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/e brain-computer interface (BCI) plays an important role in assisting patients with amyotrophic lateral sclerosis (ALS) to enable them to
participate in communication and entertainment. In this study, a novel channel projection-based canonical correlation analysis (CP-CCA)
target identification method for steady-state visual evoked potential- (SSVEP-) based BCI system was proposed. /e single-channel
electroencephalography (EEG) signals of multiple trials were recorded when the subject is under the same stimulus frequency./e CCAs
between single-channel EEG signals ofmultiple trials and sine-cosine reference signals were obtained./en, the optimal reference signal of
each channel was utilized to estimate the test EEG signal. To validate the proposed method, we acquired the training dataset with two
testing conditions including the optimal time window length and the number of the trial of training data. /e offline experiments
conducted a comparison of the proposed method with the traditional canonical correlation analysis (CCA) and power spectrum density
analysis (PSDA) method using a 5-class SSVEP dataset that was recorded from 10 subjects. Based on the training dataset, the online 3D-
helicopter control experiment was carried out./e offline experimental results showed that the proposedmethod outperformed the CCA
and the PSDAmethods in terms of classification accuracy and information transfer rate (ITR). Furthermore, the online experiments of 3-
DOF helicopter control achieved an average accuracy of 87.94±5.93% with an ITR of 21.07±4.42bit/min.

1. Introduction

Brain-computer interface (BCI) is a direct communication-
control system which establishes a transmission channel
between electrical signals of a human’s brain and external
devices without the involvement of muscles and peripheral
nervous system [1]. For several decades, BCI techniques have
been increasingly developed by utilizing neurophysiological
signals, such as EEG, magnetoencephalography (MEG),
near-infrared spectroscopy (NIRS), and functional magnetic
resonance imaging (fMRI) [2–4]. Recently, EEG-based BCI
has been successfully used in clinical rehabilitation, assistive
mobility, mental-state recognition, and game due to its
noninvasiveness, reliability, portability, and remarkable time
signal resolution [5]. Moreover, BCI can not only improve
the quality of life of disabled people but also can provide

additional help and entertainment mode for healthy people
to achieve multifunctional augmentative and alternative
tasks [6].

Nowadays several basic paradigms have been utilized to
realize EEG-based BCIs, such as event-related potential
(ERP) [7], P300 potential [8], steady-state visual evoked
potential (SSVEP) [9, 10], slow cortical potential (SCP) [11],
and motor imagery (MI) [12]. SSVEP-based BCI has
attracted much attention due to its possibility of achieving a
high-dimensional control (degrees of freedom) which re-
mains a critical issue for developing multidimensional and
multifunctional BCI applications. In addition, the high
signal-to-noise ratio (SNR), high ITR, and little training
required can be achieved by the SSVEP-based BCI system
[13]. /e SSVEP is a periodic response of brain which is
reflected by repetitive visual stimuli flickering with a certain
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fixed frequency (generally higher than 6Hz). Several studies
have been proposed to develop SSVEP-based BCI applica-
tions. /e 40-target SSVEP-based BCI was developed for the
high-speed brain speller, which can achieve an ITR of
267 bit/min [14]. An SSVEP-based BCI application was
designed for a maze game. /e four operation instructions,
up, down, left, and right, were responded to four commands
of stimuli to control the movement of an object in a maze
[15]. /e two different types of visual stimuli, pattern-re-
versal checkerboard stimulus (PRCS) and grow/shrink
stimulus (GSS), were compared during SSVEP-based BCI
application in virtual reality environment. It indicated that
the optimal visual stimulus for an individual can improve
the performance of the SSVEP-based BCIs and reduce visual
fatigue in the VR environment [16]. /e signal-channel
SSVEP-based BCI speller system was designed [17]. /e
novel virtual keyboard contained 58 characters, special
symbols, and digits, and the five stimulation boxes
(6 cm× 6 cm) were present in each layer (three layers for one
target character). /e online experiment accuracy is about
97.4% with the ITR of 49± 7.7 bit/min.

