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Abstract
Probiotics are “live microorganisms which, when consumed in adequate
amounts, confer a health benefit to the host”. A number of attributes are highly
sought after among these microorganisms, including immunomodulation,
epithelial barrier maintenance, competitive exclusion, production of short-chain
fatty acids, and bile salt metabolism. Bacteriocin production is also generally
regarded as a probiotic trait, but it can be argued that, in contrast to other traits,
it is often considered a feature that is desirable, rather than a key probiotic trait.
As such, the true potential of these antimicrobials has yet to be realised.
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What are bacteriocins?
Bacteriocins are small, heat-stable, ribosomally synthesised 
antimicrobial peptides produced by bacteria that are active 
against other bacteria and to which the producer is immune1. These 
peptides exhibit considerable diversity with respect to their size, 
structure, mechanism of action, inhibitory spectrum, immunity 
mechanisms, and target cell receptors2. Indeed, for example, 
many bacteriocins have a narrow spectrum of activity, displaying 
antimicrobial activity against strains that are closely related to 
the producer, whereas others display antimicrobial activity across 
a broad variety of different genera1. The regulation of bacteriocin 
production can be complex, in some instances being influenced 
by environmental conditions such as pH, temperature, and growth 
medium3–5.

Despite the diversity among bacteriocins, they can generally be 
classified into one of two groups on the basis of whether they 
undergo post-translational modifications1. Class I (modified) 
bacteriocins have been further subdivided into the following 
subgroups: lantibiotics, linaridins, linear azol(in)e-containing 
peptides, cyanobactins, thiopeptides, lasso peptides, sactibiot-
ics, glycocins, and modified microcins6. Class II (unmodified) 
bacteriocins consist of five subgroups: four correspond to the 
unmodified lactic acid bacteria (LAB) bacteriocins and one 
corresponds to the unmodified microcins and includes class 
IIa (pediocin-like), IIb (two-peptide bacteriocins), IIc (circular 
bacteriocins), IId (linear, non-pediocin-like bacteriocins), and IIe 
(microcin E492-like bacteriocins).

Antimicrobial/bacteriocin production may contribute to probiotic 
functionality through three different mechanisms7: firstly, as 
colonising peptides, bacteriocins aid the survival of the produc-
ing strain in the gut environment8; secondly, bacteriocins function 
through direct inhibition of the growth of pathogens9; and, finally, 
bacteriocins may serve as signalling peptides/quorum-sensing 
molecules in the intestinal environment10. However, although 
bacteriocin production is generally regarded as a probiotic trait, it 
can be argued that, in contrast to other traits, it is often consid-
ered a feature that is desirable, rather than a key probiotic trait. As 
such, the true potential of these peptides for gut health, and indeed 
other applications11, has yet to be realised.

Bacteriocin-producing probiotic strains
Probiotics are “live microorganisms which, when consumed in 
adequate amounts, confer a health benefit to the host”12. The 
majority of probiotic species in commercial use today are rep-
resentatives of the genera Lactobacillus or Bifidobacterium. 
However, despite the health-promoting attributes associated with 
Bifidobacterium spp. and their potential ability to produce these 
antimicrobials, there is limited information available regarding 
functional bacteriocin production by bifidobacteria13. This raises 
the following question: is bacteriocin production a rare trait among 
bifidobacteria or are bacteriocin-producing bifodobacteria being 
overlooked or not being effectively harnessed? Interestingly, while 
examining the diversity and distribution of bacteriocins from 
different body sites, Zheng et al. reported the absence of 
bacteriocins produced by Bifidobacterium spp. in the gut, despite 
bifidobacteria accounting for up to 10% of the microbiome14. 
Walsh et al. identified just two novel putative bacteriocin gene 
clusters, belonging to the lantibiotic class, from two Bifidobacterium 

spp. during a screen of the gastrointestinal (GI) tract subset of 
the Human Microbiome Project reference genome database15, 
again emphasising the rarity of production among this genus. 
Other probiotics include specific strains of Streptococcus spp., 
Lactococcus spp., and Enterococcus spp. as well as the Escherichia 
coli strain Nissle 1917 and yeasts such as Saccharomyces 
boulardii16,17. As lactococci are not typically regarded as gut- 
associated microorganisms and the use of enterococci as pro-
biotics is controversial, for the purposes of this review we have 
focused on reviewing what is known about bacteriocin produc-
tion from among probiotic lactobacilli and streptococci of human 
origin and discussing the extent to which this trait is valued when 
commercialising associated strains (Figure 1).

