Discordantly high glycated hemoglobin might assist in diagnosing α-thalassemia, but not diabetes: A case report

Wei Gao ${ }^{1}$, Yanwen Jin ${ }^{2}$, Yan Huang ${ }^{1}$, Huairong Tang ${ }^{1}$ * (D)
${ }^{1}$ Health Management Center, West China Hospital, Sichuan University, Chengdu, China, and ${ }^{2}$ Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China

Keywords

Diabetes, Glycated hemoglobin, Highperformance liquid chromatography $\boldsymbol{\alpha}^{-}$ Thalassemia

Correspondence

Huairong Tang
Tel.: +86-28-615-00045
Fax: +86-28-615-00045
E-mail address:
397120910@qq.com
J Diabetes Investig 2022; 13: 1633-1635
doi: 10.1111/jdi. 13820

Abstract

Glycated hemoglobin (HbA1c) is an important method for monitoring blood glucose and diagnosing diabetes. High-performance liquid chromatography is more commonly used in the laboratory for the detection of HbA1c. Although HbA1c detected by highperformance liquid chromatography is susceptible to abnormal hemoglobin, there are few reports that it is affected by α-thalassemia. Previous reports have generally concluded that $\boldsymbol{\alpha}$-thalassemia does not affect or lower HbA1c. Here, we report a case of discordantly high HbA1c inconsistent with fasting blood glucose. Finally, the patient was diagnosed with α thalassemia and insulin resistance. $\boldsymbol{\alpha}$-Thalassemia might lead to a discordantly high HbA1c result, which could be attributed to elevated hemoglobin H. In this case, glycated albumin might accurately reflect the real average level of blood glucose. When finding discordant HbA1c, patients should be advised to undergo thalassemia and hemoglobinopathy screening by diabetologists/endocrinologists or primary care physicians to avoid a missed diagnosis of hematopathy.

INTRODUCTION

Glycated hemoglobin (HbA1c) is an important method for monitoring blood glucose. Since 2010, the American Diabetes Association has listed HbAlc as a diagnostic criterion for diabetes ${ }^{1}$. There are many methods for the detection of HbAlc, and high-pressure liquid chromatography (HPLC) is more commonly used in the laboratory ${ }^{2}$. Although HbA1c detected by HPLC is susceptible to abnormal hemoglobin, there are few reports that it is affected by α-thalassemia, and previous reports have generally concluded that α-thalassemia does not affect or lower HbAlc ${ }^{3}$.

Here, we report a case of discordantly high HbAlc inconsistent with fasting blood glucose. Finally, the patient was diagnosed with α-thalassemia and insulin resistance. Discordantly high HbAlc might assist in diagnosing α-thalassemia, but not diabetes in some cases.

CASE REPORT

A 57-year-old Chinese man presented with HbAlc 12.7\% (normal range 3.9-6.1) by ion exchange HPLC (TOSOH HLC723G11, Tosoh Corporation, Shunan, Yamaguchi, Japan) in a

