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Abstract
Echoing many of the themes of the seminal work of Atkinson and Shiffrin (The Psychology of Learning andMotivation, 2; 89–195,
1968), this paper uses the feature model (Nairne,Memory&Cognition, 16, 343–352, 1988; Nairne,Memory&Cognition, 18; 251–
269, 1990; Neath & Nairne, Psychonomic Bulletin & Review, 2; 429–441, 1995) to account for performance in working-memory
tasks. The Brooks verbal and visuo-spatial matrix tasks were performed alone, with articulatory suppression, or with a spatial
suppression task; the results produced the expected dissociation. We used approximate Bayesian computation techniques to fit the
feature model to the data and showed that the similarity-based interference process implemented in the model accounted for the data
patterns well. We then fit the model to data from Guérard and Tremblay (2008, Journal of Experimental Psychology: Learning,
Memory, and Cognition, 34, 556–569); the latter study produced a double dissociation while calling upon more typical order
reconstruction tasks. Again, the model performed well. The findings show that a double dissociation can be modelled without
appealing to separate systems for verbal and visuo-spatial processing. The latter findings are significant as the feature model had not
been used to model this type of dissociation before; importantly, this is also the first time the model is quantitatively fit to data. For
the demonstration provided here, modularity was unnecessary if two assumptions were made: (1) the main difference between
spatial and verbal working-memory tasks is the features that are encoded; (2) secondary tasks selectively interfere with primary tasks
to the extent that both tasks involve similar features. It is argued that a feature-based view is more parsimonious (see Morey, 2018,
Psychological Bulletin, 144, 849–883) and offers flexibility in accounting for multiple benchmark effects in the field.
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This paper presents new data examining interference effects in
working-memory tasks for visuo-spatial and verbal material.
Interference effects were produced by using classic dual-task
techniques where participants encode one stream of stimuli
while simultaneously completing an interference task (e.g.
continuously mouthing the words Btea time, tea time, tea
time^ or tapping squares in a repeated pattern).

We argue that the results in this article can be handled with
a feature-based model. There are many feature-based models,

including those that grew from the Atkinson and Shiffrin
(1968) chapter, such as SAM (search of associative memory;
Raaijmakers & Shiffrin, 1980) and REM (retrieving
effectively from memory; Shiffrin & Steyvers, 1997). We de-
cided to use a feature model (FM hereafter; Nairne, 1988,
1990; Neath, 1999; Neath & Nairne, 1995) which is from
the short-term memory literature and with which we were
more familiar. The FM successfully accounts for numerous
benchmark effects in the verbal working-memory literature
through simulations that reproduce the relevant patterns.
Importantly, this paper is the first to quantitatively fit the FM
to data. The model is fit to the data of Experiment 1, and then
the generality of the approach is tested by using a similar set of
assumptions and parameters to model a more complex set of
findings (previously published by Guérard & Tremblay,
2008). For the first time, also, the FM is used to account for
performance in visuo-spatial and verbal tasks, in both single-
task and dual-task conditions. Central to the aims of the paper,
this is accomplished without calling upon separate visuo-
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spatial and verbal modules (e.g. the working-memory model;
Baddeley, 1986, 2012; Baddeley &Hitch, 1974). The absence
of domain-specific modules in our approach is worth
highlighting, as the dominant view in the working-memory
field proposes separate visuo-spatial and verbal processing
structures (see C. C. Morey, 2018, for a thorough discussion
of this point).

The ideas relied on here—as well as the general strategy
adopted—echo many of the themes and issues tackled by the
seminal paper by Atkinson and Shiffrin (1968). Let us mention
a few. As is well known, Atkinson and Shiffrin (1968) pro-
posed a memory model with three structural components: a
sensory register, a short-term store, and a long-term store.
Major sections in their paper focused on the interplay between
the short-term and long-term stores. The FM also proposes
separate short-term and long-term stores, with the short-term
store holding the cues used to probe the long-term store. In
addition, as in Atkinson and Shiffrin, there is a distinction
between the memory structures involved and the nature of
the experimental tasks: working-memory performance is as-
sumed to involve both stores, even if the experiments rely on
short-term or working-memory tasks. Further, the FM calls
upon more than one ‘copy’ or ‘trace’ of the to-be-
remembered information; it is assumed that studying an item
sets up a representation both in short-term and long-termmem-
ory, echoing similar proposals in Atkinson and Shiffrin. The
FM assumes that the presentation of an item creates a multi-
component ‘trace’; representations are thought of as vectors of
features that can vary in type and number; some of these rep-
resent the physical features of the presentation while others are
related to the features generated by, for example, the recogni-
tion or categorization of the item. In the words of Atkinson and
Shiffrin, BOur preference is to consider the trace as a multi-
component array of information (p. 102).^ As explained later,
this is a central dimension of the FM; it allows us to model the
experimental patterns examined here. Finally, Atkinson and
Shiffrin emphasized the importance of control processes, such
as rehearsal buffers (we return to this suggestion in the General
Discussion, when reviewing the findings and modelling
results).

There are some differences in assumptions and approach,
of course; these reflect the current preoccupations in working-
memory research, the knowledge that has accumulated in the
past decades, as well as other issues. For instance, although
decay from the short-term store was an important mechanism
in the work of Atkinson and Shiffrin (1968), in the FM, infor-
mation loss in the short-term store happens through retroactive
interference (as is other recent models in the field, e.g. Farrell
et al., 2016; Oberauer & Lin, 2016). Interference is similarity-
based in the FM while decay was attributed to capacity limits
in Atkinson and Shiffrin. Finally, the emphasis in our work
was to explain performance across verbal and visuo-spatial
tasks, whereas in Atkinson and Shiffrin (1968) the focus was

more on what they called the auditory-verbal-linguistic short-
term store.

Dissociations, coding, and working memory

Dissociations occupy a significant role in the development of
psychological models and theories of cognition (Baddeley,
2003; Dunn & Kirsner, 1988, 2003; Henson, 2006; C. C.
Morey, 2018). Two general dissociation types are more typi-
cally discussed. A single dissociation occurs when Factor A
selectively affects performance on a given task (e.g. it affects
Task 1 but has no effect on Task 2); a single dissociation also
occurs when Factor A has an effect on a task while Factor B
does not. Moreover, a double dissociation occurs when Factor
A affects performance on Task 1, but not on Task 2, while
Factor B produces the reverse pattern.