Probiotic lactobacilli
The mechanism by which bacteriocin production contributes to 
probiotic functionality among species of Lactobacillus has been the 
focus of a number of studies. van Hemert et al. reported that genes 
required for plantaricin production and transport contributed to the 
immunomodulatory effects of Lactobacillus plantarum WCFS1 
on peripherial blood mononuclear cells10. Using the same strain of 
L. plantarum, Meijerink et al. established that six of the eight genes 
that modulate the dendritic cell cytokine response were involved 
in bacteriocin production or secretion18. The beneficial impact of 
using L. johnsonii La1 to control Helicobacter pylori colonisation 
was also previously examined19.

A number of strains of Lactobacillus salivarius which possess 
probiotic traits have been identified, and the genus is also associ-
ated with the production of a number of class II (a, b, and d) 
bacteriocins20–24. Despite the fact that bacteriocins produced by 
potential probiotic strains have significant promise as alternative 
treatments to target clinically relevant pathogens, the degree to 
which they are expressed under the harsh conditions within the 
GI tract has not been studied in great detail. For the same reason, 
strategies have not been developed to ensure that bacteriocin 
production is triggered within this environment. It has only been 
established that certain bacteriocins produced by L. salivarius 
strains can indeed be produced within many of the stressful con-
ditions encountered in the gut3,25. L. salivarius UCC118 (NCIMB 
40829 LSUCC118) is a very well-characterised strain that has 
been studied with a view to potential probiotic applications and that 
notably produces the class II, two-peptide bacteriocin Abp11826. 
Abp118 displays a relatively broad spectrum of antimicrobial 
activity against a number of food-borne and medically significant 
pathogens27. This probiotic strain was the focus of particular atten-
tion when it was employed in an important ‘proof-of-concept’ 
study, which proved that bacteriocin production is indeed a pro-
biotic trait by virtue of its ability to protect mice against Listeria 
monocytogenes infection9. The strain and a non-bacteriocin- 
producing equivalent were also used by Murphy et al. to test their 
relative abilities to mitigate the metabolic abnormalities associ-
ated with obesity in a diet-induced obesity (DIO) mouse model 
and modulate the gut microbiota as a potential driver of these 
abnormalities28. Although reductions in weight gain were evident 
among animals that received the bacteriocin-producing strain, 
these effects were transient. It was notable that the composi-
tion of the murine gut microbiota differed depending on which 
strain they were fed, indicating in situ functionality28. As the abil-
ity to adhere to intestinal epithelium can play a role in probiotic 
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functionality, this strain has also been examined to assess the 
influence of adhesion to intestinal epithelial cells on gene expres-
sion. Notably, bacteriocin gene expression was induced upon 
adhesion to epithelial cells, possibly through a mechanism 
whereby the presence of an induction peptide at a high enough 
local concentration triggers bacteriocin production. The phenom-
enon was observed for the UCC118 wild-type strain but not an 
srtA mutant, as disruption of the sortase gene srtA results in 
significantly lower levels of adhesion29, following exposure to 
Caco-2 cells30. It is notable that, despite UCC118 being perhaps 
the probiotic strain in which the benefits of bacteriocin production 
are clearest, the strain has yet to be brought to market. Another 
L. salivarius-produced bacteriocin that has been the focus of 
investigation is bactofencin A, a class IId bacteriocin24. This 
bacteriocin is unusual in that it does not share significant homol-
ogy with previously characterised bacteriocins but instead is 
more similar to a group of eukaryotic antimicrobial peptides24. 

Bactofencin A has a relatively broad spectrum of activity, inhibit-
ing two clinically significant pathogens: Staphylococcus aureus and 
L. monocytogenes24. The impact of the bactofencin A-producing 
strain on intestinal populations and microbial diversity in a 
simulated model of the distal colon has been examined25 and was 
found to alter the proportions of a number of important gut gen-
era, including Fusobacterium, Bacteroides, and Bifidobacterium, 
resulting in a positive, albeit subtle, effect on gut populations25.

Despite the research described above, bacteriocin production 
among commercial probiotic lactobacilli has, in general, not been 
studied in great detail, and the information available regarding 
which commercial probiotics produce bacteriocins and which 
bacteriocins are produced most frequently is limited. Lactobacillus 
acidophilus probiotics, several of which are employed for use in 
commercial products31,32, are somewhat exceptional in this regard in 
that two such strains, NCFM and LA-5, are known to produce the 

Figure 1. Bacteriocins, from discovery to potential probiotic application. Strategies to identify new bacteriocins include culture-based 
methods and newer bioinformatics-based approaches. These can lead to the identification of bacteriocin-producing strains from traditionally 
utilised, or novel, probiotic species. The impact of a bacteriocin-producing strain on health can be assessed using in vitro, ex vivo, and in vivo 
methods and, depending on the outcome, has the potential to be applied to prevent or treat various disease states.
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bacteriocin lactacin B33,34. This bacteriocin has a narrow spectrum 
of activity, capable of inhibiting other lactobacilli and Enterococcus 
faecalis35. Notably, with respect to this commentary, the contribu-
tion of lactacin B, if any, to probiotic functionality has not been 
determined.