However, for real-life applications, the multichannel
system could not be widely accepted due to the high cost of
the device and a complicated setup process. /e commercial
and low-cost EEG recording device, Emotiv EPOC, which
combines low spatial resolution and acceptable signal
quality, was used for BCI applications out of the lab. /e
Emotiv EPOCwas utilized in the shooting game in which the
subject could use their brain to control the direction of the
pistol in the online target shooting [18]. /e researchers
designed a wearable BCI system based on SSVEP, which
enabled 3-D navigation of quadcopter flight with immersive
first-person visual feedback using a head-mounted device
[19]. /erefore, the Emotiv EPOC device is quite enough to
be used in portable daily-life applications to improve life
quality for healthy and disabled people [20].

To improve the performance of SSVEP-based BCIs, the
two main directions are taken into consideration [21]: in-
creasing the number of stimuli classes and improving the
accuracy by target recognition algorithms. /e number of
frequencies that can be presented on the computer screen is
limited by its refresh rate. Hence, to improve the control
performance and increase the number of selections, the
hybrid modality that combines SSVEP and other EEG
features (P300) or electrophysiology features has been de-
veloped [22]. Target recognition algorithms play an im-
portant role in enhancing the performance of SSVEP-based
BCIs. /e power spectrum density analysis (PSDA) is a
widely utilized and easily implemented method in SSVEP
recognition, which estimates the PSD values of EEG signals
at different frequencies within a specific time window,
typically by fast Fourier transform (FFT) and discrete
Fourier transform (DFT) [23]. /e frequency with the
maximal PSD value (peak subsequently) is recognized as the
visual stimulus frequency. Nevertheless, the PSDA is sen-
sitivity to noise that leads to low accuracy in the SSVEP
frequency detection. In addition, a relatively long time
window is usually required to estimate the spectrum that
may restrict its real-time application. To overcome the

limitations of PSDA, several studies have employed multi-
variate statistical analysis as classifiers to detect SSVEP
frequencies, such as canonical correlation analysis (CCA)
[24] and least absolute shrinkage and selection operator
(LASSO) [25]. /e CCA-based classifier has been used to
improve the classification accuracy in the cases of multi-
channel-based application due to its ability to enhance the
SNR of the SSVEP-based BCI system [26]. /e EEG data are
multidimensional, which contain differences of multiple
experiments, uncertainty among subjects, and so on.
However, the above algorithms cannot satisfy the need for
simultaneous processing of multidimensional information
in EEG signals (especially SSVEP). In order to solve this
limitation, we try to combine multidimensional signal
processing technology with CCA algorithm to optimize and
improve the performance of the BCI system in the process of
feature extraction and classification of SSVEP.

/is study proposed a channel projection-based target
recognition method with CCA to improve the performance
of an SSVEP-based BCI. /e performance of an offline
experiment was evaluated using a 5-target SSVEP dataset
recorded from 10 subjects. /e traditional CCA method and
PSDA method were used to compare the performance with
the proposed method. After optimizing parameters (data
length, the number of training trials, and the number of
electrodes), an online BCI system was carried out to control
a 3-DOF helicopter by the proposed method. /e structure
of the remaining parts of the paper is as follows: Section 2
describes all details of the used materials, proposed classi-
fication/control methods, and offline and online experi-
mental setups. /e offline and online experimental results
are shown out in Section 3. Finally, discussion and con-
clusion are presented in Sections 4.

2. Materials and Methods

Figure 1 shows a block diagram of the proposed SSVEP-
based BCI system. /e subject sits on the chair in front of a
liquid crystal display (LCD) screen and stares at the stimuli
boxes. /e raw EEG data are recorded by the dry electrodes
and then are transmitted to the host computer for pre-
processing to increase the SNR. For target recognition, one
way is to combine the feature extraction method and feature
classification method to find the right stimulus frequency.
Another is using the different target recognition methods to
identify the target stimuli. Finally, the control commands are
generated by the computer according to the classification
results. /e 3-D helicopter will conduct the control com-
mands to move to the target position.