[^0]health examination. There was no obvious abnormality in the chromatogram (Figure 1). However, fasting blood glucose was $84.06 \mathrm{mg} / \mathrm{dL}$ (normal range $70.2-106.2$). HbAlc was tested repeatedly, and the value was still significantly elevated. He had no complaints or past medical history. Other results were as follows: red blood cell count $6.8 \times 10^{12} / \mathrm{L}$ (normal range 4.35.8), hemoglobin (Hb) $135 \mathrm{~g} / \mathrm{L}$ (normal range $130-175 \mathrm{~g} / \mathrm{L}$), mean corpuscular volume 72 fL (normal range $82-100 \mathrm{fL}$), mean corpuscular hemoglobin 20 pg (normal range 27-34 pg), mean corpuscular hemoglobin concentration $278 \mathrm{~g} / \mathrm{L}$ (normal range 316-354), total bilirubin $58.7 \mu \mathrm{~mol} / \mathrm{L}$ (normal range 5.5$28.8 \mu \mathrm{~mol} / \mathrm{L}$), direct bilirubin $14.7 \mu \mathrm{~mol} / \mathrm{L}$ (normal range $<8.8 \mu \mathrm{~mol} / \mathrm{L}$) and indirect bilirubin $44 \mu \mathrm{~mol} / \mathrm{L}$ (normal range $<20 \mu \mathrm{~mol} / \mathrm{L}$). Further tests were ordered by the primary care physician. The oral glucose tolerance test and insulin release test results were as follows: fasting plasma glucose $90.72 \mathrm{mg} / \mathrm{dL}$ (normal range $70.2-106.2 \mathrm{mg} / \mathrm{dL}$), 0.5 h plasma glucose $183.24 \mathrm{mg} / \mathrm{dL}$ (normal range $93.6-154.8 \mathrm{mg} / \mathrm{dL}$), 1 h plasma glucose $219.96 \mathrm{mg} / \mathrm{dL}$ (normal range $109.8-180 \mathrm{mg} /$ dL), 2 h plasma glucose $127.62 \mathrm{mg} / \mathrm{dL}$ (normal range $59.4-$ $140.4 \mathrm{mg} / \mathrm{dL}$), 3 h plasma glucose $77.76 \mathrm{mg} / \mathrm{dL}$ (normal range $50.4-120.6 \mathrm{mg} / \mathrm{dL}$), fasting insulin $13.8 \mu \mathrm{U} / \mathrm{mL}$ (normal range $1.5-15.0 \mu \mathrm{U} / \mathrm{mL}$), 0.5 h insulin $84.9 \mu \mathrm{U} / \mathrm{mL}$ (normal range $20-$

Figure 1 | High-pressure liquid chromatography chromatogram of glycated hemoglobin (HbA1c).
$120 \mu \mathrm{U} / \mathrm{mL}$), 1 h insulin $232 \mu \mathrm{U} / \mathrm{mL}$ (normal range $15-$ $110 \mu \mathrm{U} / \mathrm{mL}$), 2 h insulin $151 \mu \mathrm{U} / \mathrm{mL}$ (normal range $3.0-$ $60.0 \mu \mathrm{U} / \mathrm{mL}$), 3 h insulin $38.5 \mu \mathrm{U} / \mathrm{mL}$ (normal range 1.5$10.0 \mu \mathrm{U} / \mathrm{mL}$), homeostatic model assessment for insulin resistance 3.09 and Matsuda insulin sensitivity index 59.34. Glycated albumin (GA) was 9.02\% (Lucica GA-L, enzymatic assay kit, Asahi Kasei Pharma Corporation, Chiyoda, Tokyo, Japan; normal range 9-14), glucose-6-phosphate dehydrogenase was 4,360 U/L (normal range $>1,300 \mathrm{U} / \mathrm{L}$) and haptoglobin was $<58.30 \mathrm{mg} / \mathrm{L}$ (normal range $500-2,200 \mathrm{mg} / \mathrm{L}$). The laboratory results of the patient are shown in Table 1. Hemoglobin electrophoresis showed that hemoglobin A accounted for 80.4% (normal range 96-97.6), hemoglobin A2 accounted for 0.7% (normal range 2.4-3.2), hemoglobin H accounted for 17.7% (normal range 0) and abnormal Hb Bart's accounted for 1.2% (Figure 2). α-Thalassemia gene tests showed α-thalassemia gene deletion, and the genotype was --(SEA)/- $\alpha 3.7$.

DISCUSSION

Discordantly high HbA1c was found in a health checkup, which was inconsistent with fasting blood glucose levels. Further examination showed abnormal hemoglobin. The patient was diagnosed with α-thalassemia. The oral glucose tolerance test and insulin release tests suggested insulin resistance.