Streptococcus salivarius
Streptococcus salivarius is a well-characterised human commensal 
of the oral cavity36 and has been found to colonise within just a 
few hours of birth37. It is also a common inhabitant of the gut, 
particularly the stomach and jejunum. Some strains of S. salivarius 
have gained attention because of their role as safe and effective 
probiotics, and have been employed to promote a healthy oral 
microbiota38,39. As reviewed by Wescombe et al., strain K12 is the 
model S. salivarius probiotic and is available in commercial prepa-
rations (BLIS K12; BLIS Technologies, Otago, New Zealand). K12 
was initially selected because of its ability to inhibit the pathogen 
Streptococcus pyogenes, but now several other health-promoting 
effects have been noted40. This includes the ability to inhibit group 
B streptococci (GBS)41, including isolates suspected of causing 
disease in newborns and colonising isolates from the vaginal tract 
of pregnant women. Some of these activities were dependent, or 
partially dependent, on the presence of a megaplasmid that 
encodes the salivaricin A2 and salivaricin B bacteriocins41.

Other strains of S. salivarius examined for their probiotic appli-
cation include M18, which contains a megaplasmid encoding a 
number of bacteriocins42. To evaluate its probiotic potential, the 
impact of this strain to prevent or reduce the risk of dental car-
ies and influence dental health was examined in a randomised, 
double-blind, placebo-controlled trial43. The persistence of this 
strain in saliva was also investigated and revealed to be dose 
dependent44. This study demonstrated in vitro transfer of the 
bacteriocin-encoding megaplasmids between two strains of 
S. salivarius. This may allow the enhancement of probiotic strains 
by transferring the megaplasmid from those that persist poorly 
but demonstrate strong bacteriocin production to indigenous 
S. salivarius that persist strongly but demonstrate poor bacteriocin 
production44. Additionally, the identification of novel bacteriocins, 
including salivaricin 945 and the recently identified salivaricin E46, 
from this species continues to enhance the probiotic potential of 
S. salivarius.

Novel health targets for bacteriocins
The ability of bacteriocins to modulate the gut microbiota by 
targeting undesirable components without having a negative 
impact on the beneficial populations is an attractive trait. The role 
by which a bacteriocin could regulate niche competition among 
enterococci or between enterococci and the intestinal microbiota 
was examined by Kommineni et al.47. Here, it was demonstrated 
that E. faecalis containing the conjugative pPD1 plasmid, which 
expresses bacteriocin 21, both replaced indigenous enterococci 
and outcompeted E. faecalis, which lacked the plasmid, while the 
transfer of this plasmid to other E. faecalis strains enhanced their 
survival in the intestine. Finally, vancomycin-resistant enterococci 
were cleared following subsequent colonisation with E. faecalis 
harbouring a conjugation-defective pPD1 mutant47. These results 
do indeed demonstrate that bacteriocin production by commensal 
bacteria contributes to niche competition and an alternative 
therapeutic approach to eliminating intestinal colonisation by 

multidrug-resistant bacteria may be provided by bacteriocins 
delivered by commensals47.

Janek et al. observed a high frequency of bacteriocin production 
among nasal Staphylococcus strains with highly variable antimi-
crobial activity against other nasal members, suggesting a need 
to inhibit different competitors48. The diverse activity spectra of 
bacteriocins within the nose may facilitate the ability of a 
bacterial species to dominate the resident populations, suggest-
ing the development of probiotics that could promote a desir-
able microbiota composition and eliminate pathogens such as 
S. aureus48.

The majority of studies to date, focus on bacteriocin-producing 
probiotics that can inhibit well-established gut pathogens. Next- 
generation sequencing technologies continue to provide a more 
thorough understanding of the role of the gut microbiota in GI 
health and, as a result, new targets are emerging. The use of a 
targeted approach can help to provide further insights into such 
studies by establishing whether increases in specific taxa are the 
cause, or a consequence, of such diseases. More specifically, 
in instances where the link between the putative pathogen and 
disease is not clear, the targeted removal of the microbe by 
bacteriocin-based approaches can establish aetiology. Even more 
significantly, if the target microbe is established to be a pathogen, 
the bacteriocin can also be employed to prevent/treat disease. 
Although, yet again, the harnessing of bacteriocin-producing 
strains to this end has remained a focus of academic research only, 
here we provide some examples of ways in which these bacteria 
could be applied.