Double dissociations or multiple single dissociations are
frequently interpreted as indicating that multiple systems or
structures are supporting performance. For instance, dissocia-
tions have been called upon to argue in favour of a distinction
between short-term and long-term memory, episodic and se-
mantic memory, procedural and declarative memory, and im-
plicit and explicit memory (e.g. Norris, 2017; Schacter, 1987;
Squire, 1994). Moreover, dissociations in patterns of brain
activation are typically taken to imply that separate systems
are involved in the tasks producing said patterns (D’Esposito,
2007). However, these interpretations have been challenged
by other views, where, for example, a single system produces
the dissociations (Hintzman, 1984. 1986; Murdock, 1993), or
where a transfer-appropriate processing analysis can account
for the findings (Crowder, 1993; Roediger, Weldon, &
Challis, 1989). This is also true of differing activation patterns
uncovered, for example, within studies relying on fMRI
(Henson, 2006; Lewandowsky, Ecker, Farrell, & Brown,
2012; for a robust cri t ique of modularizat ion in
neuroscience, see Uttal, 2011). Hence, when interpreting dis-
sociations, alternative hypotheses to modularity are a possibil-
ity, but they are often overlooked.

In the working-memory field, the dominant model is the
working-memory model (Baddeley, 2012; Baddeley & Hitch,
1974). The model proposes separate short-term structures for
visuo-spatial and verbal information (i.e. domain-specific
mechanisms). In her recent review, C. C. Morey (2018) de-
scribed the model as Bone of the most influential theoretical
frameworks in cognitive psychology^ (p. 849); nevertheless,
she is very critical of said modular approach. C. C. Morey
(2018) reviews the data on both the experimental and neuro-
psychological dissociations that support the proposal and con-
cludes that the idea of distinct domain-based modules should
be reconsidered; she suggests that future theorizing should
focus on testing more parsimonious accounts that explain
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domain-specific interference without calling upon distinct
modules.

The work reported herein investigates one such account.
More specifically, we asked if the dissociations typically taken
to support different verbal and spatial working memory sys-
tems can be accounted for by assuming coding differences
between tasks (Guérard & Tremblay, 2008). To this aim, we
called upon the FM, a computational model developed to ac-
count for working memory phenomena.

With respect to short-term/working-memory models,
Crowder (1993) argued that one of the problems is that struc-
ture and coding are often confounded. Applying Crowder’s
logic to the working-memory approach of Baddeley and his
collaborators, it can be argued that there is a confound be-
tween verbal and visuo-spatial coding on the one hand, and
verbal and visuo-spatial memory modules on the other. If one
assumes this redundancy is not necessary, then it should be
possible to demonstrate that differences in coding are suffi-
cient to produce typical dissociations.

Guérard and Tremblay (2008) developed a similar argu-
ment. After reviewing the data relevant to the debate about
the modularity of working memory, they showed that a de-
tailed analysis of error patterns in immediate memory perfor-
mance supports more unitary views.Moreover, in their second
experiment they provided an example of a double dissocia-
tion. In this study, a spatial secondary task interfered with a
spatial primary task, while having a reduced effect on a verbal
task. Conversely, a verbal secondary task showed the reverse
pattern, as it had a negative impact on the verbal primary task,
while having no effect on the spatial primary task. The authors
argued that the complete set of data could be explained by a
unitary view if a similarity-based interference assumption is
adopted. The implication was that spatial primary and second-
ary tasks generate similar codes or features and hence interfere
with each other; a similar argument can be applied to the
verbal tasks. As the features involved in the spatial and verbal
tasks are less similar, they would not interfere with each other
as much.

In the present paper, we completed a systematic examina-
tion of these ideas by fitting the FM to data from our own dual-
task experiment as well as to the data provided byGuérard and
Tremblay (2008). The FMwas selected as the similarity-based
interference on which the model relies seemed to suggest it
would be well-fitted to our aims. Furthermore, the FM is a
prominent model in the working memory literature. The fa-
miliarity of the authors with the model also played a role in the
choice. Other working-memory models that incorporate
feature-based representations and similarity-based interfer-
ence (e.g. C-SOB; Lewandowsky & Farrell, 2008) could per-
haps also account for the findings. Interestingly, models that
derived from the original Atkinson and Shiffrin (1968) paper,
such as SAM (search of associative memory; Raaijmakers &
Shiffrin, 1980) could also no doubt handle general

dissociations of the type described here, provided a means of
encoding and retrieving serial order was added to the propos-
al. The idea that more than one feature-based model could
handle verbal/visuo-spatial dissociations strengthens the gen-
eral argument made here: It is possible to account for complex
dissociation patterns without proposing separate systems for
visual and verbal short-term memory.

The feature model

In the FM, items are represented by two types of features. On
one hand, encoding is thought to generate modality-dependent
features, related to physical presentation conditions such as
font size or voice quality. On the other hand, items also pro-
duce modality-independent features, generated by internal
processes of categorization and identification. Furthermore,
within the FM, items simultaneously generate traces in
short-term and long-term memory (called primary and sec-
ondary memory). In both cases, items are represented by vec-
tors of features, with each (randomly generated) feature typi-
cally taking on a value of +1 or −1.

Traces in primary memory are subject to degradation
through overwriting by the following item. This retroactive
interference process is similarity-based: If Feature 5 of Item
« n » is identical to Feature 5 of Item « n − 1 », then this feature
of Item « n − 1 » will be overwritten (set to 0). In contrast,
representations in long-term memory are assumed to remain
intact.

At the point of recall, the correspondence between each
degraded primary memory trace and the set of relevant traces
in secondary memory is computed. The secondary memory
trace with the highest relative similarity to the primary mem-
ory trace being considered has the highest probability of being
recalled. The selection of the secondary memory trace to recall
is based on a similarity-based choice rule (cf. Luce, 1963), as
follows:

Ps SMj j PMið Þ ¼ s i; jð Þ
∑s i; kð Þ ;

where the conditional probability that the secondary memory
trace SMj will be sampled, given the primary memory trace
PMi, depends on a similarity ratio; s(i, j) is the computed
similarity between PMi and SMj, and Σs(i, k) is the summed
similarity between PMi and all relevant secondary memory
traces.

Similarity is related to the feature-to-feature correspon-
dence between primary and secondary traces. This relation-
ship calls upon a calculation of the psychological distance
between the two traces, based on a function described by
Shepard (1987):
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s i; jð Þ ¼ e−dij

This distance, dij, is simply calculated by adding the num-
ber of mismatched features,M, and dividing by the number of
compared features, N, as in:

dij ¼ a
N
∑bkMk ;

where a is a scaling constant, and bk is an attention bias pa-
rameter that is set to 1 for all simulations here (and hence has
no influence on results). Output interference is included in the
model, by assuming recovery from the SM set is related to
prior recall of the item, in the following manner:

Pr ¼ e−cr;

where « c » is a scaling constant and « r » is the number of
times a sampled item has already been recalled.

