enhanced anti-tumor

efficacy of ICI therapy (anti-PD-1) (226). Another recent study
demonstrated that a nanoliposomal anti-PCSK9 vaccine limited
tumor progression and improved survival in a murine model
of colon carcinoma (253). Concluding, these preclinical data
warrant further exploration of PCSK9 inhibitors as cancer
therapeutics in clinical trials.

Anti-CD3 Antibody Therapy
Anti-CD3monoclonal antibodies bind to the CD3-TCR complex
on the surface of T cells and thus induce disappearance by
shedding or internalization of the receptor complex (254).
This process, which is termed antigenic modulation, renders
T cells temporarily blind to their cognate antigen and leads
to anergy or apoptosis of activated T cells (254). Anti-CD3
antibody therapy induced long-lasting Treg-mediated immune
tolerance through increased TGF-β production by apoptotic
T cells and phagocytes involved in clearance of apoptotic T
cells (255, 256). Clinical application of the murine muromonab-
CD3 is limited by high immunogenicity and resulting side
effects (e.g., nausea, fever, headaches) (254). Humanized anti-
CD3 antibodies (e.g., teplizumab, and otelixizumab) and
a fully human anti-CD3 antibody (foralumab) have been
developed, that were well-tolerated in initial clinical studies
(254). Early clinical evidence suggests reasonable efficacy of such
novel anti-CD3 antibodies in the treatment or prevention of
autoimmune diseases, such as multiple sclerosis (257), type 1
diabetes (258–261), and inflammatory bowel disease (262). In
several preclinical studies, intravenous or oral administration
of anti-CD3 antibodies conferred substantial atheroprotection
by enhancing TGF-β production and thereby inducing anti-
atherogenic Tregs (263–265). Muromonab-CD3 was reported
to significantly decrease CD3+ tumor cells in a patient with
refractory T cell acute lymphoblastic leukemia (266), but was
ineffective in enhancing immune activation in patients with
solid tumors when administered in combination with high-
or low-dose IL-2 (267, 268). However, a recent preclinical
study demonstrated high anti-tumor efficacy of teplizumab and
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foralumab in murine models of T cell acute lymphoblastic
leukemia (227). To date, the potential of humanized or fully
human anti-CD3 antibodies in the treatment of CVD or cancer
has not yet been investigated in clinical trials. Considering the
promising data from animal studies these compounds merit
further investigation into their clinical application.

ADOPTIVE T CELL TRANSFER IN CANCER
AND ATHEROSCLEROSIS

Chimeric antigen receptor (CAR) T cell therapy represents an
innovative cancer treatment strategy, in which circulating T
cells are isolated and genetically modified in vitro to express
a synthetic tumor-antigen-specific receptor (269), which are
subsequently expanded and infused back into the patient to
attack tumor cells (269). In 2017, CAR T cells directed against
CD19 (tisagenlecleucel and axicabtagene ciloleucel) showed
substantial anti-tumor activity in patients with refractory large
B cell lymphoma and follicular lymphoma (270, 271), which led
to their FDA approval. Subsequently, anti-CD19 CAR T cells
brexucabtagene autoleucel and lisocabtagene maraleucel were
approved for treatment of mantle cell lymphoma and diffuse
large B cell lymphoma, respectively (272, 273). Idecabtagene
vicleucel targets B cell maturation antigen (BCMA) and is the
first clinically approved CAR T cell therapy for multiple myeloma
treatment (274). A major drawback of CAR T cell therapy is its
association with severe and potentially fatal side effects (275).
Cytokine-release syndrome (CRS), that can potentially develop
into fulminant haemophagocytic lymphohistiocytosis (HLH),
and CAR-T-cell-related encephalopathy syndrome (CRES), are
the two most common adverse reactions (275). A recent study
reported that CVE, such as new onset of heart failure or
arrhythmias, occurred in 12% of 137 patients who received
CAR T cell therapy (all events were associated with CRS) (276).
Whether CAR T cells affect atherogenesis and increase the
cardiovascular risk in the long-term, is unknown.

Adoptive transfer of autologous ex vivo expanded polyclonal
Tregs has emerged as a promising strategy to treat autoimmune
diseases and is currently investigated in clinical trials (277). First
evidence suggested safety and efficacy of this approach for the
treatment of type 1 diabetes (278, 279), prevention of graft-vs.-
host-disease (280, 281), or transplant rejection (282). Therapeutic
potency may be enhanced by utilization of antigen-specific rather
than polyclonal Tregs. Administration of ovalbumin-specific
Tregs, which respond to a major component of chicken egg
white, was demonstrated to be safe and effective in patients
with refractory Crohn’s disease (283). Adoptive transfer of both
polyclonal (284) and antigen-specific Tregs (responding to heat-
shock protein 60) (285) conferred atheroprotection in Apoe−/−

mice fed with a WD for 6–8 weeks. Yet, administration of
ApoB+ Tregs to WD-fed Apoe−/− mice failed to limit plaque
progression during a more extended period of observation (12
weeks) (43). In this study, more than half of all transferred cells
lost expression of Treg markers and converted into conventional
T cells, which likely accounted for treatment failure. Clarification
of the mechanisms underlying such phenotypic conversion and

development of strategies to ensure Treg stability are essential for
clinical translation of this approach.