2.1. Experiment Environment. Ten healthy volunteers (7
males and 3 females) participated in the offline and online
experiments, respectively. All participants ranged in age
from 21 to 26 (average age 24). /ese fully BCI-naive
subjects have normal or corrected to normal vision. All the
participants were informed by clear written consent about
the purpose and possible consequences of the experiment in
detail.
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In this BCI experiment, LCD was used to demonstrate
stimulus on the monitor that the resolution and refresh rate
are 1920×1080 pixels and 60Hz, respectively. /e black-
white color combination was selected in the stimulator
design to show different stimulus frequency. Each stimuli
box is a square of 4 cm× 4 cm, as shown in Figure 2(a). /e
stimulus frequencies of the five targets are 6.67Hz, 7.5Hz,
8.57Hz, 10Hz, and 12Hz which located at the left, middle,
right, top, and bottom of the screen, respectively.

Combined with the cost-effective, portable, and no
training features, Emotiv EPOC headset is used to collect
EEG signals, and the device is shown in Figure 3. For brain
activity recording, 14 channels are placed on the standard
locations according to the 10–20 international system, which
are named AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4. Moreover, CMS/DRL reference positions are
also employed, which are located behind the ear of the
subject. /e EEG signals are sampled at an internal rate of
2048Hz and down-sampled to 128Hz in each EEG channel.

2.2. Experimental Design

2.2.1. Offline BCI Experiment. During the SSVEP-based BCI
experiment, the subjects seated in a comfortable position in a
normally bright room, with a 40 cm distance from the
monitor, which was placed in front of the subjects. For the
offline experiment, the subjects performed a simulated
online experiment to record EEG data for offline analysis.
/e subjects were guided to gaze one of the five stimulus
targets according to the command that was sounded by the
speaker. Each subject completed 10 runs, and each run was
composed of 5 trials. To prevent the subjects from visual
fatigue, the 2min break was given after 5 runs. Moreover,
every stimulus frequency was performed with a random
sequence. Each trial lasted 6 seconds and consists of two
parts: a cue phase with 1 s and a stimulation phase with 5 s.

Figure 4 shows the timing of the whole procedure. To reduce
eye movement artifacts, subjects were asked to avoid eye
blinks during the stimulation. /e ten-fold cross-validation
was utilized to evaluate the precision of SSVEP recognition
for one subject./at means nine trails as the training dataset,
and then the rest one trial was the testing data. /e tradi-
tional CCA method and PSDA method were used to
compare the performance with the proposed method.

2.2.2. Online BCI Experiment. /e online experiment was
conducted to validate the effectiveness of the proposed
feature recognition method. /e offline data were utilized as
a training dataset during the online experiment. /e subject
was asked to control a 3-DOF helicopter by the proposed
method. /e schematic of the helicopter is shown in Fig-
ure 5. /e state-space equation of the linearized system was
utilized in our previous study [27]. /e Matlab toolboxes
and QuanRC software were used to connect the experiment
platform for controlling the attitude of the 3-DOF heli-
copter. According to designed stimulus frequencies, four
tasks of the helicopter can be conducted (left, right, upward,
and downward movements) which correspond to four
stimuli positions on the screen. /e middle stimuli box of
the screen is used to cancel the previous action when it
comes with a wrong command. /e top view of the heli-
copter flight task is shown in Figure 6. /e subject was
required to navigate the helicopter from the start position A
to the target position B and then went back to position A.
When the helicopter received one control command, it
would move ten degrees along the axis in the corresponding
reorientation. /us, 18 right commands should be produced
to finish the task. /e number of correct counts of the 18
commands is used to evaluate the system accuracy. Once the
incorrect command is generated, the user can choose the
middle box to take the helicopter back to the last position.