The FM also has a mechanism to account for order memory
(Neath, 1999). To achieve this, aspects of Estes’s (1972, 1997)
perturbation model were incorporated into the model. The
suggestion was that item positions were encoded in primary
memory and that positional information drifts (or perturbs)
along the positional dimension as time intervals pass. The
probability that an item will move along the positional dimen-
sion is given by θ, which is typically set to .05 and not con-
sidered a free parameter. For simplicity, it is assumed that
perturbations are equally likely in either direction (but see
Poirier, Saint-Aubin, Mair, Tehan, & Tolan, 2015). It is further
assumed that an item cannot drift beyond the start and end
positions (e.g. an item cannot drift beyond the first or last
position). Specifically, the probability that an item, I, will move
to a position, p, during the next interval, t + 1, is given by

Ip;tþ1 ¼ 1−θð ÞIp;t þ θ
2

� �
Ip;1þt þ θ

2

� �
Ip;1þt

For boundary items, slightly modified equations are used.
For Position 1, the first equation below is applied whereas for
the last position, n, the second equation is employed:

I1;tþ1 ¼ 1−
θ

2

� �
I1;t þ θ

2

� �
I2þt

I n;tþ1 ¼ 1−
θ
2

� �
In;t þ θ

2

� �
In−1;t

Incorporating order adds a free parameter to the FM; this is
π, the number of opportunities to perturb which, for each item,
is equivalent (for simplicity). With the above, the FM gener-
ates positional uncertainty distributions; these describe the
probability that an item was initially encoded as being in each
serial position (i.e. what are the chances that the first item
presented was encoded as being in Position 1, 2, 3, . . . n).
At the point of retrieval, the item that has the highest proba-
bility of being in the first position will be used first; then, the
item with the greatest probability of being in the second

position will be used second, and so on. As movement in
either direction is possible (and random), most will not drift
far from their original position, as is typically observed in the
data (e.g. Nairne, 1991). Hence, to summarize, this view of
order encoding implies that order errors occur due to a gradual
loss of precision in positional coding. The loss of precision
described by the perturbation equations produces the same
pattern of position error gradients as observed in empirical
data (e.g. Estes, 1972, 1997; Nairne, 1991); order information
is encoded and preserved in primary memory, but order cues
lose precision.

Accounting for working-memory findings

Asmentioned previously, the FMmodel accounts for many of
the benchmark effects in the short-term memory literature. To
illustrate how the model operates, a few of these effects, as
well as the way the FM handles them, are considered below.

The inception of the FM was motivated by an attempt to
account for the modality effect, observed in immediate serial
recall (Corballis, 1966). The modality effect refers to the fact
that recall is superior when items are presented aurally as
opposed to visually. In fact, the difference is attributable to a
larger recency effect for auditory items (Conrad & Hull, 1968;
Murray, 1966; Nairne, 1988). To account for this effect, the
FM assumes that auditory traces have a greater number of
modality dependent features than traces generated through
visual presentation. Nairne (1990) noted that this assumption
is consistent with the literature indicating that interference
based on visual characteristics is not typically found within
immediate serial recall performance. He also noted that the
evidence for speech-like coding in primary memory with vi-
sual presentation is extensive and suggests that, without audi-
tory cues, we tend to rely on modality independent (inner
voice) features to represent items. Hence, in the FM, it is the
greater number of modality-dependent features, associated
with auditory presentation, that leads to an auditory advantage
for the recency position. This occurs because the model posits
that the last item of a list is followed by internally generated
activity, which overwrites modality-independent features
while leaving modality-dependent features intact. The recall
of the last item from an aurally presented list will benefit from
these intact modality-dependent features. The reason for this is
that the intact features serve to increase the correspondence
between the degraded primary memory trace of the last item
and its secondary memory counterpart. Conversely, because
visually based traces do not have many modality dependent
features, there is a smaller recency effect for these items.

A related effect is the suffix effect (Dallett, 1965). The latter
refers to the detrimental effect of an auditory item that follows
an aurally presented list. If, for example, the word « recall » is
heard after the last item, the recency advantage or modality
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effect is much reduced. The same auditory suffix does not
affect the recall of visually presented items. The FM easily
accounts for this effect by assuming the suffix overwrites the
modality dependent features of the last item, obviating the
advantage attributed to these features. Because the recall of
visually presented items relies on modality independent
features—few modality-dependent features being encoded—
the suffix will not have a significant effect on performance in
this case.

Another benchmark effect in the working memory litera-
ture is the phonemic similarity effect; there is a decrement in
performance observed when to-be-recalled items share pho-
nemic features (Conrad, 1964). Again, because the FM as-
sumes a similarity-based interference mechanism, it handles
this effect easily. Phonemically similar lists are associated
with a decrease in performance because relative to phonemi-
cally distinct lists, there will be more overwriting for these
items.

Finally, as a last example of the FM’s operation, consider
the effect of articulatory suppression. When a participant en-
gages in articulatory suppression, he or she simply repeats an
irrelevant word or syllables (e.g. Ba-b-c-d-a-b-c-d^) during list
presentation. Articulatory suppression reduces immediate se-
rial recall performance considerably, and it interacts with the
previously discussed effects in complex ways. The FM ac-
counts for the influence of this dual task, as well as its inter-
actions with the modality, suffix, and phonemic similarity ef-
fects. This is achieved through the feature adoption assump-
tion (Neath, 1999). In feature adoption, the repeated produc-
tion of irrelevant sounds produces similar features that are
incorporated into each item’s traces. The net effect of this
process is to increase the similarity of the items in the sup-
pressed condition, which reduces performance.

Experiment 1

Experiment 1 investigates the effects of spatial suppression
and articulatory suppression on the visuo-spatial and verbal-
control versions of the Brooks matrix task (Brooks, 1967).
Spatial suppression is a visuo-spatial analog to articulatory
suppression, and there is evidence showing it selectively in-
fluences performance of visuo-spatial tasks (Borst, Niven, &
Logie 2012; Farmer, Berman, & Fletcher, 1986; Logie, 1995).
The predicted pattern was a single dissociation. We expected
that spatial suppression would disrupt the visuo-spatial task,
while having little or no effect the verbal version.With respect
to articulatory suppression, because the material for both tasks
was presented verbally, we expected an effect in both cases.
We included a 10-second delay after the presentation of the to-
be-recalled items; the rationale was that this would increase
the potential impact of the secondary tasks in the relevant

conditions. Pilot testing was used to adjust list length and
performance levels.

Method

Participants Forty-eight participants (34 women, 14 men)
completed the experiment; their mean age was 21.4 years
(range: 17–46). Half of the participants were assigned to the
visuo-spatial version of the Brooks matrix task and the other
half to the verbal version. They were volunteers (psychology
undergraduates), and none had participated in this type of
experiment before.