Metabolic health
Obesity is a complex syndrome and has a number of serious 
implications for human health, including cardiovascular disease, 
type 2 diabetes (T2D), and musculoskeletal disorders. The role 
of the gut microbiota in obesity and overall metabolic health has 
received considerable attention in recent years. Initially, it was 
noted that the gut microbiota of genetically obese mice have 
been associated with an increase in the phylum Firmicutes and a 
decrease in the phylum Bacteroidetes49,50. However, there is con-
flicting evidence in human studies with regard to what the key 
populations involved are51. Nonetheless, the ability of the previ-
ously mentioned L. salivarius UCC118 strain to inhibit a number 
of Firmicutes was part of the logic behind investigating its abil-
ity to control weight gain in DIO mice28. More recent research has 
specifically highlighted populations that may play a role in obes-
ity or in T2D52–57 that could be directly or indirectly targeted by 
antimicrobial action to improve intestinal balance and in turn GI 
health.

There have been other studies that have more specifically estab-
lished the role of a particular species or strain in obesity and T2D. 
Fei and Zhao demonstrated the role of the endotoxin-producing 
Enterobacter cloacae B29 in inducing obesity and insulin resist-
ance in germfree mice58. It was also shown that Clostridium 
ramosum, a species previously shown to be enriched in patients 
with T2D56, promoted obesity in a gnotobiotic mouse model 
fed a high-fat diet59. Bacteriocins produced within the gut with 
specific activity against some of these organisms may be effective 
in beneficially balancing metabolic health.
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Cancer
There have been some suggestions that bacteriocins can be 
employed as anticancer agents, either through their impact on 
cancerous cells or through the inhibition of bacteria associated 
with the initiation of disease60. One such study focused on the 
impact of nisin on head and neck squamous cell carcinoma 
(HNSCC) cell apoptosis and cell proliferation in vitro and in vivo 
in murine oral cancer61. It was revealed that treatment with increas-
ing concentrations of nisin induced increasing DNA fragmenta-
tion and apoptosis on three different cancer cell lines. In the oral 
cancer mouse model, groups receiving nisin showed reduced 
tumour volumes through activation of CHAC1 expression when 
compared with controls, while pre-treating with nisin prior to and 
three weeks after tumour cell inoculation led to the same effect61. 
It was suggested that in this study the selective action of nisin 
arose from structural differences in the composition of the plasma 
membranes between HNSCC cells and primary keratinocytes. 
Although it was the nisin peptide rather than the bacteriocin- 
producing strain that was used, it would be interesting if strains 
capable of producing nisin or its variants could be used in a 
similar manner.

In the context of inhibiting potentially cancer-causing microbes, 
we refer to the example of Fusobacterium nucleatum62. Though 
initially regarded as a component of the oral cavity, F. nucleatum 
is also present in the gut and has been linked to playing a part in 
different GI disorders such as colorectal cancer (CRC), inflamma-
tory bowel disease, and appendicitis63–66. The mechanism by which 
F. nucleatum is thought to promote CRC has been investigated67,68. 
As members of the genus Fusobacterium, and in particular 
F. nucleatum, play a role in numerous disease states as mentioned 
above, they represent an ideal target for bacteriocin-producing 
probiotics, but, yet again, this potential has yet to be harnessed.

Future perspectives
This review highlights the potential for bacteriocins and bacte-
riocin-producing probiotics as novel therapeutic treatments in 
many disease states, including the targeting of newly emerging 
pathobionts involved in a variety of gut disorders. While there 

is an abundance of knowledge on the application of bacteriocin- 
producing strains with probiotic potential in an in vitro setting, less 
is known of their impact in an in vivo environment and even less 
again with regard to their application in human health. This is 
undoubtedly the primary hurdle that needs to be overcome in 
order for the potential of the multitude of bacteriocin-producing 
strains that continue to be identified using traditional methods69–71 
or bioinformatic approaches14,15 to be realised.

In addition to identifying new targets, recent studies have identi-
fied Akkermansia muciniphila72 and Faecalibacterium prausnitzii73 
that correlate positively with gut health, as well as a decline in 
butyrate-producing Roseburia species in certain disease states56,57, 
which may play a role in future probiotic applications alongside 
the more traditional strains currently employed. The capacity 
to produce a bacteriocin by such microbes was demonstrated 
by Hatziioanou et al., who highlighted the first example of a 
bacteriocin-like substance produced by Roseburia faecis M72/174. 
Additionally, in silico screens may prove useful in identifying 
putative bacteriocin gene clusters from these genera/species, 
such as the sactipeptide-like cluster from Roseburia intestinalis 
L1-8215. It will be necessary to determine whether these potential 
probiotics of the future have the ability to produce bacteriocins 
that can contribute to human health and whether this potential 
can be more effectively harnessed than has been the case to date. 
Until such time as this occurs, bacteriocin production will con-
tinue to be regarded as a probiotic trait in theory rather than in 
commercial reality.
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