Signal
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Signal
preprocessing

Feature 
extraction

Feature 
classification

Target 
recognition

Visual 
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Visual feedback
3-D helicopter

Control
interface

EEG 
signal

Figure 1: Block diagram of the proposed BCI system.
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To evaluate the overall system, the classification accuracy
and ITR were calculated./e ITR is a well-known parameter
for BCI system evaluation [28]. For a trial with N possible
targets in which each target has the same possibility, the
classification accuracy P that the target will be hit is the same
for each target. /e higher ITR means that the BCI system
can transfer more information per unit of time. /e bits of
information communicated per one minute were calculated
as follows:

R �
60
T
log2N + P log2P +(1 − P)log2

1 − P

N − 1
 , (1)

where T represents the time window length. If the value of N
is fixed, the ITR is only affected by the value of Tas well as by
the value of P. In this study, the number of targets is 5, and
the range of time window length is from 1 s to 5 s.

2.3. Target Recognition Algorithm

2.3.1. SSVEP Recognition Based on CCA. /eCCAmethod is
able to calculate the underlying correlation between two
multidimensional data. /erefore, CCA extends the ordinary
correlation to two sets of random variables and has been widely
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Figure 2: Stimulus design of 5-target BCI system. (a) /e 5 stimuli boxes; (b) the control process.
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Figure 3: EEG acquisition device. (a) Emotiv EPOC; (b) electrode position according to 10–20 EEG placement.
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Figure 4: /e timing of the whole procedure.
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used in the recognition of SSVEPs [24, 29]. In other words, the
CCA aims to find a pair of linear transformations, which called
canonical variants, for two sets ofmultidimensional variable, so
as to achieve the maximum correlation between the two ca-
nonical variants. Suppose that two multidimensional random
variablesX and Y (X ∈ Rh×i andY ∈ Rj×i). CCA finds a pair of
weight vectors wX ∈ Rh×1 and wY ∈ Rj×1, respectively, which
maximize the correlation between linear combinations x �

wT
XX and y � wT

YY. It is defined as

max
wX,wY

ρ(x, y) �
E xyT 

�������������
E xxT E yyT 



�
E wT

XXY
TwY 

������������������������

E wT
XXX

TwX E wT
YYY

TwY 

 ,

(2)

where max ρ is the maximum canonical correlation. x and y
are projected onto wX and wY. /erein, XXT and YYT are
the within-sets covariancematrices, andXYT is the between-
sets covariance matrix. Each CCA leads to a number of
solutions max ρ equal to the minimum between the number
of rows in X (h) and Y (j). /e solutions max ρ are a measure
of the similarity between the two sets of original data.

To distinguish the m stimulation frequencies, the CCA
will be performed m times. For a certain stimulation fre-
quency fk(k � 1, 2, . . . , m), the CCA between the multi-
channel EEG signal in X (h presents the number of EEG
channels, and i is the number of sampling points in each
channel) and a reference signals in Yi is calculated. Y is the
reference signal that is artificially generated with sine and
cosine waves at the stimulus frequency fk, and j is the
number of harmonics. /e reference signals are set as

Yi �

sin 2πfkt( 

cos 2πfkt( 

⋮

sin 2πjfkt( 

cos 2πjfkt( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t �
1
s
,
2
s
, . . . ,

i

s
, (3)

where s is the sampling rate./e brain dynamics plays a low-
pass filter, and the high harmonic components in a square
wave may be filtered. /e four harmonics was used in this
work. /e correlation coefficients between the EEG signal
and different reference signal is calculated by (3). As a result,
the target frequency fs is recognized as

fs � max
fk

ρk, k � 1, 2, . . . , m. (4)

2.3.2. Channel Projection-Based Target Recognition
Method with CCA. Although the powerful performance of
the CCA-based method in detecting SSVEP has been proved
by researchers [24, 26, 30]. However, the detectability of
SSVEP with different frequencies can be influenced by the
power-law distribution of the power spectra spontaneous
electroencephalogram (EEG) signals. /us, CCA may not
give best accuracy for SSVEP classification, especially in
using a relatively short time window. Several studies have
tried to alleviate this problem. An unsupervised method is
reported to derive normalized canonical correlation co-
efficients for CCA to enhance the frequency detection of
SSVEP. Zhang et al. proposed the MCCA [31] and L1-
MCCA [32] methods to optimize sine-cosine reference
signals by correlating the multiple dimensions of EEG
signals. /en, the common features were used as reference
signals instead of sine-cosine signals to improve recognition
accuracy. /e core idea of those methods is using multiple
trials that the subject focuses attention on the same visual
stimuli to get a reference signal through the training pro-
cedure, which can reduce the inherent differences of the
subject.