Tasks and materials–Primary tasks Stimuli presentation was
controlled by a computer running a bespoke program devel-
oped with E-Prime (Psychology Software Tools, Inc., Version
2). In the visuo-spatial version of the Brooks matrix task,
participants were to visualize a 4 × 4 matrix. To support this
visualization, a 4 × 4 matrix was presented on screen for the
first 3 s of each trial; it was replaced by a white screen and the
auditory instructions then started. There were practice trials
described in the procedure below. The second square of the
second row was designated as the starting square. On each
trial, participants were to imagine a path within the 4 × 4 grid
based on eight aurally presented sentences, as in the following
example: BIn the starting square, put a 1; in the next square to
the right put a 2; in the next square down put a 3; in the next
square to the right put a 4; in the next square up put a 5; in the
next square left put a 6; in the next square to the up put a 7, in
the next square left put an 8^. As the first sentence is always
the same, the number of items to remember was seven. Each
sequence or path contained one cross-over or contact point,
that is, if one drew a line following the described path, one of
the squares would be used twice; this was done to make the
series of approximately comparable difficulty. At the point of
recall, participants were to say aloud, in strict serial order, the
words describing the correct path around the matrix (right,
left, up, down; because participants were French speaking,
the words used were droite, gauche, haut, bas). In the control
verbal version of the task, each trial comprised six sentences
(five items to recall) with precisely the same structure as
above, except that the words Bright, left, up, and down^ were
replaced by the nonspatial adjectives Bquick, slow, good, and
false^ (actual words: vite, lent, bon, faux). The verbal version
of the Brooks task is the most difficult one (Brooks, 1967).
Hence, the number of sentences for this material was reduced
to equate performance levels on both tasks and avoid floor/
ceiling effects. At recall, the target words were again said
aloud, in their order of presentation. Responses were digitally
recorded and later scored. The sentences were developed
using the text-to-speech website Oddcast (http://www.
oddcast.com/technologies/tts/) using Leo’s voice. They were
adapted using the SoundTap (NCH Software, Version 3.04)
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and Audacity (Audacity, 2.1.0) packages so that each sentence
was presented within a 3-second envelope; this was done by
adding silence to any sentence that lasted less than 3 seconds
(no sentence lasted more than 3 seconds). Hence, sentence
presentation proceeded at a rhythm of one sentence every 3
seconds.

Secondary tasks For the spatial suppression task (Farmer
et al., 1986), participants used their dominant hand to sequen-
tially tap four 5 cm × 5 cm wooden blocks, placed in a square
arrangement, and hidden from view (see Fig. 1a–b); tapping
was counterclockwise at a rhythm of approximately 2 taps per
second. A camera at the back of the apparatus filmed the
tapping and participants were aware of this. In the articulatory
suppression condition, participants repeated the word
mathématiques continuously, producing about three utter-
ances every 2 seconds. In the secondary task conditions, spa-
tial and articulatory suppression continued throughout the tri-
al, which included a 10-second interval following the presen-
tation of the sentences.

Design and procedure The forty-eight participants were ran-
domly assigned to one of two experimental groups. Group 1
was tested with the verbal material while Group 2 was tested
with the visuo-spatial matrix task.

Participants were individually tested in a session of approx-
imately 1 hour. Each session started with familiarization trials.
For those assigned to the visuo-spatial matrix task, there was a
two-part familiarization procedure. The first part involved five
typical trials. However, instead of attempting to recall the
target direction words, they were asked to draw the path that
the sentences described within a matrix drawn on a sheet of

paper; the starting square was marked (second square of the
second row). This was done to encourage participants to use a
visuo-spatial strategy to encode the aurally presented instruc-
tions during the experimental trials. For the second part of the
familiarization procedure, four standard single-task trials were
presented. For those participants taking part in the verbal ver-
sion of the task, the familiarization procedure involved com-
pleting four standard trials. Participants then completed three
blocks of 14 trials; one block involved the primary task on its
own, one block comprised the primary task with spatial sup-
pression and a further block was completed with articulatory
suppression. The first trial of each block was a further practice
trial. The order of the blocks was counterbalanced using a
Latin square.

Each trial began with a 3-second visual warning signal
(BAttention^). For the visuo-spatial group, this appeared at
the top centre of the screen and was accompanied by a 4 × 4
matrix in the centre of the screen; the matrix was 19.5 cm high
× 17 cm wide. For the verbal group, the warning signal ap-
peared in its own in the centre of the screen. In the dual-task
conditions, participants began the suppression tasks as soon as
the visual warning signal appeared. After 3 seconds, a blank
screen appeared, and the primary task sentences were heard
through headphones. A 10-second interval then followed; in
dual-task trials, participants continued the suppression task
throughout this interval. The end of the interval was marked
by the appearance of 3 question marks B???^ in the centre of
the screen; participants then verbally recalled the target words.
If they forgot one of the words, they were to say Bpass^ (in
French passe). Participants could not backtrack to change a
response. Once recall was over, pressing the space bar started
the next trial.

Fig. 1 Apparatus used for the spatial tapping task (a) seen from the participant’s perspective and (b) seen from the back and the perspective of the camera
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Results

The main performance measure was the number of target
words correctly recalled in their studied serial position.
Figure 2 presents the means for each condition of the visuo-
spatial and the verbal tasks. As expected, both articulatory and
spatial suppression had a detrimental effect on the visuo-
spatial version of the Brooks matrix task, while in the case
of the verbal version, there appears to be a smaller effect of
spatial suppression and a more detrimental impact of articula-
tory suppression.

The data from each task was analysed separately, as serial
position was included as a factor and each task had a different
number of items per list. For the visuo-spatial task, a 3 (con-
dition: single task, articulatory suppression and spatial sup-
pression) × 7 (serial position) repeated-measures ANOVA
produced a significant main effect of condition, F(2, 46) =
12.54, η2p = .35, p < .001, serial position, F(6, 138) = 31.25,
η2p = .58, p < .001, and a significant interaction, F(12, 276) =
5.27, η2p = .19, p < .001. Planned contrasts revealed that recall
was significantly lower under spatial suppression than in the
control condition at all serial positions but the first. However,

the detrimental effect of articulatory suppression was limited
to the last three serial positions, and spatial suppression was
more detrimental than articulatory suppression on the last two
serial positions.

For the verbal version of the task, a 3 (condition) × 5 (serial
position) repeated-measures ANOVA revealed a main effect
of condition, F(2, 46) = 24.04, η2p = .51, p < .001, and of serial
position, F(4, 92) = 12.80, η2p = .36, p < .001. The two-way
interaction did not reach significance, F < 1. Tukey (HSD)
post hoc comparisons indicated that both spatial and articula-
tory suppression significantly depressed performance; articu-
latory suppression had a more detrimental effect than spatial
suppression on recall.