The accuracy of HbAlc in patients with thalassemia is method dependent. Popular methods for the determination of

Table 1 | Laboratory results of the patient

Factors	Results	Reference range
HbA1c (\%)	12.7	3.9-6.1
Fasting blood glucose (mg/dL)	84.06	70.2-106.2
Red blood cell count ($\times 10^{12} / \mathrm{L}$)	6.8	4.3-5.8
Hb (g/L)	135	130-175
MCV (fL)	72	82-100
MCH (pg)	20	27-34
MCHC (g / L)	278	316-354
Total bilirubin ($\mu \mathrm{mol} / \mathrm{L}$)	58.7	5.5-28.8
Direct bilirubin ($\mu \mathrm{mol} / \mathrm{L}$)	14.7	<8.8
Indirect bilirubin ($\mu \mathrm{mol} / \mathrm{L}$)	44	<20
Fasting plasma glucose in OGTT ($\mathrm{mg} / \mathrm{dL}$)	90.72	70.2-106.2
0.5 h plasma glucose ($\mathrm{mg} / \mathrm{dL}$)	183.24	93.6-154.8
1 h plasma glucose ($\mathrm{mg} / \mathrm{dL}$)	219.96	109.8-180
2 h plasma glucose ($\mathrm{mg} / \mathrm{dL}$)	127.62	59.4-140.4
3 h plasma glucose ($\mathrm{mg} / \mathrm{dL}$)	77.76	50.4-120.6
Fasting insulin ($\mu \mathrm{U} / \mathrm{mL}$)	13.8	1.5-15.0
0.5 h insulin ($\mu \mathrm{U} / \mathrm{mL}$)	84.9	20-120
1 h insulin ($\mu \mathrm{U} / \mathrm{mL}$)	232	15-110
2 h insulin ($\mu \mathrm{U} / \mathrm{mL}$)	151	3.0-60.0
3 h insulin ($\mu \mathrm{U} / \mathrm{mL}$)	38.5	1.5-10.0
HOMA-IR	3.09	-
Matsuda-ISI	59.34	-
Glycosylated albumin (\%)	9.02	9-14
Glucose-6-phosphate dehydrogenase (U/L)	4,360	>1,300
Haptoglobin (mg/L)	<58.30	500-2,200

Hb, hemoglobin; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment for insulin resistance; Matsuda ISI, Matsuda insulin sensitivity index; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; OGTT, oral glucose tolerance test.

Figure 2 | Chromatogram of hemoglobin (Hb) electrophoresis.

HbA1c include ion exchange HPLC, boronate affinity chromatography, immunoturbidimetry and capillary electrophore$\operatorname{sis}^{2,4}$. HbA1c can be accurately measured using appropriate
methods in most patients with abnormal hemoglobin ${ }^{2}$. However, if the hemoglobin variation affects the glycosylation ability of hemoglobin or the turnover of red blood cells is abnormal, no matter what method is used, accurate HbA1c cannot be obtained ${ }^{2}$. In areas with a high incidence of thalassemia, boronate affinity chromatography and immunoturbidimetry should be used with caution ${ }^{2}$. Capillary electrophoresis has a good ability to identify abnormal hemoglobin ${ }^{4}$, but there are also some exceptions ${ }^{5}$. HbAlc by ion exchange HPLC is susceptible to abnormal hemoglobin ${ }^{3,6}$. Although visual inspection and manual review of chromatograms might always assist the interpretation of HbAlc , it is not appropriate all the time. There were no abnormal peaks in the chromatogram in this patient. Previous studies have suggested that the type of α-thalassemia (--(SEA)/- $\alpha 3.7$) lowers HbA1c, which is due to the increase in red blood cell turnover and the complete separation of HbH and HbAlc on chromatogram ${ }^{3}$. The determination of HbA1c in previous studies was made by the Bio-Rad Variant ${ }^{\text {TM }}$ II Turbo Analyzer and is different from that in the present study ${ }^{3}$. We speculate that the discordantly high HbAlc is caused by the co-elution of Hb H and HbAlc in the HPLC chromatogram. In this case, other methods, such as capillary electrophoresis, might be considered to obtain accurate HbAlc results.