Inspired by the above study, we utilized the CCAmethod
to find optimal data to represent the multiple trials of EEG
data that were recorded by the single channel when the
subject gazed at the same frequency of visual stimuli. Fig-
ure 7 illustrates the flowchart of the proposed CP-CCA
(channel projection-based CCA). Suppose that recorded
EEG data of multitrials in the specific stimulus frequency are
Xh,fk
∈ Rn×i, n is the number of trials, and h represents four

different channels (O1, O2, P7, and P8). Here two vectors
wh,x ∈ Rn×1 and wh,y ∈ Rj×1 are selected to find the maxi-
mum correlation coefficient of Xh,fk

� wT
h,x × Xh,fk

and
Yfk

� wT
h,y × Yfk

. /e maximum correlation of one channel
can be described as

max
wh,x,wh,x

ρh �
E Xh,fk

YT

fk
 

���������������������

E Xh,fk
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h,fk
 E Yfk
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E wT
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 .

(5)

/e reference signal Xh,fk
reflects the frequency com-

ponent of SSVEP of different channels. Moreover, it contains
the common character of the single channel with multitrials

Back
motor Front

motor

Pitch
axis

Elevation
axis

Counterweight

Travel
axis

Fb

Ff

Lw

La

Lh

Mh · g
Mf · g

Mw · g

Mb · g

Lh

λ > 0

ε > 0

ρ > 0

Figure 5: /e mathematical model of the 3-DOF helicopter.
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Figure 6: /e top view of the helicopter flight task. (a) Flight experimental setup; (b) location information and motion curve, the contact
point moves from position A to position B and then goes back to position A, and the moving step is 10 degrees in four directions (up, down,
left, and right).
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./e optimal reference signals of different channels (XO1,fk

, XO2,fk
, XP7,fk

, and XP8,fk
) under certain stimulus

frequency fk are obtained by the CCA between the channel-based EEG data and the sine-cosine signals Yfk
. /e SSVEP target frequency fs

of a new test data of single trial is recognized according to the maximum value of the sum of ρh,fk
.
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for the same stimulation frequency. When optimal reference
signals of different stimulus frequencies Xh,f1

, Xh,f2
, . . . ,

Xh,fm
were obtained, the correlation coefficient ρh,fk

between
the test signal and reference signal of the single channel (O1,
O2, P7, and P8) can be calculated. /e new test data of a
single trial are recognized according to the maximum value
ρfk

, which is the sum of ρh,fk
, and can be defined as

ρfk
� ρO1,fk

+ ρO2,fk
+ ρp7,fk

+ ρp8,fk
. (6)

In this work, the number of target stimulation frequency
m� 5. For the reference signal, its fundamental and second
frequency components are considered in this design.

3. Results

3.1. Offline Experimental Results. /e offline experiment
aims to find the optimal parameter for online SSVEP rec-
ognition. In this offline analysis, the optimal time window
length and the number of training data are discussed.
Figure 8 shows the brain frequency power map of subject S1
of one run. /e red color represents the brain activity is
markedly intense. On the contrary, the blue denotes parts of
the brain that do not show significant activity.

Figure 9 shows the averaged detection accuracy for each
of ten subjects obtained by the PSDA, CCA, and proposed
CP-CCA with respect to time window length from 1 s to 5 s.
/e accuracy was estimated by 10-fold cross validation, in
which 9 trials were used as training data, respectively, and 1
trial was used as test data. /e results indicated that the
classification accuracy was increasing with the stimulus time.

Figure 10 depicts the average accuracy of all subjects by
the three methods. /ese results demonstrate that the
proposed CP-CCA significantly outperformed the PSDA
and CCA for SSVEP-based target recognition at time
window from 1 s to 5 s. /e highest classification accuracy of
the proposed CP-CCA was 90.09% for 5 s time window,
whereas CCA and PSDA methods achieve their highest
accuracy of 81.02% and 73.04%, respectively, in the case of
5 s window length.