Discussion

In this experiment, we expected that both spatial and articula-
tory suppression would hinder performance of the Brooks
visuo-spatial matrix task; spatial suppression was predicted
to have an effect because it has spatial requirements, which
are thought to also be involved in the primary task.
Articulatory suppression was expected to also have an impact

Fig. 2 Proportion of correct recall for the Brooks verbal (left panel) and
spatial (right panel) matrices as a function of condition (control, spatial
suppression, and articulatory suppression) and serial position. Error bars

represent 95% within-participant confidence intervals computed accord-
ing to R. D. Morey’s (2008) procedure
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as the to-be-remembered material was verbally presented to
participants. With respect to the verbal version of the Brooks
matrices, a selective effect of articulatory suppression was
expected with little or no effect of spatial suppression; the
results did show an effect of spatial suppression albeit a sig-
nificantly weaker one. Although the pattern is not character-
istic of a perfect single dissociation, it generally conforms to
the main predictions put forward at the outset: both secondary
tasks affect the visuo-spatial primary task in a similar fashion
while articulatory suppression has more impact than spatial
suppression on the verbal version of the primary task. The
question we asked was if this reasonably complex set of re-
sults could be modelled by assuming that secondary tasks
have different levels of similarity (in features) with the two
primary tasks.

Modelling results

Our modelling aims were twofold; firstly, we wished to see
whether the FM can provide a good account of the data. In
previous work, the model was assessed by looking for quali-
tative similarity between data and simulations (e.g. Neath,
2000). While this approach can provide some evidence for a
particular model, it falls short of the state of the art in model
evaluation (Farrell & Lewandowsky 2018). Here, we assessed
model performance by directly fitting the model as outlined
below. As far as we are aware, this is the first attempt to
quantitatively fit the FM to data.

Secondly, we sought to use the model to provide evidence
for dissociation in the data. To do this, we compared a version
of the FM which allowed for dissociations with one that did
not. By computing a Bayes factor for the ‘full’ version of the
model over the restricted one, we can provide an alternative
measure of the evidence for a dissociation.

General modelling procedures

Model fitting for both experiments was done using approxi-
mate Bayesian computation (ABC; see Marin, Pudlom,
Robert, & Ryder, 2012; Turner & Van Zandt, 2012, for a
review), using a version of sequential Monte Carlo sampling
known as partial rejection control (Sisson, Fan, & Tanaka,
2007), hereafter referred to as ABC-PRC. Full details are giv-
en in the Appendix. Our approach was to fit the group data (as
opposed to individual participants); however, all data from a
given experiment was fit at once, which is more demanding
for the model than fitting each condition, since some param-
eters may be forced to take the same values across conditions.

To accommodate these results with the FM, we maintained
as many of the typical settings as possible (e.g. Neath &
Nairne, 1995); the aim was to use a version of the model that
continues to account for multiple experimental phenomena
while also accounting for the current pattern of results. Both

articulatory suppression and spatial suppression were taken to
affect the primary memory traces through feature adoption.
The relevant parameter in themodel was the number of similar
features, which is an estimate of how many modality indepen-
dent features are set to +1 as a result of the suppression task,
relative to the control condition. This was allowed to vary in
the model fits, although we imposed certain constraints on the
number of similar features in each condition, which are de-
scribed in more detail below. Priors for the numbers of similar
features were taken to be 20 * Beta (2, 2), reflecting a weak
expectation that feature adoption will tend to affect some but
not all features.

Feature adoption refers to the idea that information from the
dual task will tend to overwrite information from the main
(recall) task. It seems reasonable that this process will be more
effective when the dual task and the main task are similar. We
implemented this by including a parameter that increases the
number of similar features in caseswhere the dual andmain tasks
are similar, that is, when the main task was spatial recall and the
dual task was tapping. This parameter essentially controls the
degree of dissociation—if it is zero, then dual tasks are equally
disruptive regardless of the nature of the main task, while large
values indicate a much greater degree of disruption when the
modality matches that of the main task. The prior for this param-
eter was taken to be uniform on the interval [0, 1], representing
no prior assumption about the presence of dissociation.

The other parameters that could vary were the distance
scaling functions, which reflect the overall task difficulty.
These were allowed to vary with the type of stimuli (verbal,
visuo-spatial) but did not vary between conditions—so they
can be thought of as reflecting any difficulty difference be-
tween primary tasks. Priors for the distance scaling functions
were taken to be normal distributions with a mean of 20 and a
standard deviation of 10.

As well as the main version of the FM, we also fit a ‘null’
version where the parameter controlling the degree of disso-
ciation was fixed to be zero. This allows us to assess the
strength of evidence for dissociations by performing a model
comparison between the regular and null models.

To summarize, we assume different suppression tasks impact
the memory vectors of the relevant/similar primary task in the
same basic way. The fitting process determines which values
produced the best fits across all conditions and positions. Each
type of suppression task is assumed to have a different impact on
the memory vectors, and this is generally reduced when the
primary and dual tasks are dissimilar. The data and model code
used in our analysis are available on the Open Science
Framework project page (https://osf.io/6sae4/).

Fitting for Experiment 1

First, for all conditions, we made the simplifying assumption
that both tasks relied on traces holding the same number of

610 Mem Cogn (2019) 47:603–618

https://osf.io/6sae4/


modality dependent and independent features; this seemed
justified as both tasks called upon the auditory modality and
involved items that did not vary wildly in terms of complexity.
Hence, for this first set of simulations, the only difference
between the representations used for each primary task was
in the number of items. As in the experiment, the Bverbal
trials^ held five items, whereas the Bspatial trials^ had seven.
We made no adjustments to the basic model’s operation to
reflect the interval added to the primary tasks, although this
was expected to have an impact on the recall of items in the
recency positions (see Fig. 3).

We assumed that the two dual tasks tended to produce
feature adoption at different rates FTapping, FSuppression and that
feature adoption was enhanced by an additive factor
FDissociation when dual and main tasks were similar. Values of
FDissociation greater than zero tend to produce a dissociation,
where, for example, articulatory suppression has a greater ef-
fect on verbal serial recall than on spatial recall. Together with
the two attention parameters for the verbal and spatial condi-
tions, av, as, this gave a total of five parameters. We also fit a
null model where FDissociation was fixed to be zero. Further
details of the fitting are given in the Appendix.

Figure 3 presents the results of the model fitting for the full
model. The figure reproduces the serial position curve data
from the experiment, together with some simulated data gen-
erated using the means of the posteriors for the model

parameters. This simulated data also have error bars here since
they are generated from a finite number of simulations (error
bars are 95% HDIs estimated by bootstrapping).