In addition to using other detection methods for HbAlc, GA is also an alternative choice ${ }^{7}$. GA is another commonly used indicator to evaluate the average blood glucose level at 2-3 weeks ${ }^{8}$, which has been shown to be unaffected by abnormal hemoglobin^{9}. In regions with a high prevalence of thalassemia, the role of GA must be emphasized in diabetes screening and blood glucose control evaluation ${ }^{7}$. However, there are a few notes when using GA. The method of GA determination is not standardized, and the reference value range varies among laboratories ${ }^{7}$. The detection method for GA should be confirmed to be accurate. In addition, GA is not suitable for patients complicated with abnormal albumin metabolism, such as nephrotic syndrome and cirrhosis ${ }^{8}$. In this case, blood glucose self-monitoring and dynamic blood glucose monitoring are better options ${ }^{10}$.

The patient had no symptoms, and hemoglobin was normal, but an increased red blood cell count, small cells with low pigmentation and high bilirubin showed some clues. Discordance of high HbAlc inconsistent with fasting blood glucose also provides important evidence for the diagnosis of α-thalassemia. When HbA1c is inconsistent with blood glucose, patients should be advised to undergo thalassemia and hemoglobinopathy screening by diabetologists/endocrinologists or primary care physicians to avoid a missed diagnosis of hematopathy.

ACKNOWLEDGMENTS

The authors thank Hengjian Huang (Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu,

China) for help with interpreting the laboratory results. This study was supported by Scientific and technological Achievements Transformation Fund of West China Hospital, Sichuan University (CGZH19013), Science and Technology Bureau of Sichuan Province (grant numbers: 2020YFS0099, 2021YJ0139, 2019YFS0306).

DISCLOSURE

The authors declare no conflict of interest.
Approval of the research protocol: N/A.
Informed consent: The study was carried out with the consent of the patient.
Registry and the registration no. of the study/trial: N/A.
Animal studies: N/A

REFERENCES

1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33: S62-S69.
2. Sacks DB, Arnold M, Bakris GL, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011; 34: e61-e99.
3. Xu A, Ji L, Chen W, et al. Effects of alpha-thalassemia on HbA(1c) measurement. J Clin Lab Anal 2016; 30: 1078-1080.
4. Strickland SW, Campbell ST, Little RR, et al. Recognition of rare hemoglobin variants by hemoglobin a(1c) measurement procedures. Clin Chim Acta 2018; 476: 67-74.
5. Yuan Y, Zhou X, Gao L, et al. Silent hemoglobin variant during capillary electrophoresis: a case report. J Diabetes Investig 2020; 11: 1014-1017.
6. Ji L, Yu J, Zhou Y, et al. Erroneous HbA1c measurements in the presence of beta-thalassemia and common Chinese hemoglobin variants. Clin Chem Lab Med 2015; 53: 14511458.
7. Zeng Y, He H, Zhou J, et al. The association and discordance between glycated hemoglobin A1c and glycated albumin, assessed using a blend of multiple linear regression and random forest regression. Clin Chim Acta 2020; 506: 44-49.
8. Zendjabil M. Glycated albumin. Clin Chim Acta 2020; 502: 240-244.
9. He D, Kuang W, Yang X, et al. Association of hemoglobin H (HbH) disease with hemoglobin $\mathrm{a}(1 \mathrm{c})$ and glycated albumin in diabetic and non-diabetic patients. Clin Chem Lab Med 2021; 59: 1127-1132.
10. Loh TP, Sethi SK, Wong MS, et al. Relationship between measured average glucose by continuous glucose monitor and $\mathrm{HbA1c}$ measured by three different routine laboratory methods. Clin Biochem 2015; 48: 514-518.

[^0]: Received 15 February 2022; revised 18 April 2022; accepted 25 April 2022