Figure 11 shows the correlation coefficients of each
channel (P7, P8, O1, and O2) and the averaged value of four
channels corresponding to different reference signal fre-
quencies (6.67Hz, 7.5Hz, 8.57Hz, 10Hz, and 12Hz) de-
rived from 10-fold cross validation by the proposed CP-CCA
at 5 s time window, when each of the five stimulus fre-
quencies was used as the target frequency. In addition, these
results were compared with the CCA-based method in the
same experimental condition. From the results, compared to
the CCA, the proposed CP-CCA achieved a higher corre-
lation coefficient (average value of four channels) for the
target frequency.

In addition, another analysis was carried out to find the
optimal channel montage, and the result is shown in
Figure 12. /e accuracy was estimated by 10-fold cross-
validation. /e experimental results indicated that the
combination of O1 and O2 has higher accuracy than the
combination of P7 and P8 in five stimulus frequencies with
different time window length but lower than the combi-
nation of O1, O2, P7, and P8. /e results also

demonstrated that, in most cases, the combination of the
ipsilateral electrodes has better results than the combi-
nation of the contralateral electrodes. /e combination of
O1 and O2 makes a significant contribution to the SSVEP
detectability. Finally, we choose four channels (P7, P8, O1,
and O2) as a combination, due to their higher classification
accuracy.

Figure 13 shows the average classification accuracy of all
subjects with the number of training trails (from 2 to 10)
using 5 s window length./e highest accuracy of 90.09% was
obtained when the numbers of training trials were 10. In
addition, when the number of training trial was 5, the
classification accuracy is over 89%.

3.2. Real-Time Experimental Results. For ensuring both
detection accuracy and ITR, during the online experiment,
the selected time window is 4 s. /e 0.5 s interval was given
to subjects to shift their gaze between the 3-D helicopter and
stimuli boxes. Table 1 lists the results of the online exper-
iment of the 3-DOF helicopter control across 10 subjects. 4
training trials of the offline experiment were utilized for
each of the 5 stimulus frequencies. /e average accuracy
of the proposed control strategy over all subjects was
87.94± 5.93%, and the average of the commands was
23.60± 3.24 bit/min. All subjects achieved accuracy of over
80%. Moreover, subject 1 successfully completed the control
task without any mistake./e average ITR is 21.07± 4.42 bit/
min.

4. Discussion and Conclusion

In this work, we aimed to develop a practicable SSVEP-based
BCI system by Emotiv EPOC considering real-life feasibility.
/e target identification algorithm plays an important role
in the improvement of the performance of the SSVEP-based
BCI system since other elements such as stimulus design and
the number of electrodes should also be taken into con-
sideration. To evaluate the effectiveness of the proposed CP-
CCA target identification method, we compared its

6.67Hz 7.5Hz

8.75Hz 10Hz 12Hz

+

–

Figure 8: /e brain frequency power map of subject 1 under 5
different stimulus frequencies.
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Figure 9:/e averaged detection accuracy for each of ten subjects obtained by the PSDA, CCA, and proposed CP-CCA with respect to time
window length from 1 s to 5 s. (a) S1. (b) S2. (c) S3. (d) S4. (e) S5. (f ) S6. (g) S7. (h) S8. (i) S9. (j) S10.
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Figure 10: /e average accuracy of all subjects by the PSDA, CCA, and proposed CP-CCA with respect to time window length from 1 s to 5 s.
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Figure 11: Continued.
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Figure 11: /e correlation coefficients corresponding to different reference signal frequencies (6.67Hz, 7.5Hz, 8.57Hz, 10Hz, and 12Hz)
derived from 10-fold cross-validation by the CP-CCA (average value) and CCA at 5 s time window, when each of the five stimulus
frequencies was used as the target frequency fs.