As mentioned above, all six curves were modelled simul-
taneously with five free parameters. The final estimates for
these parameters were as follows: distance parameter for the
spatial task: 30.62 (95% HDI [22.20, 42.41]), distance param-
eter for the verbal stimuli: 25.51 (95% HDI [13.96, 31.74]),
number of matching features induced by tapping : 9.14 (95%
HDI [1.19, 18.00]), number of matching features induced by
articulatory suppression: 10.59 (95% HDI [2.06, 18.58]),
number of extra similar features when main and dual tasks
match: 10.90 (95% HDI [0.55, 19.9]).

Overall, the fits appear to be reasonable and capture the
main trends in the data. Some misfitting is evident, particular-
ly in the spatial tapping case, but this data set is rather unusual
in having no evidence for a recency effect; indeed, the final
item is by far the least recalled. One notable issue is that the
posteriors for the parameters are very broad, suggesting the
model struggles to distinguish the effect of different values.
Since the fits are fairly good, it is likely that a different choice
of parameterization would produce tighter parameter esti-
mates, but we did not explore this.

We can use a model comparison between the full and null
models to assess the evidence for dissociations in this data.
Using the same values of the ABC-PRC parameters as used in

Fig. 3 Data and model fits for each serial position and each condition. Error bars on data are ±2 SE, error bars on fits are estimates of 95% HDIs
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the main fits produced a Bayes Factor of 19.0 in favour of the
full model. This is strong evidence for the superiority of the
full model over the null one, and by extension, for the pres-
ence of a dissociation in this data.

In order to establish that the assumptions of the previous
simulations could give a satisfactory approximation of another
data set, a further set of model fits was obtained. The data were
taken from the second experiment of Guérard and Tremblay
(2008). In Experiment 2, participants completed a verbal order
reconstruction task on half trials and a spatial order reconstruc-
tion task on the other half. In the verbal reconstruction task,
seven words drawn from a closed pool of nine words were
sequentially presented in the centre of a screen. At recall, all
nine words reappeared simultaneously on the screen and par-
ticipants were required to click on the seven studied items in
the correct order. If they forgot an item, then they were to click
on a question mark at the right of the screen. In the spatial
order reconstruction task, on each trial seven dots were se-
quentially presented at various locations on the screen. The
dots were randomly selected from a closed pool of nine dot
locations. The recall procedure was the same as for the verbal
task. One group of participants completed the verbal and spa-
tial tasks alone and with articulatory suppression. In the artic-
ulatory suppression condition, participants were required to
continuously repeat aloud the letters A-B-C-D during item
presentation at the pace of two letters per second. The other
group of participants completed the verbal and spatial tasks
alone and with manual tapping. The tapping requirement and
apparatus were the same as used in our experiment.

Results of Guérard and Tremblay (2008) are presented in
Fig. 4. There was a significant detrimental effect of articula-
tory suppression on the verbal order reconstruction task (p <
.0001), but not on the spatial one (p = .51). However, a sig-
nificant detrimental effect of manual tapping was reported
with both the verbal (p = .001) and the spatial order recon-
struction tasks (p < .0001).

Fitting for Experiment 2 of Guérard and Tremblay
(2008)

Model fitting was conducted in a similar way to Experiment 1
using ABC-PRC. However, since presentation was visual, we
assumed two modality-dependent features and 20 modality-
independent features, the typical setting for the FM (and the
settings that have allowed the model to reproduce numerous
benchmark effects). All conditions had seven items in this
experiment. We made the decision to fit all eight conditions
in the experiment at once, and to ignore the fact that some
conditions are repeated. In a similar way to Experiment 1,
we only allowed the distance scaling parameters and the num-
ber of similar features to vary.

We assumed that the two dual tasks tended to produce
feature adoption at different rates FTapping, FSuppression and that

feature adoption was enhanced by an additive factor
FDissociation when dual and main tasks were similar. Values of
FDissociation greater than zero tend to produce a dissociation,
where, for example, articulatory suppression has a greater ef-
fect on verbal serial recall than on spatial recall. Together with
the two attention parameters for the verbal and spatial condi-
tions, av, as, this gave a total of five parameters. We also fit a
null model where FDissociation was fixed to be zero.

Figures 5 presents the results of the model fitting for the full
model. In a similar way to Fig. 3 we reproduce the serial
position curve data from the experiment, together with some
simulated data generated using the means of the posteriors for
the model parameters. This simulated data also have error bars
here since they are generated from a finite number of simula-
tions (error bars are 95% HDIs estimated by bootstrapping).

The final estimates for the parameters were as follows:
distance parameter for the spatial task: 29.60 (95% HDI
[20.43, 42.36]), distance parameter for the verbal stimuli:
28.56 (95%HDI [18.81, 41.09]), number of matching features
induced by tapping : 3.54 (95% HDI [0.20, 8.28]), number of
matching features induced by articulatory suppression: 7.28
(95% HDI [1.80, 11.73]), number of extra similar features
when main and dual tasks match: 7.57 (95% HDI [3.49,
12.43]).

Overall, the fits appear to be reasonable and capture the
main trends in the data. The posteriors for the parameters are
much tighter here, suggesting the model is finding it easier to
distinguish the effects of different parameters. Somemisfitting
is evident, particularly for the verbal control conditions and
the verbal suppression condition. Misfitting in the verbal con-
trol conditions is likely a consequence of the fact the model
treats these conditions as identical, but there is some natural
variability in the data, as there were two groups, each com-
pleting a verbal control condition. Misfitting in the verbal
suppression condition is more interesting, and a consequence
of the fact the FM struggles to fit serial position curves with a
steep gradient.

We can use a model comparison between the full and null
models in the same way as in Experiment 1 to assess the
evidence for dissociations in this data. Using the same values
of the ABC-PRC parameters as were used in the main fits
produced a Bayes factor of >99 in favour of the full model.
This is strong evidence for the superiority of the full model of
the null one, and, by extension, for the presence of a dissoci-
ation in this data.

General discussion

Double dissociations are often cited as evidence of separate
systems (e.g. Norris, 2017; Schacter, 1987; Squire, 1994).
Here, we asked if dissociations classically associated with
the verbal and visuo-spatial components of the working-
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memory model (Baddeley, 2012; Baddeley & Hitch, 1974)
can be accounted for within an alternative view that does not
include dedicated verbal and visuo-spatial modules.