VACCINATION STRATEGIES IN THE
TREATMENT OF CANCER AND
ATHEROSCLEROSIS

Vaccination strategies aiming to induce pro-inflammatory
immune responses against tumor-specific antigens or immune
tolerance to plaque-associated autoantigens hold great promise
for the treatment of cancer and atherosclerosis, respectively (4, 6).
Through eliciting antigen-specific immunity, such approaches
are highly effective without impairing the host defense against
infectious agents and cancer cells or enhancing atherogenesis.

A series of animal studies have indicated the great
potential of immunization against ApoB-related antigens
for the treatment of atherosclerosis (6). The underlying idea
originates from the observation that administration of oxLDL
to hypercholesterolemic rabbits reduced atherosclerotic lesions
(286). Subsequent studies identified an expansion of ApoB+

Tregs (42, 287, 288) and a humoral immune response against LDL
(289) to account for the observed atheroprotection. Despite these
promising preclinical data, several unknowns, such as optimal
epitopes, adjuvants, administration route and vaccination
scheme, stability of the atheroprotective immune response, and
criteria for patient selection, have hitherto hindered translation
of anti-atherosclerotic vaccination strategies into clinical practice
(6). Recently, utilization of nanoparticle-formulated, nucleoside-
modifiedmessenger RNA (mRNA) without addition of adjuvants
was demonstrated to enable sustained immune tolerance to MS-
related autoantigens through induction of functional Tregs in
mice (290). Considering that mRNA-based vaccines are already
in clinical use, this approach has high translational potential for
development of a vaccine against atherosclerosis.

Therapeutic cancer vaccines aim to induce a sustained effector
immune-response against tumor-specific antigens (291). Initial
approaches used self-antigens, which exist in non-malignant
tissues, but are abnormally expressed or overexpressed by tumor
cells, or applied non-self-antigens of viral origin (4, 291).
Technological advances, such as next-generation sequencing,
enabled identification of tumor-specific epitopes resulting from
mutations (4, 291). These so-called neoepitopes or neoantigens
are then evaluated for their capacity to bind human MHC-I or
-II molecules. Candidates with high binding capacity can finally
be utilized for development of personalized cancer vaccines or
in vitro expansion of tumor-antigen specific CD4+ and CD8+

T cells, which are then transferred into the patient (4, 291).
Vaccination with neoepitopes predicted to bind MHC-II or -
I was shown to elicit strong CD4+ and/or CD8+ responses
and thereby facilitate tumor rejection in animal models (292).
In 2015, Carreno et al. firstly demonstrated the capability
of a neoantigen-based vaccine strategy using dendritic cells
as vaccine platform to induce a tumor-specific CD8+ T cell
response in three patients with advanced melanoma (293).
Subsequently peptide- and mRNA-based neoantigen vaccines
were shown to induce strong CD4+ and CD8+ T cell responses
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alongside with significant tumor regression inmelanoma patients
(90, 91). Despite the promising results of these early clinical
trials, several open questions on how to improve efficacy and
feasibility of neoantigen-based tumor vaccines remain, that
include identification of optimal antigens, delivery platforms,
adjuvants, and routes of administration (4). Several clinical trials
investigating the efficacy of neoantigen-based vaccine approaches
in different cancer types are underway and will likely help to find
answers to these questions (4, 291).

CONCLUSION

Adaptive immunity is critically involved in the pathogenesis
of atherosclerotic cardiovascular diseases and cancer, which
represent the two most common causes of death worldwide.
During the past few decades, novel treatment strategies
enhancing anti-tumor immune responses have already found
their way into clinical practice, whereas successful translation
of strategies targeting atherogenesis-related immune responses
into the clinic has not yet been accomplished. Given that
some immunotherapies (e.g., CD20-, EGFR-, IL-1β- or
PCSK9-targeting antibodies) were shown to protect from
both cancer and atherosclerosis, inflammatory processes and
immunity underlying carcinogenesis and atherogenesis may
be closely interconnected. Further characterization of tumor-
promoting and proatherogenic immune responses may help to
identify novel pharmacological targets that allow simultaneous
treatment of both disease entities. Further characterization
of tumor-promoting and proatherogenic immune responses
may help to identify novel pharmacological targets that allow
simultaneous treatment of both disease entities. In that regard,
multimodal sequencing approaches, such as Cellular Indexing
of Transcriptomes and Epitopes by Sequencing (CITE-Seq),

which allow combined measurement of gene and surface-
protein expression on a single-cell level, will be valuable tools.
Active immunization represents a novel, promising approach
for the treatment of cancer and atherosclerosis. Preclinical
studies have underscored the great anti-atherosclerotic potential
of vaccination against plaque-related autoantigens. Further
research is required to optimize this promising approach. Major
objectives in this context include identification of optimal
vaccine delivery platforms, adjuvants and administration routes.
Furthermore, development of clinically feasible approaches
to identify eligible patients, to determine expression of target
antigens within an individual patient, and to monitor treatment
responses will be crucial for broad implementation of this
approach into clinical practice. If these obstacles can be
overcome, active immunization may prospectively take cancer
and atherosclerosis therapy to the next level.
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