O1, O2
P7, P8
P7, O1
P7, O2

P8, O1
P8, O2
O1, O2,P7,P8

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

2 3 4 51
Time window (s)

Figure 12: Comparison of detection accuracy of the different combination of electrodes placement with respect to time window length by
the proposed CP-CCA method.
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performance with the traditional CCA and PSDA methods.
As shown in Figure 10, the proposed method obtained
higher classification accuracy than CCA and PSDA for all
time windows. During this study, the single channel EEG
signals of multiple trials were recorded when the subject is
under the same stimulus frequency. /e CCAs between
single-channel of multitrials EEG signals and sine-cosine
reference signals were obtained./e optimal reference signal
contains the common character of the single channel with
different trials under the same stimulus frequency. Figure 11
provides evidence for the superior SSVEP-based recognition
accuracy over the CCA. /e use of CP-CCA may solve the
limitation of interference from the spontaneous EEG ac-
tivities and reduce the inherent differences of the subject.

/e proposed CP-CCA requires individual training data
before the online BCI control experiment. /e number of
training trials is an important parameter in target

reorganization. As shown in Figure 13, the classification ac-
curacy increased with the number of training trials. However,
for a convenient and efficient online BCI system, the no
training or few training times is essential [13]. From the offline
experimental results, the classification accuracy of the 5-fold
cross validation over 89%was achieved. In addition, reminding
that an increase in window lengthmay cause a decrease in ITR,
an increase in the time of each command, and increase in the
total time to complete a task. For ensuring both detection
accuracy and ITR, 4 s time window was selected for online
experiment. /e experiment results from 10 subjects in con-
trolling the 3-DOF helicopter showed that the averaged ac-
curacy was 87.94± 5.93% with an ITR of 21.07± 4.42 bit/min.
/e online averaged accuracy was slightly lower than the offline
that using the same number of training trials. /e difference
might be influenced by the experimental conditions between
the online and offline modes, such as SNR of the EEG signal
light conditions in the room, subjects’ visual fatigue, and
subject’s awareness of 3-DOF helicopter control. Some studies
showed that spatial filtering techniques were effective to
remove EEG artifact, leading to increasing SNR and SSVEP
classification [24, 33]. Another factor was the low resolution in
accuracy during the online experiment (100% means that the
subject continuously executes 18 right commands). In addition,
the result from the low sampling frequency and fewer useful
channels for SSVEP target recognition of Emotiv EPOC, the
classification accuracy, and ITR of the designed system are
limited. Some studies utilized 8 or 9 channels for SSVEP target
recognition by the CCA-based method. However, in real-life
applications, a multichannel system could be an inefficient
device because of its complicated setup./e convenience of the
Emotiv EPOC which increases the usability as well as reduce
the complexity of the system while maintaining the wearing
comfort over time may make up the shortcoming.

In this paper, we proposed a novel channel projection-
based CCA target identification method for the SSVEP-
based BCI system with a portable device. /e offline analysis
results showed that the proposed method outperformed the
CCA and PSDA methods in terms of classification accuracy.
/e online application was validated by the 3-DOF heli-
copter control experiment. 10 subjects achieved an average
accuracy of 87.94± 5.93% with an ITR of 21.07± 4.42 bit/
min. By using the low-cost EEG acquisition device, this
study will encourage more real-life BCI applications for
communication and control in assisting people with dis-
abilities. An automated system is a key feature for efficient
BCI control. Further studies will be performed to develop
programmable program to reduce the total number of
commands and improve the flexibility and practicability of
the system for disabled.
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Figure 13: /e average classification accuracy with different numbers
of training trials for all subjects in terms of 5 s window length.

Table 1: Results of the online 3-DOF helicopter control
experiments.

Subject No. of commands Accuracy (%) ITR (bit/min)
S1 18 100.00 30.96
S2 24 87.50 20.38
S3 20 95.00 25.81
S4 28 82.14 17.17
S5 24 87.50 20.38
S6 22 90.91 22.68
S7 26 84.61 18.59
S8 28 82.14 17.17
S9 28 82.14 17.17
S10 24 87.50 20.38
Mean ± STD 23.60 ± 3.24 87.94 ± 5.93 21.07 ± 4.42
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