Our first experiment called upon the classic tasks devel-
oped by Brooks (1967). These verbal and visuo-spatial tasks
were performed alone, in combination with a spatial

Fig. 4 Proportion of correct recall as a function of serial position in the
verbal and spatial serial order reconstruction tasks for the verbal
interference group in the left panel and the spatial interference group in

the right panel. CTL = control condition without suppression; AS =
articulatory suppression; Tapping = manual tapping

Fig. 5 Data and model fits for each serial position and each condition. Error bars on data are ±2 SE, error bars on fits are estimates of 95% HDIs

Mem Cogn (2019) 47:603–618 613



suppression task or in combination with articulatory suppres-
sion. As expected, a single dissociation was observed. The
spatial suppression task only affected the nonverbal version
of the task while articulatory suppression influenced both pri-
mary tasks. The FM (Nairne, 1988, 1990; Neath, 1999; Neath
& Nairne, 1995; Neath & Surprenant, 2007) was used to sim-
ulate these results. By assuming that the main difference be-
tween tasks (both primary and secondary) was in the encoded
features, psychologically relevant changes to a few parameters
generated a reasonable fit to the data. In a second series of
simulations, the model was used to fit a more complex data
pattern, involving a double dissociation, taken from Guérard
and Tremblay (2008). To fit this data with the FM, we used the
same set of parameters with one principled change to ac-
knowledge the specific conditions tested.

The implications of the current work are straightforward;
the type dissociations typically taken to support separate sys-
tems in the working memory literature can be accounted for
by assuming differences in the features encoded for verbal and
visuo-spatial materials, without assuming discrete structures.
In other words, we called upon a computational model to
show that variation in feature similarity, along with interfer-
ence, are sufficient to produce single and double dissociations.

These results are generally in line with other observations
that have insisted on the correspondence between memory of
verbal and visuo-spatial materials. For instance, several au-
thors have suggested that one of the central functions of
short-term memory is related to serial order—and there is
growing evidence that the mechanisms for this capacity apply
across the verbal and visuo-spatial domains (Hurlstone, Hitch,
& Baddeley, 2014; Majerus, 2009; C. C. Morey, 2018). In
another example, Guérard, Neath, Surprenant, and Tremblay
(2010) showed how distinctiveness effects in the spatial do-
main paralleled those reported with verbal material. These
types of findings have led to the proposal of a unitary view
of working memory—that is, one that does not include mo-
dality specific structures or modules (e.g. Macken, Tremblay,
Alford, & Jones, 1999; Zimmer, 2009).

Control processes

In the introduction, we mentioned the control processes
highlighted in the original Atkinson and Shiffrin (1968) paper.
The importance of the latter processes was significant in their
framework. For instance, one section of their paper examined
control processes involved in encoding; they offered the fol-
lowing: BIt should be evident that there is a close relationship
between the short- and long-term store. In general, informa-
tion entering STS comes directly from LTS and only indirectly
from the sensory register. For example, a visually presented
word cannot be entered into STS as an auditory-verbal unit
until a long-term search and match has identified the verbal
representation of the visual image^ (p. 115). We would like to

argue that further work on control processes, in the sense of
Atkinson and Shiffrin, could increase the power and flexibility
of theoretical proposals, that is, their capacity to account for a
variety of tasks as well as detailed patterns of results.

Consider the FM. Although the model can provide an ex-
planatory framework for a sizable body of findings in the
working-memory literature, it is a system focused on retrieval.
Even simple tasks such as remembering a phone number or
mental addition are likely to require dynamic processing not
encompassed by the FM. As Atkinson and Shiffrin (1968)
recognized, many tasks supported by short-term memory re-
quire flexible, task-related, control processes. To illustrate, let
us consider the coding process potentially needed to perform
the Brooksmatrix tasks used here. In the visuo-spatial version,
participants heard sentences that led them through an imag-
ined path through a matrix (BIn the starting square, put a 1, in
the next square to the right put a 2, etc.^). Recall involved
saying the words that described said path aloud (e.g. Bright^,
Bdown^, etc.). To perform this task, a coding control process
must transform the auditory-verbal content to a visuo-spatial
representation. Note that the items are presented in the audi-
tory modality, but their content is modality independent (i.e.
verbal instructions could be presented in the visual or auditory
modality). The task facing the participants requires the devel-
opment of a visuo-spatial representation—that is, a path with-
in an imagined matrix. The FM assumes these operations take
place and generate modality independent features; however,
the model is silent with respect to how the necessary transla-
tion occurs. The same is true for the translation of visually
presented words into categorized, meaning-laden, verbal-
conceptual content. As in Atkinson and Shiffrin (1968), the
suggestion here is that control processes accomplish this type
of operation. To summarize, control processes could shed light
on how features are generated and provide the flexibility nec-
essary to generalize feature-based models to a wider variety of
tasks—some of these control processes might equate to the
modules originally proposed in the working-memory model
(Baddeley, 2012; Baddeley & Hitch, 1974).

Feature-based view relative to other proposals

An important question is what is achieved by shifting the
focus from separate systems to a feature-based account. At a
fundamental level, one can first ask if there are significant
differences between these two approaches—after all, we know
there are separate systems for the perception of auditory and
visual stimuli, which must produce different features.
Therefore, at some level, there are separate systems. Could
the modular view and the feature-based view be more similar
than they appear? These issues need to be carefully unpacked.

One point of import was alluded to earlier in the discussion.
Although we know there are different systems for perceptual
encoding, these modality differences are not the same as
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domain difference. In other words, differences between mo-
dalities (auditory/visual) do not equate to differences in verbal
and visuo-spatial representations. Verbal and visuo-spatial in-
formation can be presented in more than one modality—that
is, we can identify the location of a bird, a visuo-spatial item,
by processing its song—and auditory cue. Similarly, we can
identify a word’s rhyme, a verbal item, based on a printed
presentation—a visual cue. So, separate modalities do not
map one-to-one onto separate domains (verbal/visuo-spatial).
By extension, one can argue that separate systems for different
forms of perceptual information do not demand separate
higher-order modules. Assuming retrieval is based on features
that are not only perceptual, some integrated form of represen-
tation that includes the features generated by early modality-
specific processing as well as by categorization and contact
with prior knowledge, seems more likely to lead to efficient
performance. The FM meets this requirement as it includes
modality-specific as well as modality-independent features in
the same representations.

What benefits might there be in adopting a feature-based
view relative to a system proposing separated structures? One
argument is that a feature-based working memory, without
separate verbal and visuo-spatial modules, is more
parsimonious—a point emphatically made by C. C. Morey
(2018) in her recent review. We would suggest further bene-
fits. First, principles that are very useful in other memory areas
can be called upon much more easily in the working-memory
domainwhen feature-based representations are viewed as cen-
tral. For instance, consider the encoding-retrieval match prin-
ciple. Encoding-retrieval match typically relates to multimod-
al, integrated features of to-be-remembered items, that is, fea-
tures relating to item characteristics as well as the context in
which the item appeared. Within a model that relies on
feature-based representations, it is easy to see how encoding-
retrieval match would apply. The same would be true of pro-
posals such as encoding specificity. In effect, the Luce choice
rule often included in feature-based views, can be seen as a
quantitative instantiation of encoding specificity. Second, hav-
ing a memory system where retrieval depends on the product
of processing—the processes that generate the features—
accords well with the need for multimodal integration of ex-
perience; sound, smells, feelings, thoughts, and visual proper-
ties can all be features of an encoded item. It seems less ob-
vious how multimodal integration can be achieved within a
modular system; some extra integrative module or structure
would seem to be necessary.

Conclusion

Since Atkinson and Shiffrin (1968) published their seminal
paper, there has been a sizable amount of published work in
the area of short-term/working memory. Multiple empirical

phenomena have been uncovered and systematically studied,
while computational and quantitative models have been pro-
posed to explain these effects. Atkinson and Shiffrin illustrat-
ed how a systematic consideration of the experimental tasks
bolstered by the precision of quantitative modelling can pro-
duce a compelling account. Their paper not only provided a
very influential framework with respect to memory structure
and processes, it illustrated how the combination of experi-
mentation and modelling can be a very powerful approach.

Here, we tried to emulate this approach when considering
dissociations between verbal and visuo-spatial working mem-
ory tasks. Our hypothesis regarding how these results could be
understood was tested by quantitatively fitting the FM to two
data sets. The demonstrations showed that both single and
double dissociations can be explained within a system that
does not include separate structures for verbal and visuo-
spatial processing. The dissociations were accounted for by
making the following assumptions: (1) verbal and visuo-
spatial primary and secondary tasks generate different fea-
tures; (2) suppression tasks produced traces that are integrated
to the representations of to-be-recalled items in serial recall
(the feature adoption hypothesis); (3) feature adoption or in-
terference from secondary task is a function of differential
similarity—when primary and secondary tasks share features,
interference will be higher.

At a more general level, the work we reported is a further
demonstration, within the working memory field, of the use-
fulness of feature-based approaches—something that
Atkinson and Shiffrin (1968) identified. Many of the develop-
ments generated by their work involved more advanced
feature-based models (i.e. search through associative memory
[SAM], Raaijmakers & Shiffrin, 1980, 1981; retrieving effec-
tively from memory [REM], Shiffrin & Steyvers, 1997;
MINERVA 2, Hintzman, 1984; see Atkinson & Shiffrin,
2016, for further examples). The use made here of the FM is
yet another example that shows that feature-based models can
easily handle reasonably complex data patterns while relying
on widely applicable principles.
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2015-04416 from the Natural Sciences and Engineering
Research Council of Canada to Jean Saint-Aubin. While
working on this article, Geneviève Gallant and Dominic
Guitard were supported by NSERC graduate scholarships.

Appendix: Model fitting details

Since the FM is too complex for an analytic expression
for the likelihood to be derived, we used a version of
approximate Bayesian computation (ABC) to carry out
model fits (see Turner & Van Zandt, 2012; Marin et al.
2012, for a review). ABC methods allow for Bayesian
model fitting even in cases when the likelihood cannot

Mem Cogn (2019) 47:603–618 615



be computed, by using simulated data to obtain an ap-
proximate likelihood. Specifically, we used a procedure
known as ABC partial rejection control (ABC-PRC;
Sisson et al., 2007). ABC-PRC provides a good compro-
mise between pure rejection sampling, which is simple
but inefficient, and more sophisticated algorithms like
ABC differential evolution (Turner & Sederberg, 2012),
which can be more efficient but which are more complex.

ABC-PRC works by repeatedly sampling from a prior
over the parameter space until it finds a set of parameters
which generate a set of summary statistics sufficiently
close to the data. When this happens, the algorithm stores
these parameter values and moves on to the next particle
in the generation. Once all particles in a generation have
been associated with parameter sets, the algorithm gives
each particle a weight depending on the prior, and then
begins a new generation, sampling from the previous gen-
eration with probabilities given by the weights, and

repeatedly perturbing around the previous parameter
values until a set is found producing summary statistics
even closer to the data. For full details, see Sisson et al.
(2007; note also the errata, Sisson et al., 2009)

Under ABC-PRC, the posterior estimates for the parame-
ters are just the fraction of particles in the final generation with
that parameter value. Posterior predicted distributions of the
summary statistics are also easily obtained.

The important parameters for ABC-PRC are the num-
ber of particles (set to 1,000 for all fits reported here), the
number of generations (four here), the details of the prior,
the proposal distributions, and the tolerances for each
generation. Setting the number of generations and the tol-
erances requires some trial and error. Lower tolerances
will tend to result in a better match between model and
data, but at some point the computational cost becomes
prohibitive. Details of the model and fitting parameters
for each data set are given in Table 1.

Table 1 Fixed parameter values for all model fits reported in the main text

Parameter values Control conditions

Experiment 1 Guerard and Tremblay (2008)

Fixed model parameters Forgetting probability 100 100

Attention 1 1

Recovery constant 2 2

# of items 5 or 7 7

# independent features 20 20

Type ind. features 2 2

# dependent features 20 2

Type dep. features 2 2

Estimated Parameters Distance scaling Parameters
Mean [95% HDI]

dSpatial = 30.62 [22.20, 42.41]
dverbal = 25.51 [13.96, 31.74]

dSpatial = 29.60 [20.43, 42.36]
dverbal = 28.56 [18.81, 41.09]

Number of similar features
Mean [95% HDI]

FTapping = 9.14 [1.19, 18.00]
FSuppression = 10.59
[2.06, 18.58]
FDissociation = 10.90
[0.55, 19.9]

FTapping = 3.54 [0.20, 8.28]
FSuppression = 7.28
[1.80, 11.73]
FDissociation = 7.57
[3.49, 12.43]

Fitting Parameters Number of particles 1000 1000

Simulations per step 500 500

Generations 4 4

ABC parameters ϵ = [.15 .10 .08 .06]
Proposal λ = [5 12 14 20]
Proposal SD = [ 5 3 2 2]

ϵ = [.18 .15 .12 .10]
Proposal λ = [5 12 14 20]
Proposal SD = [5 3 2 2]

Note. The majority of these parameter values are identical to those used in the simulations in Neath and Nairne (1995)

To assess the presence of a dissociation we compared the full model with a reduced, or null, model where the number of extra similar features induced
when the modality of the dual task matched the primary was set to be zero. To do this, we make use of a standard trick (Marin et al., 2012), which is to
imagine the two models as nested in some larger model which includes a parameter m that selects one model or the other. We can run a simple rejection
sampling algorithm on this joint model to estimate the value of m. Assuming a uniform prior, the ratio of the posterior probabilities, p(m = full)/p(m =
null) is an estimate of the Bayes factor BF. In both experiments, we ran this rejection sampling step at the lowest value of epsilon used in the main fitting;
however, since this is computationally inefficient compared with ABC-PRC, we used only 100 particles. Quoted Bayes factors are therefore to be
regarded as approximations. The data and model code used in our analysis are available on the Open Science Framework project page (https://osf.io/
6sae4/)
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